Devoir surveillé n°5

Durée: 1 heure

L'utilisation d'une calculatrice est autorisée.

Exercice 1 (7 points).

- 1. En utilisant l'algorithme d'Euclide, montrer que 39 et 16 sont premiers entre eux.
- 2. En remontant l'algorithme d'Euclide, déterminer deux entiers u et v tels que 39u-16v=1.
- **3.** Résoudre l'équation diophantienne 39x 16y = 1 d'inconnue $(x; y) \in \mathbb{Z}^2$.
- **4.** Déterminer l'ensemble des entiers n tels que $\begin{cases} n \equiv 6 \ [39] \\ n \equiv 7 \ [16] \end{cases}$

Exercice 2 (13 points).

Partie A. — On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 5u_n + 1$. On admet que, pour tout $n \in \mathbb{N}$, u_n est un entier non nul.

- 1. Calculer u_1 , u_2 et u_3 puis déterminer le P.G.C.D. de u_2 et u_3 .
- 2. Justifier que, pour tout entier naturel n, u_n et u_{n+1} sont premiers entre eux.
- **3.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $4u_n = 5^n 1$.
- **4.** Déduire des questions précédentes le P.G.C.D. de $5^{n+1}-1$ et 5^n-1 pour tout $n \in \mathbb{N}$.

Partie B. — On propose deux généralisations du résultat de la question 4 de la partie A. Soit *a* un entier naturel supérieur ou égal à 2.

- **1. a.** Soit $n \in \mathbb{N}$. Déterminer deux entiers u et v tels que $(a^{n+1}-1)u+(a^n-1)v=a-1$.
 - **b.** En raisonnant modulo a-1, démontrer que, pour tout $k \in \mathbb{N}$, a-1 divise a^k-1 .
 - **c.** En déduire, pour tout entier naturel n, le P.G.C.D. de $a^{n+1} 1$ et $a^n 1$.
- **2.** Soit m et n deux entiers naturels premiers entre eux. On pose $d = PGCD(a^m 1, a^n 1)$.
 - **a.** Justifier que $a^m \equiv 1$ [d] et $a^n \equiv 1$ [d].
 - **b.** Montrer qu'il existe deux entiers <u>naturels</u> s et t tels qu'on ait l'une des deux égalités ms = 1 + nt ou nt = 1 + ms.
 - c. Déduire des questions précédentes que $a \equiv 1$ [d] puis déterminer la valeur de d.

Exercice 3 (Bonus). On admet le résultat suivant qui découle d'un exercice traité en classe : si a et b sont deux entiers premiers entre eux alors a^2 et b^2 le sont aussi.

Soit n un entier naturel. Montrer que si \sqrt{n} est un nombre rationnel alors \sqrt{n} est un nombre entier.