Feuille de calcul n°5 — Dérivation

Exercice 1. Dans chacun des cas suivants, calculer f'(x) pour tout $x \in I$. On ne demande pas de justifier la dérivabilité de f sur I.

1.
$$f(x) = -3x + 2$$
, $I = \mathbb{R}$.

2.
$$f(x) = 3x^4 - 4x^3 + x^2 - 2x$$
, $I = R$.

3.
$$f(x) = (x+1)\sqrt{x}$$
, $I =]0; +\infty[$.

4.
$$f(x) = \frac{1}{1-4x}$$
, $I =]-\infty$; $\frac{1}{4}[$.

5.
$$f(x) = \sqrt{2x+4}$$
, $I =]-2$; $+\infty[$.

Solution.

- 1. Pour tout $x \in I$, f'(x) = -3.
- **2.** Pour tout $x \in I$, $f'(x) = 12x^3 12x^2 + 2x 2$
- **3.** Pour tout $x \in I$,

$$f'(x) = 1 \times \sqrt{x} + (x+1) \times \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{x+1}{2\sqrt{x}} = \frac{2\sqrt{x^2 + x + 1}}{2\sqrt{x}}$$

donc
$$f'(x) = \frac{3x+1}{2\sqrt{x}}$$
.

4. Pour tout
$$x \in I$$
, $f'(x) = -\frac{-4}{(1-4x)^2}$ donc $f'(x) = \frac{4}{(1-4x)^2}$.

5. Pour tout
$$x \in I$$
, $f'(x) = \frac{2}{2\sqrt{2x+4}}$ donc $f'(x) = \frac{1}{\sqrt{2x+4}}$.

Exercice 2. Dans chacun des cas suivants, calculer la dérivée de f sur I. On ne demande pas de justifier la dérivabilité. On s'efforcera de simplifier au maximum le résultat.

1.
$$f: x \longmapsto \frac{x^3+3x+1}{3}, I = \mathbb{R}$$
.

$$2. g: x \longmapsto x^2 e^x, I = \mathbb{R}.$$

3.
$$h: x \longmapsto \frac{x^4 - e^x}{x^4 + e^x}, I = \mathbb{R}.$$

4.
$$k: x \longmapsto e^{\sqrt{x}}, I =]0; +\infty[.$$

5.
$$\ell: x \longmapsto (2x+1)^5, I = \mathbb{R}.$$

6.
$$m: x \longmapsto \frac{1}{(e^x + x)^3}, I = \mathbb{R}.$$

7.
$$n: x \mapsto \frac{e^{2x}}{\sqrt{2x-4}}, I =]2; +\infty[.$$

Solution.

- 1. En écrivant, pour tout réel x, $f(x) = \frac{1}{3}(x^3 + 3x + 1)$, on en déduit que, pour tout réel x, $f'(x) = \frac{1}{3}(3x^2 + 3)$ i.e. $f'(x) = x^2 + 1$.
- **2.** Pour tout réel $x, g'(x) = 2x e^x + x^2 e^x$ i.e. $f(x) = x(x+2) e^x$
- **3.** Pour tout réel x,

$$h'(x) = \frac{(4x^3 - e^x)(x^4 + e^x) - (x^4 - e^x)(4x^3 + e^x)}{(x^4 + e^x)^2}$$

$$= \frac{4x^7 + 4x^3 e^x - x^4 e^x - e^{2x} - (4x^7 + x^4 e^x - 4x^3 e^x - e^{2x})}{(x^4 + e^x)^2}$$

$$= \frac{4x^7 + 4x^3 e^x - x^4 e^x - e^{2x} - 4x^7 - x^4 e^x + 4x^3 e^x + e^{2x}}{(x^4 + e^x)^2}$$

donc
$$f'(x) = \frac{2x^3(4-x)e^x}{(x^4+e^x)^2}$$
.

- **4.** Pour tout réel x > 0, $k'(x) = \frac{1}{2\sqrt{x}} e^{\sqrt{x}}$.
- 5. Pour tout réel x, $\ell'(x) = 5 \times 2(2x+1)^4$ i.e. $f'(x) = 10(2x+1)^4$.
- **6.** Pour tout réel x, $m'(x) = -3 \times \frac{e^x + 1}{(e^x + x)^4}$.
- 7. Pour tout réel x > 2

$$n'(x) = \frac{2e^{2x}\sqrt{2x-4} - e^{2x} \times \frac{2}{2\sqrt{2x-4}}}{\sqrt{2x-4}^2} = \frac{2e^{2x}(2x-4) - e^{2x}}{\sqrt{2x-4}^3}$$

donc
$$f'(x) = \frac{e^{2x}(4x-9)}{\sqrt{2x-6}^3}$$
.

Exercice 3. Dans chacun des cas suivants, calculer f'(x) pour tout $x \in D$. On ne demande pas de justifier la dérivabilité de f sur D.

a)
$$f(x) = \cos(4x + 2)$$
, $D = \mathbb{R}$ b) $f(x) = \cos^3(x)$, $D = \mathbb{R}$.

Solution.

- a) La fonction f est de la fonction $x \mapsto u(ax+b)$ avec $u = \cos$, a = 4 et b = 2 donc, pour tout réel x, $f'(x) = 4 \times (-\sin(4x+2))$ i.e. $f'(x) = -4\sin(4x+2)$.
- b) La fonction f est de la forme $f = u^3$ avec $u = \cos \operatorname{donc}$, pour tout réel x, $f'(x) = 3(-\sin(x))\cos^2(x)$ donc $f'(x) = -3\sin(x)\cos^2(x)$.

Exercice 4. Dans chaque cas, calculer f'(x) pour tout $x \in I$. (On ne demande pas de justifier la dérivabilité de f sur I.)

a)
$$f: x \longmapsto \ln(\sin x)$$
 $I =]0; \pi[$ b) $f: x \longmapsto \ln(\sqrt{1+x^2})$ $I = \mathbb{R}$.

Solution.

a) Pour tout $x \in I$, $f'(x) = \frac{\cos x}{\sin x}$.

b) Première méthode. — Pour tout
$$x \in I$$
, $f'(x) = \frac{\frac{2x}{2\sqrt{1+x^2}}}{\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}}$ donc $f'(x) = \frac{x}{1+x^2}$.

Seconde méthode. — Pour tout $x \in I$, $f(x) = \frac{1}{2}\ln(1+x^2)$ donc $f'(x) = \frac{1}{2}\frac{2x}{1+x^2}$ donc

$$f'(x) = \frac{x}{1+x^2} \, .$$

Exercice 5. Calculer f'(x) dans chacun des cas suivants. (On ne demande pas de justifier la dérivabilité de f.)

a)
$$f(x) = (3x+2)^5$$
;

b)
$$f(x) = e^{1-x^2}$$
;

a)
$$f(x) = (3x+2)^5$$
; b) $f(x) = e^{1-x^2}$; c) $f(x) = \sqrt{e^{x^2} + 2}$.

Solution.

a) Pour tout réel x, $f'(x) = 5 \times 3 \times (3x + 2)^4$ soit $f'(x) = 15(3x + 2)^4$.

b) Pour tout réel
$$x$$
, $f'(x) = -2xe^{1-x^2}$.
c) Pour tout réel x , $f'(x) = \frac{2xe^{x^2}}{2\sqrt{e^{x^2} + 2}}$ soit $f'(x) = \frac{xe^{x^2}}{\sqrt{e^{x^2} + 2}}$.

Exercice 6. Soit f la fonction définie sur \mathbb{R} par $f(x) = \sqrt{\sin x + 3}$. Justifier soigneusement que f et dérivable sur \mathbb{R} et calculer f'(x) pour tout réel x.

Solution. La fonction f est la composée de la fonction $u: x \mapsto \sin(x) + 3$ et de la fonction racine carrée. La fonction u est dérivable sur \mathbb{R} comme somme de deux fonctions dérivables sur \mathbb{R} et la fonction racine carrée est dérivable sur $]0;+\infty[$. De plus, pour tout réel $x,\sin(x)\geqslant -1$ donc $u(x) \ge 2$ et, ainsi, $u(x) \in [0; +\infty[$. On conclut que la fonction f est dérivable sur \mathbb{R} par composition et, pour tout réel x, $f'(x) = \frac{\cos(x)}{2\sqrt{\sin(x) + 3}}$.

Exercice 7. Dans chaque cas, déterminer l'ensemble D de dérivabilité de f et calculer f'(x)pour tout $x \in D$.

a)
$$f: x \longmapsto \sqrt{2x+1}$$
;

b)
$$f: x \longmapsto (\sqrt{x} + 2)^5$$
;

c)
$$f: x \longmapsto \sqrt{2x+1}$$
,
 $f: x \longmapsto \frac{x^3 + x^2 + x + 1}{3}$

d)
$$f: x \longmapsto \left(\frac{x+2}{x+3}\right)^4$$

Solution.

a) Considérons $u: x \mapsto 2x + 1$. Alors, $f = \sqrt{u}$ donc f est dérivable sur D si et seulement si u est dérivable et strictement positive sur D. Or, u est une fonction affine dérivable sur \mathbb{R} et strictement positive sur $\left]-\frac{1}{2};+\infty\right[$. Ainsi, $D=\left]-\frac{1}{2};+\infty\right[$ et, pour tout $x>-\frac{1}{2},\ f'(x)=\frac{2}{2\sqrt{2x+1}}$ i.e. $\left[f'(x)=\frac{1}{\sqrt{2x+1}}\right]$.

$$\frac{2}{2\sqrt{2x+1}}$$
 i.e. $f'(x) = \frac{1}{\sqrt{2x+1}}$

b) Considérons $u: x \mapsto \sqrt{x} + 2$. Alors, $f = u^5$ donc f est dérivable sur D si et seulement si u est dérivable sur D. Or, par somme, u est dérivable sur $]0; +\infty[$ donc $D=]0; +\infty[$. De plus,

pour tout
$$x \in]0; +\infty[$$
, $f'(x) = 5 \times \frac{1}{2\sqrt{x}} \times (\sqrt{x} + 2)^4$ i.e. $f'(x) = \frac{5(\sqrt{x} + 2)^4}{2\sqrt{x}}$.

- c) Pour tout réel x, $f(x) = \frac{1}{3}x^3 + \frac{1}{3}x^2 + \frac{1}{3}x + \frac{1}{3}$ donc f est une fonction polynôme. Ainsi, f est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $f'(x) = x^2 + \frac{2}{3}x + \frac{1}{3}$.
- d) Considérons $u: x \longmapsto \frac{x+2}{x+3}$. Alors, $f=u^4$ donc f est dérivable sur D si et seulement si u est dérivable sur D. Comme u est une fonction rationnelle, elle est dérivable sur son ensemble de définition donc $D=]-\infty\;;-3[\;\cup\;]-3\;;+\infty[$. De plus, pour tout $x\in D$,

$$u'(x) = \frac{1 \times (x+3) - (x+2) \times 1}{(x+3)^2} = \frac{1}{(x+3)^2}$$

donc
$$f'(x) = 4 \times \frac{1}{(x+3)^2} \left(\frac{x+2}{x+3}\right)^3$$
 qu'on peut aussi écrire $f'(x) = \frac{4(x+2)^3}{(x+3)^5}$.