Devoir à la maison n°2

À rendre le jeudi 7 octobre 2022

On considère la suite (u_n) définie par

$$u_0 = 1$$
 et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 1 - e^{-u_n}$.

- 1. Calculer u_1 et u_2 . On donnera des valeurs approchées à 10^{-2} près.
- 2. Écrire en langage Python une fonction terme telle que, pour tout entier naturel n, terme(n) renvoie la valeur de u_n .

On supposera qu'on dispose d'une fonction exp telle que exp(x) renvoie l'image de x par la fonction exponentielle.

- **3.** On considère la fonction $f: x \longmapsto 1 e^{-x}$ définie sur [0;1].
 - **a.** Montrer que f est croissante sur [0;1].
 - **b.** En déduire, en utilisant un raisonnement par récurrence que, pour tout $n \in \mathbb{N}$,

$$0 \leqslant u_{n+1} \leqslant u_n \leqslant 1.$$

- c. Quelles propriétés de la suite (u_n) a-t-on démontré à la question précédente?
- **4.** On considère la fonction $g: x \longmapsto (x+1) e^{-x}$ définie sur [0;1].
 - a. Étudier les variations de g sur [0;1]
 - **b.** En déduire que, pour tout $x \in [0;1]$, $e^{-x} \le \frac{1}{1+x}$.
- **5.** À l'aide des questions précédentes, démontrer par récurrence que, pour tout $n \in \mathbb{N}$,

$$u_n \geqslant \frac{1}{n+1}.$$

6. (facultatif) On considère la suite (H_n) définie, pour tout $n \in \mathbb{N}^*$ par

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$

- **a.** Montrer que, pour tout $k \in \mathbb{N}^*$, $H_{2k} H_k \geqslant \frac{1}{2}$.
- **b.** En déduire que, pour tout $m \in \mathbb{N}$, $H_{2^m} \geqslant \frac{m+2}{2}$.
- c. Montrer que (H_n) n'est pas majorée.
- **d.** Conclure que la suite (S_n) définie, pour tout $n \in \mathbb{N}$, par

$$S_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k$$

n'est pas majorée.