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Sujet 1. Endomorphisme de Grégory et application (C1)
On considère les polynômes P0(X) = 1 et, pour tout k ∈ N∗, Pk(X) = Xk.
Pour tout n ∈ N, on note Bn = (P0, P1, . . . , Pn) la base canonique de Rn[X].
Pour tout n ∈ N, on note ∆n l’application définie sur Rn[X] par

∀P ∈ Rn[X] ∆n(P ) = P (X + 1)− P (X)

où P (X + 1) désigne la composée de X + 1 suivie de P .
Par exemple, si P (X) = X3 alors P (X + 1) = (X + 1)3.
1. Montrer que, pour tout n ∈ N, ∆n est un endomorphisme de Rn[X].

2. a. Montrer que la matrice de ∆2 dans B2 est M2 =

0 1 1
0 0 2
0 0 0

.

b. Quelles sont les valeurs propres de M2 ? La matrice M2 est-elle diagonalisable ?
3. a. Déterminer la matrice M3 de ∆3 dans la base B3.

b. La matrice M3 est-elle diagonalisable ? Est-elle inversible ?
4. a. Déterminer le noyau et l’image de ∆3.

b. En déduire que, pour tout Q ∈ R2[X], il existe P ∈ R3[X] tel que

Q(X) = P (X + 1)− P (X).

Ce polynôme P est-il unique ?
5. a. Déterminer un polynôme P ∈ R3[X] tel que P (X + 1)− P (X) = X2.

b. Soit n ∈ N. Déduire de la question précédente une valeur explicite de
n∑
k=0

k2 en fonction

de n.
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Solution.
1. Rappelons que si P etQ sont deux polynômes alors, pour tous réels λ et µ, deg(λP+µQ) ⩽

max(deg(P ), deg(Q)) et, si Q n’est pas constant, alors deg(P ◦Q) = deg(P )× deg(Q).
Soit n ∈ N. Soit P ∈ Rn[X]. Comme deg(X + 1) = 1, deg(P (X + 1)) = deg(P ) donc

deg(P (X + 1)− P (X)) ⩽ deg(P ) et ainsi P ∈ Rn[X].
Soit (P,Q) ∈ Rn[X]2 et (λ, µ) ∈ R2. Alors,

∆n(λP + µQ) = (λP + µQ)(X + 1)− (λP + µQ)(X)
= λP (X + 1) + µQ(X + 1)− λP (X)− µQ(X)
= λ(P (X + 1)− P (X)) + µ(Q(X + 1)−Q(X))
= λ∆n(P ) + µ∆n(Q)

donc ∆n est bien un endomorphisme de Rn[X] .
2. a. Par définition, ∆2(P0) = 1 − 1 = 0, ∆2(P1) = X + 1 − X = 1 = P0 et ∆2(P2) =

(X + 1)2 −X2 = 2X + 1 = P0 + 2P1 donc

M2 =

0 1 1
0 0 2
0 0 0

 .

b. La matrice M2 est triangulaire supérieure donc ses valeurs propres sont ses termes
diagonaux. Ainsi, l’unique valeur propre de M2 est 0 . Si M2 était diagonalisable, il
existerait une matrice inversible P telle que M2 = PDP−1 avec D la matrice diagonale
dont les termes diagonaux sont les valeurs propres de M2. Dans cas, comme Sp(M2) =
{0}, D = 03 donc PDP−1 = 03. Or M2 ̸= 03 donc M2 n’est pas diagonalisable .

3. a. Comme précédemment, ∆3(P0) = 0, ∆3(P1) = P0, ∆3(P2) = P0 + 2P2 et ∆3(P3) =
(X + 1)3 −X3 = 3X2 + 3X + 1 = P0 + 3P1 + 3P2 donc

M3 =


0 1 1 1
0 0 2 3
0 0 0 3
0 0 0 0

 .

b. Comme précédemment, Sp(M3) = {0} donc, commeM3 ̸= 04, M3 n’est pas diagonalisable .
De plus, comme 0 est valeur propre de M3, 0 ∈ ker(M3) donc M3 n’est pas inversible .

4. a. Le système homogène associé à M3 est échelonné et possède 3 pivots donc rg(M3) = 3.
Dès lors, rg(∆3) = 3. Ainsi, par le théorème du rang, dim(ker(∆3)) = 4− 3 = 1. Or,
on a vu que P0 est un vecteur non nul appartenant à ker(∆3) donc ker(∆3) = Vect(P0)
i.e. ker(∆3) = R0[X] . De plus, dim(Im(∆3)) = rg(∆3) = 3 et on a vu que les
images de P0, P1, P2 et P3 appartiennent à R2[X] donc Im(∆3) ⊂ R2[X]. Comme
dim(R2[X]) = dim(Im(∆3)) = 3, on conclut que Im(∆3) = R2[X] .
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b. Soit Q ∈ R2[X]. Alors, Q ∈ Im(∆3) donc il existe P ∈ R3[X] tel que ∆3(P ) = Q

c’est-à-dire il existe P ∈ R3[X] tel que P (X + 1)− P (X) = Q .
Ce polynôme P n’est pas unique car ∆3 n’est pas injective. Pour tout polynôme

constant R, ∆3(P +R) = ∆3(P ) + ∆3(R) = Q+ 0 = Q car R ∈ ker(∆3).
5. a. Déterminer un polynôme P ∈ R3[X] tel que ∆3(P ) = X2 revient matriciellement à

déterminer un vecteur V =


a
b
c
d

 tel que M3V =


0
0
1
0

. Cette égalité matricielle se

traduit par le système suivant : 
b+ c+ d = 0
2c+ 3d = 0
3d = 1
0 = 0

donc une solution est


0
1
6
−1

2
1
3

 donc P = 1
3X

3 − 1
2X

2 + 1
6X est un polynôme de R3[X]

tel que ∆3(P ) = X2.
b. On en déduit que, pour tout réel t, t2 = P (t+ 1)− P (t) donc, en reconnaissant une

somme téléscopique,
n∑
k=0

k2 =
n∑
k=0

[P (k + 1)− P (k)]

= P (n+ 1)− P (0)

= 1
3(n+ 1)3 − 1

2(n+ 1)2 + 1
6(n+ 1)− 0

= n+ 1
6

[
2(n+ 1)2 − 3(n+ 1) + 1

]
= n+ 1

6 (2n2 + 4n+ 2− 3n− 3 + 1)

= n+ 1
6 (2n2 + n)

soit finalement,
n∑
k=0

k2 = n(n+ 1)(2n+ 1)
6 .
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Sujet 2. Étude de deux suites imbriquées (C7)
L’objectif de cet exercice est d’étudier deux suites réelles. On pose u0 = 1, v0 = 0 et, pour

tout entier naturel n, un+1 = un + vn

vn+1 = −un + vn
.

On se propose de déterminer, pour tout n ∈ N, un et vn en fonction de n grâce à deux
méthodes différentes.

Méthode 1 : à l’aide des nombres complexes
On pose, pour tout entier naturel n,

zn = un + ivn.

1. En utilisant le logiciel de votre choix ou une calculatrice, calculer les 6 premiers termes
des suites (un) et (vn).

2. Placer les points Mn d’affixes zn pour n allant de 0 à 5. Expliquer comment évolue |zn|
et arg(zn) en fonction de n.

3. Exprimer, pour tout entier naturel n, zn+1 en fonction de zn.
4. Déterminer une forme exponentielle de 1− i.
5. Donner le terme général de la suite (zn).
6. En déduire, pour tout entier naturel n, une expression de un et vn en fonction de n.

Méthode 2 : à l’aide des matrices
On pose, pour tout n ∈ N, Xn =

(
un
vn

)
.

1. Déterminer la matrice A telle que, pour tout n ∈ N, Xn+1 = AXn.
2. Déterminer une inversible P et une matrice diagonale D telle que A = PDP−1. Ces

matrices seront à coefficients complexes.
3. Exprimer, pour tout n ∈ N, An en fonction de n.
4. En déduire, pour tout n ∈ N, une expression de un et vn en fonction de n.
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Solution.

Méthode 1 : à l’aide des nombres complexes

1. À l’aide de Python, le script suivant convient :

u = 1
v = 0
print(u,v)
for n in range (5):

u,v = u+v, -u+v
print(u,v)

On obtient l’affichage suivant :

1 0
1 -1
0 -2
-2 -2
-4 0
-4 4

2. On obtient les points suivants :

0 1

1

•
M0

•M1

•M2•
M3

•
M4

•M5

Il semble que la suite (|zn|) soit croissante et que les points « tourne » de −π
4 entre deux

valeurs de n consécutives donc que arg(zn+1) = arg(zn)− π
4 [2π].
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3. Pour tout n ∈ N,

zn+1 = un+1 + ivn+1

= un + vn + i(−un + vn)
= un + vn − iun + ivn
= un + ivn − i(un + ivn)
= zn − izn

Ainsi, pour tout n ∈ N, zn+1 = (1− i)zn .

4. Le module de 1− i est |1− i| =
√

12 + (−1)2 =
√

2. Ainsi,

1− i =
√

2
(

1√
2
− i 1√

2

)
=
√

2
(√

2
2 − i

√
2

2

)
=
√

2
(

cos
(
−π4

)
+ i sin

(
−π4

))

donc 1− i =
√

2ei π
4 .

5. Pour tout n ∈ N, zn+1 = qzn avec q = 1− i donc la suite (zn) est géométrique de raison
q = 1− i. Ainsi, pour tout n ∈ N, zn = z0q

n. Or, d’une part, z0 = u0 + iv0 = 1 et, d’autre
part, pour tout n ∈ N,

qn =
(√

2e−i π
4
)n

=
(√

2
)n (

e−i π
4
)n

=
(√

2
)n

e−i nπ
4

=
√

2n
[
cos

(
−nπ4

)
+ i sin

(
−nπ4

)]
=
√

2n
[
cos

(
nπ

4

)
− i sin

(
nπ

4

)]
.

On en déduit donc que,

∀n ∈ N, zn =
√

2n
[
cos

(
nπ

4

)
− i sin

(
nπ

4

)]
.

6. Ainsi, pour tout n ∈ N,

zn =
√

2n cos
(
nπ

4

)
− i
√

2n sin
(
nπ

4

)
donc, étant donné que, pour tout n ∈ N, un = Re(un) et vn = Im(un), on conclut que,

∀n ∈ N, un =
√

2n cos
(
nπ

4

)
et vn = −

√
2n sin

(
nπ

4

)
.
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Méthode 2 : à l’aide des matrices
1. Pour tout n ∈ N,

Xn+1 =
(
un+1
vn+1

)
=
(
un + vn
−un + vn

)
=
(

1 1
−1 1

)(
un
vn

)
= AXn

en posant A =
(

1 1
−1 1

)
.

2. 1re méthode : par le calcul
Soit λ ∈ R. Alors, λ est valeur propre de A si et seulement si la matrice A− λI2 n’est

pas inversible i.e. si et seulement si det(A− λI2) = 0. Or,

det(A− λI2) =
∣∣∣∣∣1− λ 1
−1 1− λ

∣∣∣∣∣ = (1− λ)2 + 1 = 12 − 2λ+ λ2 + 1 = λ2 − 2λ+ 2.

Ainsi, λ est valeur propre de A si et seulement si λ est racine du trinôme X2−2X+2 = 0.
Or, le discriminant de celui-ci est ∆ = (−2)2 − 4× 1× 2 = −4 < 0 donc il possède deux
racines complexes conjuguées :

λ1 = −(−2)− i
√

4
2 = 1− i et λ2 = λ2 = 1 + i.

Ainsi, Sp(A) = {1− i ; 1 + i}.
Comme A est une matrice carrée d’ordre 2 qui possède 2 valeurs propres distinctes,

elle est diagonalisable.
Déterminons des vecteurs propres associés à chacune de ses valeurs propres. Soit

(x, y) ∈ C2. Alors,

A

(
x
y

)
= (1− i)

(
x
y

)
⇐⇒

x+ y = (1− i)x
−x+ y = (1− i)y

⇐⇒

y = −ix
−x = −iy

⇐⇒ y = −ix

car i2 = −1 donc −x = −iy équivaut à i2x = −iy i.e. −ix = y.

Ainsi,
(

1
−i

)
est un vecteur propre de A associé à la valeur propre 1− i.

De même,

A

(
x
y

)
= (1 + i)

(
x
y

)
⇐⇒

x+ y = (1 + i)x
−x+ y = (1 + i)y

⇐⇒

y = ix
−x = iy

⇐⇒ y = ix

car i2 = −1 donc −x = iy équivaut à i2x = iy i.e. ix = y.

Ainsi,
(

1
i

)
est un vecteur propre de A associé à la valeur propre 1− i.

Ainsi, on conclut que A = PDP−1 en posant D =
(

1− i 0
0 1 + i

)
et P =

(
1 1
−i i

)
.

12



2de méthode : à l’aide Python
Grâce au code suivant,

import numpy as np

A = np.matrix ([[1 ,1] , [ -1 ,1]])
print(np.linalg.eig(A))

qui affiche

(array ([1.+1.j, 1. -1.j]),
matrix ([[0.70710678+0.j, 0.70710678 -0. j],
[0.+0.70710678j, 0. -0.70710678j]]))

on obtient peut conjecturer que Sp(A) = {1 + i ; 1− i} (Remarque. En Python, le nombre
complexe i est noté j.). On remarque, de plus, que dans la matrice de passage, sur la
première colonne, la seconde ligne est égale à i fois la première et, sur la seconde colonne,
la seconde ligne est égale à −i fois la première donc on peut conjecturer qu’un vecteur

propre associé à 1 + i est
(

1
i

)
et un vecteur propre associé à 1− i est

(
1
−i

)
.

Il ne reste alors plus qu’à vérifier que A
(

1
i

)
= (1+i)

(
1
i

)
et que A

(
1
−i

)
= (1−i)

(
1
−i

)
et terminer le raisonnement comme dans la première méthode.

3. Par propriété, pour tout n ∈ N, An = (PDP−1)n = PDnP−1. De plus, D est diagonale

donc, pour tout n ∈ N, Dn =
(

(1− i)n 0
0 (1 + i)n

)
.

Enfin, det(P ) = 2i donc, par propriété, P−1 = 1
2i

(
i −1
i 1

)
.

Ainsi, pour tout n ∈ N,

An =
(

1 1
−i i

)(
(1− i)n 0

0 (1 + i)n
)

1
2i

(
i −1
i 1

)

= 1
2i

(
1 1
−i i

)(
i(1− i)n −(1− i)n
i(1 + i)n (1 + i)n

)

i.e.

An = 1
2i

(
i [(1− i)n + (1 + i)n] −(1− i)n + (1 + i)n
(1− i)n − (1 + i)n i [(1− i)n + (1 + i)n]

)

4. Considérons, pour tout n ∈ N, la proposition P(n) : « Xn = AnX0.
Initialisation. Comme A0 = I2, A0X0 = I2X0 = X0 donc P(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, grâce au résultat de la

question 1.,
Xn+1 = AXn = A× AnX0 = An+1X0
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donc P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, pour tout n ∈ N, Xn = AnX0.

Étant donné que X0 =
(
u0
v0

)
=
(

1
0

)
, on en déduit que, pour tout n ∈ N,

Xn = 1
2i

(
i [(1− i)n + (1 + i)n] −(1− i)n + (1 + i)n
(1− i)n − (1 + i)n i [(1− i)n + (1 + i)n]

)(
1
0

)

= 1
2i

(
i [(1− i)n + (1 + i)n]
(1− i)n − (1 + i)n

)

donc

∀n ∈ N un = (1− i)n + (1 + i)n
2 et vn = (1− i)n − (1 + i)n

2i

Remarque. On retrouve bien les mêmes valeurs que par la première méthode. En effet, on a
vu que 1− i =

√
2ei π

4 donc 1 + i = 1− i =
√

2e−i π
4 et ainsi, par les formules d’Euler,

un =

(√
2e−i π

4
)n

+
(√

2ei π
4
)n

2 =
√

2n e−i nπ
4 + ei nπ

4

2 =
√

2n cos
(
nπ

4

)
et

vn =

(√
2e−i π

4
)n
−
(√

2ei π
4
)n

2i =
√

2n e−i nπ
4 − ei nπ

4

2i =
√

2n sin
(
−nπ4

)
= −
√

2n sin
(
nπ

4

)
.
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Sujet 3. Calcul des puissances d’une matrice (O1)

On considère la matrice A =

2 1 −1
1 2 −1
0 0 1

. On pose B = A − 3I où I désigne la matrice

identité d’ordre 3.
1. Démontrer qu’il existe un réel α tel que B2 = αB.
2. a. Conjecturer, pour tout n ∈ N∗, une relation entre Bn et B.

b. Démontrer cette conjecture par récurrence.
3. Montrer par récurrence que, pour tout n ∈ N, il existe des nombres réels an et bn tels

que An = anA+ bnI.

4. On pose, pour tout n ∈ N, Xn =
(
an
bn

)
.

a. Préciser X0.
b. Déterminer une matrice M telle que, pour tout n ∈ N, Xn+1 = MXn.
c. Déterminer les valeurs propres de M et en déduire que M est diagonalisable.
d. Déterminer une matrice inversible P et une matrice diagonale D telle que M =

PDP−1.
e. En déduire, pour tout n ∈ N, une expression explicite de Mn en fonction de n.
f. Exprimer, pour tout n ∈ N, an et bn en fonction de n et en déduire une expression de
An en fonction de n.
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Solution.
1. On calcule d’abord

B = A− 3I =

−1 1 −1
1 −1 −1
0 0 −2


donc

B2 =

−1 1 −1
1 −1 −1
0 0 −2


−1 1 −1

1 −1 −1
0 0 −2

 =

 2 −2 2
−2 2 2
0 0 4


c’est-à-dire B2 = −2B .

2. a. Comme B2 = −2B, on a B3 = B2B = (−2B)B = −2B2 = −2(−2B) = 4B puis
B4 = B3B = (4B)B = 4B2 = 4(−2B) = −8B et on peut conjecturer que, pour tout
n ∈ N∗, Bn = (−2)n−1B.

b. Considérons, pour tout n ∈ N∗, la proposition P(n) : « Bn = (−2)n−1B ».
Initialisation. (−2)1−1B = (−2)0B = 1B = B donc P(1) est vraie.
Hérédité. Soit n ∈ N∗. Supposons que P(n) est vraie. Alors,

Bn+1 = BnB = ((−2)n−1B)B = (−2)n−1B2 = (−2)n−1(−2B) = (−2)nB

donc P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que,

pour tout n ∈ N∗, Bn = (−2)n−1B .

3. Considérons, pour tout n ∈ N, la proposition, Q(n) : « il existe des réels an et bn tels que
An = anA+ bnI ».

Initialisation. A0 = I = 0A+ 1I donc Q(0) est vraie en posant a0 = 0 et b0 = 1.
Hérédité. Soit n ∈ N. Supposons que Q(n) est vraie. Alors,

An+1 = AnA = (anA+ bnI)A = anA
2 + bnA.

Or, A = B + 3I donc A2 = (B + 3I)(B + 3I) = B2 + 3B + 3B + 9I = B2 + 6B + 9I et,
comme B2 = −2B, A2 = 4B + 9I = 4(A− 3I) + 9I = 4A− 3I. Dès lors,

An+1 = an(4A− 3I) + bnA = (4an + bn)A− 3anI

donc Q(n+ 1) est vraie en posant an+1 = 4an + bn et bn+1 = −3an.
Conclusion. Par le principe de récurrence, on conclut que Q(n) est vraie pour tout

n ∈ N.
Ainsi, pour tout n ∈ N, il existe des réels an et bn tels que An = anA+ bnI .

4. a. D’après la démonstration précédente, a0 = 0, b0 = 1 donc X0 =
(

0
1

)
.
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b. De plus, pour tout n ∈ N, an+1 = 4an + bn

bn+1 = −3an
.

donc
Xn+1 =

(
an+1
bn+1

)
=
(

4an + bn
−3an

)
=
(

4 1
−3 0

)(
an
bn

)
= MXn

en posant M =
(

4 1
−3 0

)
.

c. Soit λ ∈ R. Alors,

det(M − λI2) =
∣∣∣∣∣4− λ 1
−3 −λ

∣∣∣∣∣ = (4− λ)(−λ) + 3 = λ2 − 4λ+ 3.

Le discriminant du trinôme X2 − 4X + 3 est ∆ = (−4)2 − 4× 1× 3 = 4 > 0 donc ce
trinôme possède deux racines réelles

λ1 = −(−4)−
√

4
2× 1 = 1 et λ2 = −(−4) +

√
4

2× 1 = 3.

Ainsi, Sp(M) = {1 ; 3} .
Comme M est une matrice carrée d’ordre 2 admettant 2 valeurs propres distinctes,

par théorème, M est diagonalisable .
d. Déterminons des vecteurs associés à chacune des valeurs propres de M .

Soit (x, y) ∈ R2 et V =
(
x
y

)
.

MV = V ⇐⇒

4x+ y = x

−3x = y
⇐⇒ y = −3x

donc V1 =
(

1
−3

)
est un vecteur propre associé à la valeur propre 1.

MV = 3V ⇐⇒

4x+ y = 3x
−3x = 3y

⇐⇒ y = −x

donc V2 =
(

1
−1

)
est un vecteur propre associé à la valeur propre 3.

On en déduit qu’en posant D =
(

1 0
0 3

)
et P =

(
1 1
−3 −1

)
alors M = PDP−1 .

e. Par propriété, pour tout n ∈ N, Mn = PDnP−1. Or, comme D est diagonale,

Dn =
(

1 0
0 3n

)
. De plus, det(P ) = 1× (−1)− (−3)× 1 = 2 donc P−1 = 1

2

(
−1 −1
3 1

)
.
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Dès lors, pour tout n ∈ N,

Mn =
(

1 1
−3 −1

)(
1 0
0 3n

)
1
2

(
−1 −1
3 1

)

= 1
2

(
1 1
−3 −1

)(
−1 −1

3n+1 3n
)

= 1
2

(
3n+1 − 1 3n − 1
3− 3n+1 3− 3n

)

Ainsi, pour tout n ∈ N, Mn = 1
2

(
3n+1 − 1 3n − 1
3− 3n+1 3− 3n

)
.

f. La suite (Xn) est une suite géométrique de matrices colonne de raison M donc, pour
tout n ∈ N, Xn = MnX0. Ainsi, pour tout n ∈ N,

Xn = 1
2

(
3n+1 − 1 3n − 1
3− 3n+1 3− 3n

)(
0
1

)
= 1

2

(
3n − 1
3− 3n

)
.

Il s’ensuit que, pour tout n ∈ N, an = 3n − 1
2 et bn = 3− 3n

2 .

On conclut que, pour tout n ∈ N,

An = 3n − 1
2 A+ 3− 3n

2 I

= 1
2

2(3n − 1) 3n − 1 1− 3n
3n − 1 2(3n − 1) 1− 3n

0 0 3n − 1

+ 1
2

3− 3n 0 0
0 3− 3n 0
0 0 3− 3n


soit finalement,

∀n ∈ N An = 1
2

3n + 1 3n − 1 1− 3n
3n − 1 3n + 1 1− 3n

0 0 2

 .
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Sujet 4. Évolution d’une population d’algues marines
(O1)

On étudie une partie de la surface du fond de l’océan sur laquelle poussent uniquement deux
algues : l’algue A et l’algue B. La quantité totale d’algues est supposée constante au cours du
temps, égale à 1000 algues. On sait que, chaque année,
• 5% des algues A et 10% des algues B meurent ;
• la moitié des algues qui meurent sont remplacées par des algues A et l’autre moitié par

des algues B.
Pour tout n ∈ N, on note an le nombre d’algues A en vie à la fin de l’année n et bn le nombre
d’algues B en vie à la fin de l’année n.

1. Montrer que, pour tout n ∈ N, (
an+1
bn+1

)
= M

(
an
bn

)

où M =
(

0,975 0,05
0,025 0,95

)
.

2. Exprimer, pour tout n ∈ N,
(
an
bn

)
en fonction de M , de n et de

(
a0
b0

)
.

3. Démontrer que 1 est une valeur propre de M .
4. Montrer que M admet une autre valeur propre λ ∈ [0 ; 1[.
5. En déduire que M est diagonalisable et déterminer une matrice D diagonale et une

matrice P inversible telles que M = PDP−1.

6. On pose, pour tout n ∈ N,
(
un
vn

)
= P−1

(
an
bn

)
. Établir, pour tout n ∈ N, une relation

entre
(
un
vn

)
, u0, v0, n et D.

7. En déduire que les suites (an) et (bn) convergent. On note a∞ et b∞ leurs limites.

8. Vérifier que
(
a∞
b∞

)
est un vecteur propre de M associé à la valeur propre 1.

9. Donner deux méthodes différentes pour calculer a∞ + b∞.

10. En déduire que u0 = 2000
3 .

11. Montrer que a∞ = 2000
3 et b∞ = 1000

3 .
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Solution.
1. Soit n ∈ N. Au cours de l’année n, 0,05an algues A et 0,1bn algues B meurent. Ainsi,

le nombre total d’algues qui meurent est 0,05an + 0,1bn. Le moitié de celles-ci sont
remplacées par des algues A et l’autre moitié par des algues B donc

an+1 = an − 0,05an + 0,5(0,05an + 0,1bn) = 0,975an + 0,05bn

et
bn+1 = bn − 0,1bn + 0,5(0,05an + 0,1bn) = 0,025an + 0,95bn.

Ainsi, (
an+1
bn+1

)
=
(

0,975an + 0,05bn
0,025an + 0,95bn

)
=
(

0,975 0,05
0,025 0,95

)(
an
bn

)
= M

(
an
bn

)

en posant M =
(

0,975 0,05
0,025 0,95

)
.

2. Considérons, pour tout n ∈ N, la proposition H(n) : «
(
an
bn

)
= Mn

(
a0
b0

)
».

• Initialisation. M0
(
a0
b0

)
= I2

(
a0
b0

)
=
(
a0
b0

)
donc H(0) est vraie.

• Hérédité. Soit n ∈ N. Supposons que H(n) est vraie. Alors,(
an+1
bn+1

)
= M

(
an
bn

)
= M ×Mn

(
a0
b0

)
= Mn+1

(
a0
b0

)

donc H(n+ 1) est vraie.
• Conclusion. Par le principe de récurrence, on conclut que

∀n ∈ N,
(
an
bn

)
= Mn

(
a0
b0

)
.

3. Soit (x, y) ∈ R2. Alors,0,975x+ 0,05y = x

0,025x+ 0,95y = y
⇐⇒

−0,025x+ 0,05y = 0
0,025x− 0,05y = 0

⇐⇒ 0,05y = 0,025x⇐⇒ y = 0,5x

Ainsi, X =
(

1
0,5

)
est une matrice colonne non nulle telle que MX = X donc on conclut

que 1 est valeur propre de M .
4. 1re méthode : par le calcul.

Soit λ ∈ R. Alors,

det(M − λI2) =
∣∣∣∣∣0,975− λ 0,05

0,025 0,95− λ

∣∣∣∣∣ = (0,975− λ)(0,95− λ)− 0,025× 0,05

= λ2 − 1,925λ+ 0,925
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Comme 1 est valeur propre, 1 est racine du trinôme X2 − 1,925X + 0,925 et ainsi ce
trinôme se factorise par X − 1. On obtient X2 − 1,925X + 0,925 = (X − 1)(X − 0,925).

Ainsi, l’autre valeur propre de M est λ = 0,925 .
2de méthode : détermination à l’aide de Python
Grâce au code suivant,

import numpy as np

M = np.matrix ([[0.975 , 0.05] , [0.025 , 0.95]])
print(np.linalg.eig(M))

qui affiche

(array ([1. , 0.925]) ,
matrix ([[ 0.89442719 , -0.70710678] ,
[[0.4472136 , 0.70710678]])

Ainsi, l’autre valeur propre de M est λ = 0,925 .
5. Comme M est une matrice carrée d’ordre 2 qui admet 2 valeurs propres distinctes,

M est diagonalisable . On a vu dans la question 3. que E1(M) = vect
((

1
0,5

))
. Déter-

minons E0,925(M). Pour cela, on considère le système :0,975x+ 0,05y = 0,925x
0,025x+ 0,95y = 0,925y

⇐⇒

0,05x+ 0,05y = 0
0,025x+ 0,025y = 0

⇐⇒ y = −x

donc E0,925(M) = vect
((

1
−1

))
.

On en déduit que M = PDP−1 avec D =
(

1 0
0 0,925

)
et P =

(
1 1

0,5 −1

)
.

6. Soit n ∈ N. Alors,
(
un
vn

)
= P−1Mn

(
a0
b0

)
. Or, comme M = PDP−1, par propriété,

Mn = PDnP−1 donc(
un
vn

)
= P−1(PDnP−1)

(
a0
b0

)
= (P−1P )Dn

(
P−1

(
a0
b0

))
= I2D

n

(
u0
v0

)

donc
(
un
vn

)
= Dn

(
u0
v0

)
.

7. Comme D est diagonale, pour tout n ∈ N, Dn =
(

1 0
0 0,925n

)
donc, pour tout n ∈ N,

(
un
vn

)
=
(

1 0
0 0,925n

)(
u0
v0

)
=
(

u0
0,925nv0

)
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donc un = u0 et vn = 0,925nv0. Ainsi, (un) est constante égale à u0 et (vn) est une suite
géométrique de raison 0,925 ∈ [0 ; 1[ donc lim

n→+∞
vn = 0.

Or, par définition, pour tout n ∈ N,
(
an
bn

)
= P

(
un
vn

)
=
(

un + vn
0,5un + vn

)
donc an =

un + vn et bn = 0,5un + vn. Ainsi, par somme de limites, on en déduit que (an) converge
et lim

n→+∞
an = u0 et que (bn) converge et lim

n→+∞
bn = 0,5u0 .

8. On a vu que
(
a∞
b∞

)
=
(

u0
0,5u0

)
= u0

(
1

0,5

)
donc

(
u∞
v∞

)
∈ E1(M). Ainsi, on conclut que(

u∞
v∞

)
est un vecteur propre de M associé à la valeur propre 1 .

9. D’une part, pour tout n ∈ N, an+bn = 1000 donc, par passage à la limite, a∞ +b∞ = 1000.
D’autre part, a∞ + b∞ = u0 + 0,5u0 = 1,5u0. Ainsi, a∞ + b∞ = 1000 = 1,5u0 .

10. On en déduit que u0 = 1000
1,5 i.e. u0 = 2000

3 .

11. D’après ce qui précède, a∞ = u0 = 2000
3 et b∞ = 0,5u0 = 1000

3 .
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Sujet 5. Étude d’un endomorphisme de R2[X ] (O1)
On se place dans R2[X], l’espace vectoriel des polynômes à coefficients réels, de degré inférieur

ou égal à 2.
Pour tout polynôme P ∈ R2[X], on définit

φ(P ) = (2X + 1)P − (X2 − 1)P ′

1. Montrer que, pour tout P ∈ R2[X], on a φ(P ) ∈ R2[X].
2. Montrer que φ est linéaire.
3. Rappeler la base canonique de R2[X].
4. Montrer que la matrice de φ dans la base canonique de R2[X] est

A =

1 1 0
2 1 2
0 1 1

 .
5. Déterminer les valeurs propres de A.
6. Justifier que φ est diagonalisable.
7. L’application φ est-elle injective ? surjective ?
8. Déterminer les sous-espaces propres de φ.
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Solution.

1. Soit P ∈ R2[X]. Alors, il existe des réels a, b et c tels que P = aX2 + bX + c. Dès lors,
P ′ = 2aX + b donc

φ(P ) = (2X + 1)(aX2 + bX + c)− (X2 − 1)(2aX + b)
= 2aX3 + 2bX2 + 2cX + aX2 + bX + c− (2aX3 + bX2 − 2aX − b)
= (a+ b)X2 + (2a+ b+ 2c)X + b+ c

donc φ(P ) ∈ R2[X].
Ainsi, pour tout P ∈ R2[X], φ(P ) ∈ R2[X] .

2. Soit (P,Q) ∈ R2[X]2 et λ ∈ R. Alors,

φ(λP +Q) = (2X + 1)(λP +Q)− (X2 − 1)(λP +Q)′

= λ(2X + 1)P + (2X + 1)Q− (X2 − 1)(λP ′ +Q′)
= λ(2X + 1)P + (2X + 1)Q− λ(X2 − 1)P ′ − (X2 − 1)Q′

= λ((2X + 1)P − (X2 − 1)P ′) + (2X + 1)Q− (X2 − 1)Q′

= λφ(P ) + φ(Q)

donc φ est linéaire .

3. La base canonique de R2[X] est (1, X,X2) .

4. On a

• φ(1) = (2X + 1)× 1− (X2 − 1)× 0 = 1 + 2X
• φ(X) = (2X + 1)×X − (X2 − 1)× 1 = 1 +X +X2

• φ(X2) = (2X + 1)×X2 − (X2 − 1)× 2X = 2X +X2

donc la matrice de φ dans la base canonique de R2[X] est

A =

1 1 0
2 1 2
0 1 1

 .

5. 1re méthode : par le calcul. Soit λ ∈ R. Considérons le système

(S)


x+ y = λx

2x+ y + 2z = λy

y + z = λz.
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Alors,

(S)⇐⇒


(1− λ)x+ y = 0 L1

2x+ (1− λ)y + 2z = 0 L2

y + (1− λ)z = 0 L2

⇐⇒


2x+ (1− λ)y + 2z = 0 L1 ↔ L2

(1− λ)x+ y = 0 L2 ↔ L1

y + (1− λ)z = 0 L3

⇐⇒


2x+ (1− λ)y + 2z = 0 L1(
1− (1−λ)2

2

)
y − (1− λ)z = 0 L2 ← L2 − 1−λ

2 L1

y + (1− λ)z = 0 L3

⇐⇒


2x+ (1− λ)y + 2z = 0 L1

y + (1− λ)z = 0 L2 ↔ L3(
1− (1−λ)2

2

)
y − (1− λ)z = 0 L3 ↔ L2

⇐⇒


2x+ (1− λ)y + 2z = 0 L1

y + (1− λ)z = 0 L2 ↔ L3

−(1− λ)
(
2− (1−λ)2

2

)
z = 0 L3 ↔ L3 −

(
1− (1−λ)2

2

)
L2

Ainsi, (S) n’est pas de rang 3 si et seulement si −(1− λ)
(
2− (1−λ)2

2

)
= 0. Or,

−(1− λ)
(

2− (1− λ)2

2

)
= 0⇐⇒ 1− λ = 0 ou 2− (1− λ)2

2 = 0

⇐⇒ λ = 1 ou (1− λ)2 = 4
⇐⇒ λ = 1 ou 1− λ = 2 ou 1− λ = −2
⇐⇒ λ = 1 ou λ = −1 ou λ = 3

Ainsi, Sp(A) = {1 ;−1 ; 3} .

2de méthode : à l’aide de Python
Grâce au code suivant,

import numpy as np

A = np.matrix ([[1 ,1 ,0] , [2,1,2], [0 ,1 ,1]])
print(np.linalg.eig(A))
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qui affiche

(array ([-1., 1., 3.]) ,
matrix ([[ 4.08248290e-01, 7.07106781e-01,

4.08248290e -01] ,
[ -8.16496581e-01, 3.74983192e-16, 8.16496581e -01] ,
[ 4.08248290e-01, -7.07106781e-01, 4.08248290e -01]])

)

on obtient Sp(A) = {−1 ; 1 ; 3} .
6. La matrice A est une matrice carrée d’ordre 3 qui admet 3 valeurs propres distinctes

donc, par théorème, A est diagonalisable. Comme A est la matrice de φ dans la base
canonique, on en déduit que φ est diagonalisable .

7. Comme 0 n’est pas pas valeur propre de φ, ker(φ) = {0R2[X]} donc φ est injective .
Comme φ est un endomorphisme de R2[X] et qui R2[X] est de dimension finie, on en
déduit que φ est surjective .

8. Pour déterminer les sous-espaces propres, on reprend le système échelonné en remplaçant
λ par les valeurs propres.

Pour λ = 1, on obtient
2x+ 2z = 0
y = 0
0 = 0

⇐⇒

z = −x
y = 0

.

Ainsi, E1(A) = Vect


 1

0
−1


 donc E1(φ) = Vect(1−X2) .

Pour λ = −1, on obtient
2x+ 2y + 2z = 0
y + 2z = 0
0 = 0

⇐⇒

x = z

y = −2z
.

Ainsi, E−1(A) = Vect


 1
−2
1


 donc E−1(φ) = Vect(1− 2X +X2) .

Pour λ = 3, on obtient
2x− 2y + 2z = 0
y − 2z = 0
0 = 0

⇐⇒

x = z

y = 2z
.

Ainsi, E3(A) = Vect


1

2
1


 donc E3(φ) = Vect(1 + 2X +X2) .
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Sujet 6. Résolution d’une équation matricielle (O1)

Partie I
On considère les matrices suivantes de M3(R) :

D =

3 0 0
0 6 0
0 0 1

 et A =

3 2 1
2 3 1
1 1 4

 .
1. Déterminer une matrice P ∈M3(R) telle que A = PDP−1 de telle sorte que P soit de la

forme P =

. . . . . . . . .
1 1 1
. . . . . . . . .

.

Déterminer P−1.
2. a. Soit B ∈M3(R) telle que BD = DB.

Montrer que B est une matrice diagonale.
b. Déterminer les matrices BM3(R) telles que B2 = D.

3. Déterminer les matrices M ∈M3(R) telles que M2 = A. Combien y a-t-il de solutions ?

Partie II
On considère dans cette partie une matrice C ∈M3(R) qui possède 3 valeurs propres non

nulles, deux à deux distinctes.
On suppose, de plus, qu’il existe une matrice M ∈M3(R) vérifiant M2 = C.

1. Déterminer la dimension des sous-espaces propres de M2.
2. Montrer que si X est un vecteur propre de M2 alors MX est un vecteur propre de M2

pour la même valeur propre.
3. Montrer que si X est un vecteur propre de M2 alors X et MX sont deux vecteurs

colonnes proportionnels.
4. a. Soit X un vecteur propre de M2.

Démontrer à l’aide de la question 3. que X est aussi un vecteur propre de M .
b. En déduire que M est diagonalisable.

5. a. Justifier qu’il existe une matrice inversible P telle que P−1CP et P−1MP soient
diagonales.
On notera dans la suite : D = P−1CP et B = P−1MP .

b. Vérifier que l’équation M2 = C équivaut à B2 = D.
6. En supposant que les 3 valeurs propres distinctes de C sont strictement positives, expliciter

toutes les matrices M vérifiant M2 = C.

27



Solution.
Partie I

1. La question revient à montrer que 3, 6 et 1 sont les valeurs propres de A.

Soit (x, y, z) ∈ R3 et X =

xy
z

.

• Déterminons E3(A) :

X ∈ E3(A)⇐⇒


3x+ 2y + z = 3x
2x+ 3y + z = 3y
x+ y + 4z = 3z

⇐⇒


2y + z = 0
2x+ z = 0
x+ y + z = 0

⇐⇒

y = −1
2z

x = −1
2z

donc E3(A) =


−

1
2z
−1

2z
z


∣∣∣∣∣∣∣ z ∈ R

 = Vect


 1

1
−2


.

• Déterminons E6(A) :

X ∈ E6(A)⇐⇒


3x+ 2y + z = 6x
2x+ 3y + z = 6y
x+ y + 4z = 6z

⇐⇒


−3x+ 2y + z = 0 L1

2x− 3y + z = 0 L2

x+ y − 2z = 0 L3

⇐⇒


x+ y − 2z = 0 L1 ↔ L3

2x− 3y + z = 0 L2

−3x+ 2y + z = 0 L3 ↔ L1

⇐⇒


x+ y − 2z = 0 L1

−5y + 5z = 0 L2 ← L2 − 2L1

5y − 5z = 0 L3 ← L3 + 3L1

⇐⇒

x = z

y = z

donc E6(A) =


zz
z


∣∣∣∣∣∣∣ z ∈ R

 = Vect


1

1
1


.

• Déterminons E1(A) :
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X ∈ E1(A)⇐⇒


3x+ 2y + z = x

2x+ 3y + z = y

x+ y + 4z = z

⇐⇒


2x+ 2y + z = 0 L1

2x+ 2y + z = 0 L2

x+ y + 3z = 0 L3

⇐⇒


x+ y + 3z = 0 L1 ↔ L3

2x+ 2y + z = 0 L2

2x+ 2y + z = 0 L3 ↔ L1

⇐⇒

x+ y + 3z = 0 L1

−5z = 0 L2 ← L2 − 2L1

⇐⇒

x = −y
z = 0

donc E1(A) =


−yy

0


∣∣∣∣∣∣∣ y ∈ R

 = Vect


−1

1
0


.

Ainsi, on conclut que A est diagonalisable (ce que l’on savait déjà car A est une

matrice symétrique à coefficients réels) et A = PDP−1 avec P =

 1 1 −1
1 1 1
−2 1 0

 .

Soit (a, b, c) ∈ R3. Considérons le système (S) :


x+ y − z = a L1

x+ y + z = b L2

−2x+ y = c L3

. Alors,

(S)⇐⇒


x+ y − z = a L1

2z = b− a L2 ← L2 − L1

3y − 2z = c+ 2a L3 ← L3 + 2L1

⇐⇒


x+ y − z = a L1

3y − 2z = c+ 2a L2 ↔ L1

2z = b− a L3 ↔ L2

⇐⇒


x+ y − (−1

2a+ 1
2b) = a

3y − (b− a) = c+ 2a
z = −1

2a+ 1
2b

⇐⇒


x+ 1

3a+ 1
3b+ 1

3c = 1
2a+ 1

2b

y = 1
3a+ 1

3b+ 1
3c

z = −1
2a+ 1

2b

⇐⇒


x = 1

6a+ 1
6b−

1
3c

y = 1
3a+ 1

3b+ 1
3c

z = −1
2a+ 1

2b

.

Ainsi, P−1 =


1
6

1
6 −

1
3

1
3

1
3

1
3

−1
2

1
2 0

 .
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Remarque. Bien que A soit symétrie réelle, on n’a pas P−1 = tP car la base de
vecteurs propres que l’on a choisie pour construire P n’est pas orthonormée (elle est bien
orthogonale mais ses vecteurs ne sont pas unitaires).

2. a. Écrivons B =

a b c
d e f
g h i

. Alors,

BD =

a b c
d e f
g h i


3 0 0

0 6 0
0 0 1

 =

3a 6b c
3d 6e f
3g 6h i


et

DB =

3 0 0
0 6 0
0 0 1


a b c
d e f
g h i

 =

3a 3b 3c
6d 6e 6f
g h i


donc, comma BD = DB, on a 6b = 3b, c = 3c, 3d = 6d, f = 6f , 3g = g et 6h = h

donc b = c = d = f = g = h = 0 et ainsi B =

a 0 0
0 e 0
0 0 i

 est une matrice diagonale .

b. Soit B une matrice tel que B2 = D. Alors, BD = B(B2) = B3 = (B2)B = DB donc,
d’après la question précédente, B est diagonale. Ainsi, il existe des réels a, b et c

tels que B =

a 0 0
0 b 0
0 0 c

. Dès lors, comme B est diagonale, B2 =

a
2 0 0

0 b2 0
0 0 c2

 et

ainsi, comme B2 = D, a2 = 3, b2 = 6 et c2 = 1 donc a = ±
√

3, b = ±
√

6 et c = ±1.

Ainsi, B est l’une des 8 matrices

±
√

3 0 0
0 ±

√
6 0

0 0 ±1

. Réciproquement, ces 8 matrices

vérifient bien B2 = D donc les matrices B ∈M3(R) sont
√

3 0 0
0
√

6 0
0 0 1

 ,

√

3 0 0
0 −

√
6 0

0 0 1

 ,

√

3 0 0
0
√

6 0
0 0 −1

 ,

√

3 0 0
0 −

√
6 0

0 0 −1


−
√

3 0 0
0

√
6 0

0 0 1

 ,
−
√

3 0 0
0 −

√
6 0

0 0 1

 ,
−
√

3 0 0
0

√
6 0

0 0 −1

 ,
−
√

3 0 0
0 −

√
6 0

0 0 −1


3. Soit M ∈M3(R). Alors,

M2 = A⇐⇒M2 = PDP−1 ⇐⇒ P−1M2P = D ⇐⇒ (P−1MP )2 = D.

Ainsi, d’après la question précédente, M2 = A si et seulement si P−1MP est l’une
des 8 matrices B précédentes donc si et seulement si M est l’une des 8 matrices PBP−1

(et ces 8 matrices sont bien différentes car leurs spectres sont différents).
On conclut que l’équation M2 = A possède 8 solutions .
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Partie II
1. Comme C est une matrice d’ordre 3 qui possède 3 valeurs propres distinctes, elle est

diagonalisation et chacun des ses sous-espaces propres est de dimension 1. Comme
M2 = C, on conclut que les sous-espaces propres de M2 sont de dimension 1 .

2. Soit X un vecteur propre de M2. Alors, X est non nul et il existe un réel λ tel que
M2X = λX. Dès lors, M2(MX) = M3X = M(M2X) = M(λX) = λ(MX). De plus, si
MX = 03,1 alors M2X = M03,1 = 03,1 donc CX = 03,1 i.e., comme X est non nul, 0 est
valeur propre de C. Or, ceci est exclu par l’énoncé donc MX ̸= 03,1 donc on conclut que
MX est un vecteur propre de M associé à la valeur propre λ .

3. Soit X un vecteur propre de M2. Alors, il existe λ ∈ R tel que X ∈ Eλ(M2). Par la
question précédente, MX ∈ Eλ(M2) et, d’après la question 1., dim(Eλ(M2) = 1 donc
Eλ(M2)) = Vect(X). Ainsi,MX ∈ Vect(X) donc il existe un réel k tel que MX = kX .

4. a. D’après la question précédente, il existe un réel k tel que MX = kX et, de plus,
comme X est un vecteur propre de M2, X ̸= 03,1.
On en déduit que X est un vecteur propre de M .

b. Comme M2 = C est diagonalisable, il existe une base (X1, X2, X3) de M3,1(R) formée
de vecteurs propres de M2. Or, d’après la question précédente, X1, X2 et X3 sont
aussi des vecteurs propres de M donc (X1, X2, X3) est une base de M3,1(R) formée
de vecteurs propres de M donc M est diagonalisable .

5. a. Avec les notations de la question précédente, si on considère la matrice de passage P
de la base canonique de M3,1(R) à la base (X1, X2, X3) alors il existe des matrices
diagonales D et B telles que M2 = PDP−1 et M = PBP−1.

b. D’après la question précédente,

M2 = C ⇐⇒ (PBP−1)2 = PDP−1 ⇐⇒ PB2P−1 = PDP−1

⇐⇒ B2 = P−1(PDP−1)P ⇐⇒ B2 = D.

Ainsi, M2 = C si et seulement si B2 = D .
6. Par le même raisonnement que dans la question 2.b. de la Partie I, comme B est

diagonale, B est l’une des 8 matrices dont la diagonale est composée des ±
√
λ où

λ ∈ Sp(C). On en déduit que M est l’une des 8 matrices PBP−1 et, réciproquement, une
telle matrice vérifie bien M2 = C car

(PBP−1)2 = PB2P−1 = PDP−1 = C.

Notons λ1, λ2 et λ3 les trois valeurs propres de C associées respectivement aux vecteurs
propres X1, X2 et X3.

Alors les solutions de M2 = C sont les 8 matrices M = P

±
√
λ1 0 0

0 ±
√
λ2 0

0 0 ±
√
λ3

P−1 .
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Sujet 7. Étude de trois suites imbriquées (O2)

On considère la matrice :

A =

1 1 1
0 2 1
0 0 3

 .
1. Justifier sans calculs que A est diagonalisable.
2. Déterminer une base de vecteurs propres de A.
3. Donner une matrice P inversible et une matrice D diagonale telles que :

A = PDP−1

4. Calculer P−1.
5. Démontrer que pour tout n ∈ N :

An = PDnP−1

6. Déterminer, pour tout n ∈ N, l’expression de An en fonction de n.
7. On considère les suites (un), (vn) et (wn) définies par :

u0 = v0 = w0 = 1 et pour tout n ∈ N,


un+1 = un + vn + wn

vn+1 = 2vn + wn

wn+1 = 3wn
.

En utilisant la matrice Xn =

unvn
wn

, déterminer, pour tout n ∈ N, un, vn et wn en

fonction de n.
8. Que fait la fonction suivante, écrite en Python ?

def suite(n):
u, v, w = 1, 1, 1
for k in range(1, n+1):

u, v, w = u+v+w, 2*v+w, 3*w
return u, v, w

L’utiliser pour vérifier les résultats de la question 7).
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Solution.
1. La matrice A est triangulaire supérieure donc ses valeurs propres sont des éléments

diagonaux. Ainsi, Sp(A) = {1 ; 2 ; 3} donc A est une matrice carrée d’ordre 3 ayant 3
valeurs propres distinctes donc, par propriété, A est diagonalisable .

2. Soit (x, y, z) ∈ R3 et X =

xy
z

.

• Déterminons E1(A) :

X ∈ E1(A)⇐⇒


x+ y + z = x

2y + z = y

3z = z

⇐⇒

y = 0
z = 0

donc E1(A) =


x0

0


∣∣∣∣∣∣∣ x ∈ R

 = Vect


1

0
0


.

• Déterminons E2(A) :

X ∈ E2(A)⇐⇒


x+ y + z = 2x
2y + z = 2y
3z = 2z

⇐⇒

x = y

z = 0

donc E2(A) =


yy

0


∣∣∣∣∣∣∣ y ∈ R

 = Vect


1

1
0


.

• Déterminons E3(A) :

X ∈ E3(A)⇐⇒


x+ y + z = 3x
2y + z = 3y
3z = 3z

⇐⇒

x = z

y = z

donc E3(A) =


zz
z


∣∣∣∣∣∣∣ z ∈ R

 = Vect


1

1
1


.

On conclut que


1

0
0

 ,
1

1
0

 ,
1

1
1


 est une base de vecteurs propres de A.

3. On déduit des questions précédentes qu’on a l’égalité A = PDP−1 en posant les matrices

P =

1 1 1
0 1 1
0 0 1

 et D =

1 0 0
0 2 0
0 0 3

 .
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4. Soit (a, b, c) ∈ R3. Considérons le système (S) :


x+ y + z = a

y + z = b

z = c

. Alors,

(S)⇐⇒


z = a− b
y = b− c
z = c

donc P−1 =

1 −1 0
0 1 −1
0 0 1

 .

5. Considérons, pour tout n ∈ N, la proposition H(n) : « An = PDnP−1 ».
Initialisation. PD0P−1 = PP−1 = I3 = A0 donc H(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que H(n) est vraie. Alors, An = PDnP−1 donc

An+1 = AnA = (PDnP−1)(PDP−1) = PDn(P−1P )DP−1 = PDnDP−1 = PDn+1P−1

donc H(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, pour tout n ∈ N, An = PDnP−1 .

6. Soit n ∈ N. Comme D est diagonale, Dn =

1n 0 0
0 2n 0
0 0 3n

 =

1 0 0
0 2n 0
0 0 3n

 donc

An =

1 1 1
0 1 1
0 0 1


1 0 0

0 2n 0
0 0 3n


1 −1 0

0 1 −1
0 0 1



=

1 1 1
0 1 1
0 0 1


1 −1 0

0 2n −2n
0 0 3n



=

1 2n − 1 3n − 2n
0 2n 3n − 2n
0 0 3n



Ainsi, pour tout n ∈ N, An =

1 2n − 1 3n − 2n
0 2n 3n − 2n
0 0 3n

 .

7. Remarquons que, pour tout n ∈ N,

Xn+1 =

un+1
vn+1
wn+1

 =

un + vn + wn
2un + wn

3wn

 =

1 1 1
0 2 1
0 0 3


unvn
wn

 = AXn
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donc (Xn) est une suite géométrique de matrices colonnes de raison A. Dès lors, pour
tout n ∈ N, Xn = AnX0 i.e.

Xn =

1 2n − 1 3n − 2n
0 2n 3n − 2n
0 0 3n


1

1
1

 =

1 + 2n − 1 + 3n − 2n
2n + 3n − 2n

3n

 =

3n
3n
3n


donc, pour tout n ∈ N, un = vn = wn = 3n .

8. La fonction suite renvoie les valeurs de un, vn et wn pour la valeur de n passé en
argument.

Avec l’instruction

for n in range (6):
print(suite(n))

on obtient l’affichage suivant :

(1, 1, 1)
(3, 3, 3)
(9, 9, 9)
(27, 27, 27)
(81, 81, 81)
(243 , 243, 243)

ce qui est bien cohérent puisque 30 = 1, 31 = 3, 32 = 9, 33 = 27, 34 = 81 et 35 = 243.
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Sujets d’analyse
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Sujet 8. Étude d’une fonction et applications (C2)

On considère la fonction f définie par

f(t) =

t2 − t ln(t) si t > 0
0 si t = 0

.

1. a. Donner l’ensemble de définition de f .
b. Montrer que f est continue sur son ensemble de définition.
c. Calculer f ′ et f ′′ sur ]0 ; +∞[.
d. En déduire les variations de f sur ]0 ; +∞[.
e. Montrer que l’équation f(t) = 1 admet une unique solution sur ]0 ; +∞[ que l’on

déterminera.
2. On considère la fonction F définie sur U = ]0 ; +∞[× ]0 ; +∞[ par

F (x, y) = x ln(y)− y ln(x).

a. Calculer, pour tout (x, y) ∈ U , ∂F
∂x

(x, y) et ∂F
∂y

(x, y).

b. Soit (x, y) ∈ U . Montrer que si



∂F

∂x
(x, y) = 0

∂F

∂y
(x, y) = 0

alors f
(
x

y

)
= 1

c. En déduire les points critiques de F .
3. Soit la suite (un)n∈N définie paru0 = 1

2
∀n ∈ N un+1 = f(un)

.

a. Montrer que, pour tout n ∈ N, 1
2 ⩽ un ⩽ 1.

b. Étudier les variations de (un).
c. En déduire le comportement asymptotique de (un).
d. Écrire un programme en Python permettant d’obtenir le rang n à partir duquel
|un − 1| ⩽ 10−4.
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Solution.
1. a. Par définition, l’ensemble de définition de f est R+ .

b. La fonction f est continue sur R∗
+ comme produit et différence de fonctions continues.

De plus, par croissances comparées, lim
t→0

t ln(t) = 0 donc, par différence, lim
t→0

f(t) = 0.
Ainsi, lim

t→0
f(t) = f(0) donc f est également continue en 0. Ainsi, f est continue sur R+ .

c. La fonction f est deux fois dérivable sur R∗
+ comme produit et différence de fonctions

deux fois dérivables et, pour tout réel t > 0,

f ′(t) = 2t−
(

1× ln(t) + t× 1
t

)
i.e. f ′(t) = 2t− ln(t)− 1

et
f ′(t) = 2− 1

t
.

d. Pour tout réel t > 0, f ′′(t) = 2t− 1
t

est du signe de 2t− 1 donc f ′′(t) ⩽ 0 si t ∈
]
0 ; 1

2

]
et f ′′(t) ⩾ 0 si t ∈

[
1
2 ; +∞

[
. Ainsi, f ′ est décroissante sur

]
0 ; 1

2

]
et croissante sur[

1
2 ; +∞

[
. On en déduit que f ′ atteint son minimum en 1

2 et ce minimum vaut

f ′
(1

2

)
= 2× 1

2 − ln
(1

2

)
− 1 = 1 + ln(2)− 1 = ln(2) > 0

donc f ′(t) > 0 pour tout réel t > 0.
On conclut que f est strictement croissante sur R∗

+ .
e. La fonction f est strictement croissante sur R∗

+ donc injective sur R∗
+. De plus,

f(1) = 12 − 1 ln(1) = 1 donc 1 est l’unique antécédent de 1 sur R∗
+.

Autrement dit, 1 est l’unique solution de l’équation f(t) = 1 sur R∗
+ .

2. a. Pour tout (x, y) ∈ U ,
∂F

∂x
(x, y) = ln(y)− y

x

et
∂F

∂y
(x, y) = x

y
− ln(x) .

b. Supposons que ∂F
∂x

(x, y) = ∂F

∂y
(x, y) = 0. Alors, x

y
= ln(x) et y

x
= ln(y) donc

f

(
x

y

)
= x2

y2 −
x

y
ln
(
x

y

)
= x2

y2 −
x

y
[ln(x)− ln(y)] = x2

y2 −
x

y

[
x

y
− y

x

]
= x2

y2 −
x2

y2 + 1

i.e. f

(
x

y

)
= 1 .
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c. La question précédente assure que si (x, y) ∈ U est un point critique de F alors

f

(
x

y

)
= 1 donc, d’après les résultats de la question 1., x

y
= 1 i.e. y = x.

Réciproquement, si a ∈ R∗
+ alors (a, a) ∈ U . De plus, ∂F

∂x
(a, a) = ln(a) − a

a
=

ln(a)− 1 et ∂F
∂y

(a, a) = a

a
− ln(a) = 1− ln(a) donc (a, a) est un point critique de F

si et seulement si ln(a) = 1 i.e. a = e.
On conclut que l’unique point critique de F est (e, e) .

3. a. Considérons, pour tout n ∈ N, la proposition P(n) : « 1
2 ⩽ un ⩽ 1 ».

Initialisation. Comme u0 = 1
2, P(0) est vraie.

Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, 1
2 ⩽ un ⩽ 1 donc,

comme f est croissante sur R∗
+, f

(1
2

)
⩽ f(un) ⩽ f(1). Or, f

(1
2

)
= 1

4 + 1
2 ln(2) ≈ 0,6

donc f
(1

2

)
⩾

1
2 et on a vu que f(1) = 1. Ainsi, 1

2 ⩽ f(un) ⩽ 1 i.e. 1
2 ⩽ un+1 ⩽ 1

donc P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

∀n ∈ N
1
2 ⩽ un ⩽ 1 .

b. Considérons, pour tout n ∈ N, la proposition Q(n) : « un ⩽ un+1 ».

Initialisation. Comme u0 = 1
2 et u1 = f

(1
2

)
≈ 0,6, u0 ⩽ u1 donc Q(0) est vraie.

Hérédité. Soit n ∈ N. Supposons que Q(n) est vraie. Alors, 1
2un ⩽ un+1 ⩽ 1 donc,

comme f est croissante sur R∗
+, f(un) ⩽ f(un+1) i.e. un+1 ⩽ un+2. Ainsi, Q(n+ 1) est

vraie.
Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N,

un ⩽ un+1 donc (un) est croissante .

c. Ainsi, (un) est croissante et bornée par 1
2 et 1 donc, d’après le théorème de la limite

monotone, (un) converge vers un réel ℓ ∈
[1
2 ; 1

]
. Ainsi, lim

n→+∞
un+1 = ℓ et, comme

f est continue sur R+, lim
n→+∞

f(un) = f(ℓ) i.e. lim
n→+∞

un+1 = f(ℓ). Par unicité de la
limite de (un+1), on en déduit que ℓ = f(ℓ). Ainsi, ℓ = ℓ2− ℓ ln(ℓ) donc, comme ℓ ̸= 0,
1 = ℓ − ln(ℓ) i.e. g(ℓ) = 0 où g : x 7−→ x − ln(x) − 1. Or, g(1) = 0 et, pour tout
x > 0, g′(x) = 1− 1

x
= x−1

x
donc g est strictement croissante sur ]0 ; 1] et strictement

croissante sur [1 ; +∞[. Ainsi, pour tout x ∈ ]0 ; 1[, g(x) > g(1) = 0 et, pour tout
x ∈ ]1 ; +∞[, g(x) > g(1) = 0 donc 1 est l’unique solution de g(x) = 0. Ainsi, on
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conclut que ℓ = 1 i.e.
lim

n→+∞
un = 1 .

d. La fonction suivante répond à la question car, pour tout n ∈ N, un ⩽ 1 donc
|un − 1| = 1− un. (Rappel : en Python, la fonction ln est disponible dans le module
math sous la nom log.)

from math import *

def seuil ():
n = 0
u = 1/2
while 1-u > 10**( -4):

n += 1
u = u**2 - u*log(u)

return n

On trouve n = 19994 .
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Sujet 9. Étude d’une suite définie par récurrence (C4)

On considère la suite (un) définie par
u0 = 1
∀n ∈ N un+1 = un + 1

un

.

1. Calculer u1 et u2.
2. Démontrer par récurrence que (un) est bien définie et strictement positive.
3. Que fait la fonction suivante, écrite en Python ?

def mystere (n):
u = 1
for i in range(n):

u = u + 1/u
return u

Utiliser cette fonction pour conjecturer le comportement de la suite (un) ainsi que

celui de la suite
(
un√
2n

)
n∈N∗

.

4. Étudier les variations de (un).
5. Montrer que (un) diverge et en déduire la limite de (un).
6. Démontrer par récurrence que, pour tout n ∈ N∗, u2

n ⩾ 2(n− 1).

7. On pose, pour tout entier n ⩾ 3, Sn =
n−2∑
k=1

1√
k

.

a. Démontrer que, pour tout entier n ⩾ 3,

Sn ⩾
√

2(un − u2).

b. En déduire la divergence de la série de terme général 1√
n

.

c. À l’aide de la courbe de la fonction x 7−→ 1√
x

(qui peut être tracée à main levée),
démontrer que, pour tout entier n ⩾ 3,

Sn ⩽ 2
√
n− 2− 1.

d. Déduire des questions précédentes un encadrement de un valable pour tout entier
n ⩾ 3 puis donner un équivalent de un lorsque n tend vers +∞.
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Solution.

1. u1 = 1 + 1
1 donc u1 = 2 et u2 = 2 + 1

2 donc u2 = 5
2 .

2. Considérons, pour tout n ∈ N, la proposition P(n) : « un existe et un > 0 ».
Initialisation. Par définition, u0 existe et u0 = 1 > 0 donc P(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, un existe et un > 0 donc

un et 1
un

existent et ainsi un+1 existe. De plus, comme un > 0, 1
un

> 0 donc, par somme,
un+1 > 0. Dès lors, P(n+ 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N, un
existe et un > 0. Ainsi, (un) est bien définie et strictement positive .

3. L’appel mystere(n) renvoie la valeur de un pour un entier naturel n passé en argument.
On peut conjecturer que (un) est croissante et diverge très lentement vers +∞ (par

exemple, u100 ≈ 14, u1000 ≈ 45 et u106 ≈ 1414).

On peut modifier la fonction mystere afin qu’elle affiche les valeurs de la suite
(
un√
2n

)
de la manière suivante :

from math import sqrt

def mystere (n):
u = 1
for i in range(n):

u = u + 1/u
return u/sqrt (2*n)

On peut conjecturer que la suite
(
un√
2n

)
est décroissante et converge vers 1 (par

exemple, u100√
2× 100

≈ 1,01, u1000√
2× 1000

≈ 1,001 et u106√
2× 106

≈ 1,000002).

4. Pour tout n ∈ N, un+1 − un = 1
un

> 0 car un > 0 donc la suite (un) est croissante .

5. Supposons que (un) converge vers une limite ℓ. Comme (un) est croissante, elle est minorée
par u0 = 1 donc ℓ ⩾ 1. En particulier, ℓ ̸= 0. Dès lors, 1

un
−−−−→
n→+∞

1
ℓ

donc, par somme,

un + 1
un
−−−−→
n→+∞

ℓ + 1
ℓ
. Autrement dit, lim

n→+∞
un+1 = ℓ + 1

ℓ
. Or, comme lim

n→+∞
un = ℓ,

lim
n→+∞

un+1 = ℓ donc, par unicité de la limite de (un+1), ℓ = ℓ+ 1
ℓ

i.e. 1
ℓ

= 0. C’est absurde

donc (un) diverge .
Comme (un) est croissante, d’après le théorème de la limite monotone, soit (un)

converge soit (un) tend vers +∞. Or, on vient de voir que (un) diverge donc lim
n→+∞

un = +∞ .
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6. Considérons, pour tout n ∈ N∗, la proposition Q(n) : « u2
n ⩾ 2(n− 1) ».

Initialisation. Comme u2
1 = 22 = 4 et 2(1− 1) = 0, u2

1 ⩾ 2(1− 1) i.e. Q(1) est vraie.
Hérédité. Soit n ∈ N∗. Supposons que Q(n) est vraie. Alors, u2

n ⩾ 2(n− 1) donc

u2
n+1 =

(
un + 1

un

)2
= u2

n + 2 + 1
u2
n

⩾ 2(n− 1) + 2 = 2n

car 1
u2
n

⩾ 0. Ainsi, Q(n+ 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que

∀n ∈ N∗ u2
n ⩾ 2(n− 1) .

7. a. Soit un entier n ⩾ 3. On remarque que, pour tout k ∈ J1, n− 1K, uk+1 − uk = 1
uk

. De
plus, pour tout k ∈ J1, n − 1K, d’après la question précédente, u2

k ⩾ 2(k − 1) donc,
par croissance de la fonction racine carrée sur [0 ; +∞[,

√
u2
k ⩾

√
2(k − 1) i.e., comme

uk > 0, uk ⩾
√

2(k − 1). Par décroissance de la fonction inverse sur ]0 ; +∞[, on en

déduit que, pour tout k ∈ J2, n− 1K, 1
uk

⩽
1√

2(k − 1)
i.e. uk+1 − uk ⩽

1√
2(k − 1)

.

Ainsi, en sommant ces inégalités, on obtient

n−1∑
k=2

uk+1 − uk ⩽
n−1∑
k=2

1√
2(k − 1)

.

Or, par téléscopage,
n−1∑
k=2

uk+1 − uk = un − u2 et, par linéarité et changement d’indice,

n−1∑
k=2

1√
2(k − 1)

= 1√
2

n−1∑
k=2

1√
k − 1

=
j=k−1

1√
2

n−2∑
j=1

1√
j

= 1√
2
Sn.

Ainsi, un − u2 ⩽
1√
2
Sn donc Sn ⩾

√
2(un − u2) .

b. Comme lim
n→+∞

un = +∞ et
√

2 > 0, lim
n→+∞

√
2(un − u2) = +∞ donc, par le théorème

de comparaison lim
n→+∞

Sn = +∞.

Par suite, la série de terme général 1√
n

diverge vers +∞ .

c. Soit un entier n ⩾ 3. Pour tout entier entier k ⩾ 2, on peut interpréter le nombre 1√
k

comme l’aire du rectangle de hauteur 1√
k

construit sur le segment [k − 1 ; k].
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x

y

10 2 3 4 5 6 7 8 9 10

y = 1√
x

Comme ces rectangles sont entièrement situés en dessous de la courbe de x 7−→ 1√
x

,
on en déduit que

n−2∑
k=2

1√
k
⩽
∫ n−2

1

1√
x

dx =
[
2
√
x
]n−2

1
= 2
√
n− 2− 2.

Dès lors,
n−2∑
k=1

1√
k

= 1 +
n−2∑
k=2

1√
k
⩽ 1 + 2

√
n− 2− 2

soit
n−2∑
k=1

1√
k
⩽ 2
√
n− 2− 1 .

d. D’une part, on a vu que, pour tout n ∈ N∗, un ⩾
√

2(n− 1). D’autre part, on a vu

que, pour tout entier n ⩾ 3, Sn ⩾
√

2(un−u2) donc, comme
√

2 > 0, un ⩽
1√
2
Sn+u2.

On déduit alors de la question précédente que, pour tout entier n ⩾ 3,

un ⩽
1√
2
(
2
√
n− 2− 1

)
+ 5

2 =
√

2
√
n− 2− 1√

2
+ 5

2 ⩽
√

2(n− 2) + 2.

car 5
2 −

1√
2
≈ 1,8 ⩽ 2.

Ainsi, pour tout entier n ⩾ 3,
√

2(n− 1) ⩽ un ⩽
√

2(n− 2) + 2 .
On en déduit que, pour tout entier n ⩾ 3,√

2n
(

1− 1
n

)
⩽ un ⩽

√
2n
(

1− 2
n

)
+ 2

donc
√

2n
√

1− 1
n
⩽ un ⩽

√
2n
√

1− 2
n

+ 2
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i.e. comme
√

2n > 0, √
1− 1

n
⩽

un√
2n

⩽

√
1− 2

n
+ 2√

2n
.

Or, lim
n→+∞

1 − 1
n

= lim
n→+∞

1 − 2
n

= 1 donc, par continuité de la racine carrée en 1,

lim
n→+∞

√
1− 1

n
= lim

n→+∞

√
1− 2

n
=
√

1 = 1. De plus, lim
n→+∞

√
2n = +∞ donc, par

quotient, lim
n→+∞

2√
2n

= 0. Ainsi, lim
n→+∞

√
1− 1

n
= lim

n→+∞

√
1− 2

n
+ 1√

2n
= 1 donc, par

le théorème d’encadrement, lim
n→+∞

un√
2n

= 1. Ainsi, par définition, un ∼
√

2n .
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Sujet 10. Modèle de Gompertz (C6)

On peut modéliser la masse corporelle d’un rat musqué en fonction de son âge par le modèle
de croissance de Gompertz.

Si on note t l’âge (en jours) du rat et Y (t) sa masse (en grammes), on suppose que la fonction
Y vérifie l’équation différentielle :

(E) Y ′(t) = −r ln
(
Y (t)
K

)
Y (t)

avec r et K des réels strictement positifs tels que 0 < Y (0) < K.
Dans la suite, on note Y une solution de cette équation différentielle et on admet que, pour

tout t ∈ [0 ; +∞[, 0 < Y (t) < K.

1. a. Justifier que la fonction f : y 7−→ 1
−r ln( y

K
)y admet une primitive F sur ]0 ;K[.

b. Montrer que, pour tout réel t positif, (F ◦ Y )′(t) = 1.

2. Vérifier que F : y 7−→ −1
r

ln
(
− ln

(
y

K

))
est une primitive de f sur ]0;K[.

3. a. Déduire des questions précédentes l’existence d’une constante réelle C telle que, pour
tout t ⩾ 0,

− ln
(
Y (t)
K

)
= e−r(t+C)

b. On pose y0 = Y (0). Établir que, pour tout réel t ⩾ 0, ln
(
Y (t)
K

)
= ln

(
y0

K

)
e−rt.

c. En déduire que, pour tout t ∈ R+, Y (t) = K exp
[
ln
(
y0

K

)
e−rt

]
.

4. Étudier les variations de la fonction Y sur [0 ; +∞[. Que représente la constante K ?

5. On considère la fonction Z définie pour tout t ⩾ 0 par Z(t) = ln
(
− ln

(
Y (t)
K

))
.

Démontrer que Z est une fonction affine de coefficient directeur −r. Préciser son ordonnée
à l’origine.
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6. Détermination expérimentale de y0, K et r
Le tableau ci-contre contient les valeurs mesurées tous
les 20 jours de la masse du rat, de sa naissance à son
301e jour. On note Ti le temps de mesure et Mi la masse
mesurée le jour Ti.

a. Proposer des valeurs de y0 et K.
b. Indiquer comment on pourrait proposer une valeur

expérimentale de r.

Temps (j) Masse (g)
0 16,00
20 116,06
40 304,48
60 486,91
80 611,92
100 683,91
120 721,96
140 741,24
160 750,81
180 755,51
200 757,81
220 758,93
240 759,48
260 759,75
280 759,88
300 759,94
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Solution.
1. a. Pour tout y ∈ ]0 ;K[, 0 < y < K donc, comme K > 0, 0 <

y

K
< 1 et ainsi, par

croissance de ln sur R∗
+, ln

(
y

K

)
< 0. Comme r > 0, il s’ensuit que, pour tout

y ∈ ]0 ;K[, −r ln
(
y

K

)
y > 0 donc −r ln

(
y

K

)
y ̸= 0. Ainsi, la fonction f est définie

sur ]0 ;K[. Comme f est une composée de fonctions de référence, elle est continue sur
]0 ;K[ et donc, par théorème, f admet une primitive F sur ]0 ;K[ .

b. La fonction F ◦ Y est bien définie sur R+ car, pour tout t ∈ R+, Y (t) ∈ ]0 ;K[ et elle
est dérivable sur R+ comme composée de fonctions dérivables. De plus, pour tout réel
t ⩾ 0,

(F◦Y )′(t) = F ′(Y (t))Y ′(t) = f(Y (t))Y ′(t) = 1
−r ln(Y (t)

K
)Y (t)

(
−r ln

(
Y (t)
K

)
Y (t)

)
= 1.

Ainsi, pour tout t ∈ R∗
+, (F ◦ Y )′(t) = 1 .

2. On a vu précédemment que, pour tout y ∈ ]0 ;K[, − ln
(
y

K

)
> 0 donc F est bien définie

sur ]0 ;K[. De plus, elle est dérivable sur ]0 ;K[ comme composée de fonctions dérivables
et, pour tout y ∈ ]0 ;K[,

F ′(y) = −1
r
×
−

1
K
y
K

− ln( y
K

) = −1
r
×

1
y

ln( y
K

) = 1
−r ln( y

K
)y = f(y).

Ainsi, F est une primitive de f sur ]0 ;K[ .
3. a. Pour tout t ∈ R∗

+, (F ◦ Y )′(t) = 1 donc, comme R+ est un intervalle, il existe une

constante C telle que, pour tout t ∈ R+, (F ◦Y )(t) = t+C i.e. −1
r

ln
(
− ln

(
Y (t)
K

))
=

t+C. Dès lors, pour tout t ∈ R∗
+, ln

(
− ln

(
Y (t)
K

))
= −r(t+C) donc − ln

(
Y (t)
K

)
=

e−r(t+C).

On conclut donc qu’ il existe C ∈ R telle que, pour tout t ∈ R+, − ln
(
Y (t)
K

)
= e−r(t+C) .

b. On a donc − ln
(
Y (0)
K

)
= e−rC i.e. − ln

(
y0

K

)
= e−rC donc, pour tout t ∈ R+,

ln
(
Y (t)
K

)
= −e−r(t+C) = −e−rCe−rt = −

(
− ln

(
y0

K

))
e−rt

donc,

∀t ∈ R+ ln
(
Y (t)
K

)
= ln

(
y0

K

)
e−rt .
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c. On en déduit que, pour tout t ∈ R+, Y (t)
K

= exp
[
ln
(
y0

K

)
e−rt

]
donc on conclut que,

pour tout t ∈ R+, Y (t) = K exp
[
ln
(
y0

K

)
e−rt

]
.

4. Par hypothèse, pour tout t ∈ R+,

Y ′(t) = −r ln
(
Y (t)
K

)
Y (t) = −r ln

(
y0

K

)
e−rt ×K exp

[
ln
(
y0

K

)
e−rt

]

donc, comme exp est à valeurs positives, Y ′(t) est du signe de −rL ln
(
y0

K

)
. Or, par

hypothèse, r > 0, K > 0 et y0 = Y (0) ∈ ]0 ;K[ donc, comme on l’a vu précédemment,
ln
(
y0

K

)
< 0. Ainsi, pour tout t ∈ R+, Y ′(t) > 0 donc Y est croissante sur R+ .

De plus, comme r > 0, lim
t→+∞

−rt = −∞ donc, comme lim
X→−∞

eX = 0, par composition,

lim
t→+∞

e−rt = 0. Par produit, on en déduit que lim
t→+∞

ln
(
y0

K

)
e−rt = 0 donc, par continuité

de l’exponentielle en 0, lim
t→+∞

Y (t) = Ke0 i.e. lim
t→+∞

Y (t) = K .

La valeur K représente donc le poids limite du rat musqué.
5. Remarquons que Z est bien définie pour tout t ⩾ 0. On a vu précédemment que, pour tout

t ∈ R+, − ln
(
y

K

)
= e−r(t+C) > 0. De plus, pour tout t ∈ R, ln

(
Y (t)
K

)
= ln

(
y0

K

)
e−rt

donc

Z(t) = ln
(
− ln

(
y0

K

)
e−rt

)
= ln

(
ln
(
K

y0

))
+ ln(e−rt) = −rt+ ln

(
ln
(
K

y0

))

donc Z est bien une fonction affine de coefficient directeur −r . De plus, il suit de l’éga-

lité précédente que son ordonnée à l’origine est ln
(

ln
(
K

y0

))
.

6. a. D’après le tableau, Y (0) = 16 donc y0 = 16 et Y semble se stabiliser autour de 760
donc K = 760 .

b. On en déduit que Z(0) = ln
(
− ln

(
16
760

))
≈ 1,35 et Z(100) = ln

(
− ln

(
683,91

760

))
≈

−2,25 donc −r ≈ −2,25− 1,35
100− 0 soit r ≈ 0,036 .
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Sujet 11. Étude d’une suite définie implicitement I (C5)

Pour tout n ∈ N∗, on considère la fonction fn définie sur ]0 ; +∞[ par :

fn(x) = x− n ln(x).

1. Soit n ∈ N∗. Dresser le tableau de variations de fn.
2. Montrer qu’il existe deux suites (un)n⩾3 et (vn)n⩾3 telles que, pour tout n ⩾ 3,

0 ⩽ un ⩽ n ⩽ vn

fn(un) = 0
fn(vn) = 0

.

3. À l’aide d’une modélisation numérique ou graphique, conjecturer le comportement asymp-
totique de (un), (vn),

(
n
vn

)
.

4. Démontrer la conjecture faite sur lim
n→+∞

vn.

5. Démontrer la conjecture faite sur lim
n→+∞

n
vn

.

6. a. Montrer que pour tout n ⩾ 3 :
1 < un < e.

b. Déterminer le sens de variation de la suite (un)n⩾3.
c. Démontrer la conjecture faite sur lim

n→+∞
un.

d. Montrer que
ln(un) ∼ un − 1

et en déduire que
un − 1 ∼ 1

n
.
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Solution.

1. La fonction fn est dérivable sur ]0 ; +∞[ comme combinaison linéaire de fonctions déri-
vables et, pour tout réel x > 0,

f ′
n(x) = 1− n× 1

x
= x− n

x
.

Ainsi, pour tout réel x > 0, fn est du signe de x − n donc f ′
n(x) < 0 si x ∈ ]0 ;n[,

f ′
n(n) = 0 et f ′

n(x) < 0 si x ∈ ]n ; +∞[.
On en déduit que fn est strictement décroissante sur ]0 ;n] et strictement croissante

sur [n ; +∞[.
De plus, lim

x→0
ln(x) = −∞ et n > 0 donc lim

x→0
−n ln(x) = +∞ donc, par somme,

lim
x→0

fn(x) = +∞.

Enfin, pour tout x > 0, fn(x) = x

[
1− n ln(x)

x

]
. Or, par croissance comparée,

lim
x→+∞

ln(x)
x

= 0 donc, par combinaison linéaire, lim
x→+∞

1 − n
ln(x)
x

= 1 et ainsi, par
produit, lim

x→+∞
fn(x) = +∞.

On aboutit donc au tableau suivant :

x

Variation
de fn

0 n +∞

+∞+∞

n− n ln(n)n− n ln(n)

+∞+∞

2. Supposons n ⩾ 3. Alors, n ⩾ e donc, par croissance de la fonction ln sur ]0 ; +∞[,
ln(n) ⩾ ln(e) = 1 donc n−n ln(n) ⩽ 0. Sur chacun des deux intervalles ]0 ;n] et [n ; +∞[,
la fonction fn est continue (car dérivable) et strictement monotone donc elle réalise une
bijection de cet intervalle sur [n− n ln(n) ; +∞[. Ainsi, il existe un unique un ∈ ]0 ;n] et
un unique vn ∈ [n ; +∞[ tels que f(un) = f(vn) = 0.
On en déduit l’existence des deux suites de l’énoncé.

3. En traçant les courbes des fonctions fn pour différentes valeurs de n à l’aide de GeoGebra,
on peut conjecturer que lim

n→+∞
un = 1, lim

n→+∞
vn = +∞ et lim

n→+∞
n
vn

= 0 .

4. Par définition, pour tout n ⩾ 3, vn ⩾ n et lim
n→+∞

n = +∞ donc, par le théorème de

comparaison, lim
n→+∞

vn = +∞ .
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5. Pour tout entier n ⩾ 3, fn(vn) = 0 donc vn−n ln(vn) = 0 i.e. vn = n ln(vn). On en déduit
que, pour tout n ⩾ 3, vn

n
= ln(vn). Or, lim

n→+∞
vn = +∞ et lim

x→+∞
ln(x) = +∞ donc, par

composition, lim
n→+∞

vn
n

= +∞. Par inverse, on conclut que lim
n→+∞

n

vn
= 0 .

6. a. Soit un entier n ⩾ 3. D’une part, fn(1) = 1 − n ln(1) = 1 > 0 et, d’autre part,
fn(e) = e − n ln(e) = e − n < 0 (car n ⩾ 3 > e) donc, comme fn(un) = 0,
f(1) > fn(un) > f(e). La fonction fn étant strictement décroissante sur [0 ;n[ et cet
intervalle contenant les trois nombres 1, un et e, on en déduit que 1 < un < e .

b. Soit un entier n ⩾ 3. Alors,

fn+1(un) = un − (n+ 1) ln(un) = un − n ln(un)− ln(un) = fn(un)− ln(un)

donc, comme fn(un) = 0, fn+1(un) = − ln(un). Or, on a vu à la question précédente que
un > 1 donc ln(un) > 0 et ainsi, fn+1(un) < 0. Autrement dit, fn+1(un) < fn+1(un+1).
Or, un et un+1 appartiennent à ]0 ;n+ 1] et fn+1 est décroissante sur cet intervalle
donc un ⩾ un+1.

Ainsi, la suite (un) est décroissante .
c. La suite (un) est décroissante et minorée par 1 donc, d’après le théorème de la limite

monotone, (un) est convergente. Pour tout entier n ⩾ 3, fn(un) = 0 donc ln(un) = un
n

donc, par quotient, lim
n→+∞

ln(un) = 0. Or, la fonction exp est continue sur R donc

lim
x→0

ex = e0 = 1 et ainsi, par composition, lim
n→+∞

eln(un) = 1 i.e. lim
n→+∞

un = 1 .

d. Pour tout entier n ⩾ 3, ln(un) = ln(1+(un−1)) et, comme un −−−−→
n→+∞

1, un−1 −−−−→
n→+∞

0.

Dès lors, par théorème, ln(un) ∼ un − 1 .

Par ailleurs, comme on l’a vu précédemment, pour tout entier n ⩾ 3, ln(un) = un
n

donc, comme un −−−−→
n→+∞

1, un ∼ 1 et ainsi, par quotient d’équivalent, ln(un) ∼ 1
n

.

Par transitivité de la relation d’équivalence, on ne déduit que un − 1 ∼ 1
n

.
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Sujet 12. Arctan itérée (C9)

On considère la suite (un) définie sur N par :u0 ∈ R
∀n ∈ N, un+1 = arctan(un)

.

1. Conjecturer le sens de variation de la suite (un) et sa limite éventuelle. Essayer plusieurs
valeurs de u0.

2. Soit g la fonction définie sur R par g(x) = arctan(x)− x.
a. Étudier le sens de variation de g.
b. En déduire le signe de g.
c. Dresser le tableau de variations de g, en précisant les limites en +∞ et en −∞.

3. On suppose dans cette question que la suite (un) converge. Que vaut alors sa limite ℓ ?
4. On suppose dans cette question que u0 ⩾ 0.

a. Démontrer que, pour tout n ∈ N, un ⩾ 0.
b. Déterminer le sens de variation de la suite (un).
c. En déduire que la suite (un) converge.

5. Que se passe-t-il si u0 < 0 ?
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Solution.
1. On peut écrire un programme en Python pour obtenir les premières valeurs de (un). La

fonction arctan se trouve dans le module math. Pour connaître la syntaxe en Python, on
peut écrire dans la console

>>> import math
>>> dir(math)

ce qui permet d’afficher la liste de toutes les fonctions contenus dans le module math. En
l’occurence, en Python, la fonction arctan est notée atan.

On peut donc utiliser la fonction suivante :

def suite(x0 ,n):
u=x0
for k in range(n):

print(u)
u=atan(u)

En testant plusieurs valeur de x0 et de n, on peut conjecturer que (un) est décroissante
sur x0 ⩽ 0 et croissante sinon et que, dans tous les cas, (un) semble converger vers 0.

2. a. La fonction g est dérivable sur R comme différence de fonctions dérivables et, pour
tout réel x,

g′(x) = 1
1 + x2 − 1 = 1− (1 + x2)

1 + x2 = − x2

1 + x2 ⩽ 0.

De plus, g′ ne s’annule qu’en 0 donc g est strictement décroissante sur R .
b. On remarque que g(0) = arctan(0) − 0 = 0 donc, comme g est décroissante sur R,

g(x) ⩾ 0 si x ∈ ]−∞ ; 0] et g(x) ⩽ 0 si x ∈ [0 ; +∞[ .

c. Comme lim
x→−∞

arctan(x) = −π2 , par somme, lim
x→−∞

g(x) = +∞ et, comme lim
x→+∞

arctan(x) =
π

2 , par somme, lim
x→+∞

g(x) = −∞.
Ainsi, on aboutit au tableau de variation suivant :

x

Variations
de g

−∞ +∞

+∞+∞

−∞−∞

0

0

3. Si un −−−−→
n→+∞

ℓ alors, d’une part, un+1 −−−−→
n→+∞

ℓ et, d’autre part, comme arctan est continue
sur R, arctan(un) −−−−→

n→+∞
arctan(ℓ) i.e. un+1 −−−−→

n→+∞
arctan(ℓ). Ainsi, par unicité de la

limite de (un+1), arctan(ℓ) = ℓ donc g(ℓ) = 0. Or, comme g est strictement décroissante,
g est injective sur R donc, comme g(0) = 0, 0 est l’unique antécédent de 0 par g. On
conclut donc que ℓ = 0 .
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4. a. Considérons, pour tout n ∈ N, la propriété P(n) : « un ⩾ 0 ».
Initialisation. Par hypothèse, u0 ⩾ 0 donc P(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, un ⩾ 0 donc, comme
arctan est strictement croissante sur R, arctan(un) ⩾ arctan(0) i.e. un+1 ⩾ 0. Ainsi,
P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N, un ⩾ 0 .

b. Pour tout n ∈ N, un ⩾ 0 donc, d’après la question 2.b., g(un) ⩽ 0 i.e. arctan(un)−
un ⩽ 0 soit un+1 − un ⩽ 0.
Ainsi, la suite (un) est décroissante .

c. Comme (un) est décroissante et minorée par 0, d’après le théorème de la limite
monotone, (un) converge .

5. Si u0 < 0, on montre comme précédemment par récurrence que, pour tout n ∈ N, un ⩽ 0
et on en déduit, en utilisant la question 2. que (un) est croissante. Ainsi, (un) est croissante
et majorée par 0 donc, par le théorème de la limite monotone, (un) est convergente .
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Sujet 13. Une équation différentielle à paramètre (O2)

Soit n ∈ N∗. On considère l’équation différentielle linéaire du second ordre à coefficients
constants suivante :

(En) : ∀t ∈ R,
1
n2y

′′(t) + y(t) = sin(t).

1. a. Montrer que la fonction f1 : t 7−→ sin(t)− t cos(t)
2 est solution de (E1) sur R.

b. Montrer que, si n ̸= 1, la fonction fn : t 7−→ n2

n2 − 1 sin(t) est solution de (En) sur R.

2. Justifier que l’équation (En) est équivalente à l’équation différentielle :

(Fn) : ∀t ∈ R, y′′(t) + n2y(t) = n2 sin(t).

3. a. Résoudre l’équation homogène associée à (Fn).
b. Donner la forme générale des solutions de (Fn) (et donc de (En)).

4. Soit n ∈ N∗. Donner l’unique solution gn de (En) vérifiant gn(0) = 0 et g′
n(0) = 0.

5. Déterminer, pour tout réel t, la limite de gn(t) lorsque n tend vers +∞.
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Solution.

1. a. La fonction f1 est deux fois dérivable sur R comme produit et combinaison linéaire
de fonctions qui le sont. De plus, pour tout réel t,

f ′
1(t) = cos(t)− (cos(t)− t sin(t))

2 = t sin(t)
2

et
f ′′

1 (t) = sin(t) + t cos(t)
2

donc
f ′′

1 (t) + f1(t) = sin(t) + t cos(t)
2 + sin(t)− t cos(t)

2 = sin(t)

donc f1 est solution de (E1) .

b. Supposons n ⩾ 2 et f : t 7−→ n2

n2 − 1 sin(t) définie sur R. La fonction f est deux fois
dérivable sur R car proportionnelle à la fonction sinus et, pour tout réel t,

f ′′(t) = n2

n2 − 1 sin′′(t) = − n2

n2 − 1 sin(t)

donc, pour tout réel t,

1
n2f

′′(t)+f(t) = − 1
n2×

n2

n2 − 1 sin(t)+ n2

n2 − 1 sin(t) =
(
− 1
n2 − 1 + n2

n2 − 1

)
sin(t) = sin(t).

Ainsi, f est bien solution de (En) sur R .

2. Pour toute fonction y deux fois dérivable sur R et pour tout réel t,

1
n2y

′′(t)+y(t) = sin(t)⇐⇒
n̸=0

n2
( 1
n2y

′′(t) + y(t)
)

= n2 sin(t)⇐⇒ y′′(t)+n2y(t) = n2 sin(t)

donc (En) est équivalente à (Fn) .

3. a. L’équation homogène associée à (Fn) est (Hn) : y′′+n2y = 0. L’équation caractéristique
associée à (Hn) est (Cn) : x2 + n2 = 0 qui est équivalente à (x − in)(x + in) = 0
donc, comme n ̸= 0, (Cn) possède deux solutions complexes conjuguées : x1 = in et
x2 = −in. Par théorème, l’ensemble des solutions de (Hn) sur R est

{t 7−→ e0t(A cos(nt) +B sin(nt)) | (A,B) ∈ R2}

i.e.
{t 7−→ A cos(nt) +B sin(nt) | (A,B) ∈ R2} .
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b. Par théorème, on en déduit que l’ensemble des solutions de (En) sur R est
{
t 7−→ sin(t)− t cos(t)

2 + A cos(nt) +B sin(nt)
∣∣∣∣∣ (A,B) ∈ R2

}
si n = 1 .

et {
t 7−→ n2

n2 − 1 sin(t) + A cos(nt) +B sin(nt)
∣∣∣∣∣ (A,B) ∈ R2

}
si n ⩾ 2 .

4. 1er cas : n = 1. On peut remarquer que la fonction f1 vérifie

f1(0) = sin(0)− 0× cos(0)
2 = 0

et
f ′

1(0) = 0× sin(0)
2 = 0

donc g1 = f1 .
2nd cas : n ⩾ 2. Soit A et B deux réels et

g : t 7−→ n2

n2 − 1 sin(t) + A cos(nt) +B sin(nt).

Alors, pour tout réel t,

g′(t) = n2

n2 − 1 cos(t)− nA sin(nt) + nB cos(nt)

donc g(0) = 0
g′(0) = 0

⇐⇒


A = 0
n2

n2 − 1 + nB = 0
⇐⇒

A = 0
B = − n

n2 − 1
.

Ainsi, gn : t 7−→ n2

n2 − 1 sin(t)− n

n2 − 1 sin(nt).
On conclut donc que, pour tout réel gn est la fonction définie sur R par

∀t ∈ R gn(t) =


sin(t)− t cos(t)

2 si n = 1
n2

n2 − 1 sin(t)− n

n2 − 1 sin(nt) si n ⩾ 2
.

5. Soit t ∈ R. Pour tout n ⩾ 2,

gn(t) = n2

n2 − 1 sin(t)− n

n2 − 1 sin(nt).
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Or, lorsque n tend vers +∞, n2

n2 − 1 ∼
n2

n2 ∼ 1 donc lim
n→+∞

n2

n2 − 1 sin(t) = sin(t). De plus,
pour tout n ⩾ 2,

0 ⩽
∣∣∣∣ n

n2 − 1 sin(nt)
∣∣∣∣ ⩽ n

n2 − 1 |sin(nt)| ⩽ n

n2 − 1 .

Or, quand n tend vers +∞, n

n2 − 1 ∼
n

n2 ∼
1
n

donc lim
n→+∞

n

n2 − 1 = lim
n→+∞

1
n

= 0. Par

le théorème d’encadrement, on en déduit que lim
n→+∞

∣∣∣∣ n

n2 − 1 sin(nt)
∣∣∣∣ = 0 et donc, par

propriété, lim
n→+∞

n

n2 − 1 sin(nt) = 0.

Par somme de limite, on en déduit que lim
n→+∞

gn(t) = sin(t) .
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Sujet 14. Étude d’une suite définie implicitement II (O2)

On considère l’application
f : R −→ R

x 7−→ x+ ex .

Définition de la suite (un)
1. Dresser le tableau de variations de l’application f .
2. Soit n ∈ N. Montrer que l’équation f(x) = n admet une unique solution.
Dans toute la suite, on notera, pour tout n ∈ N, un la solution de l’équation f(x) = n. On

définit ainsi la suite (un)n∈N.

Conjecture sur le comportement de la suite (un)n∈N

3. Tracer l’allure de la courbe représentative de f et représenter sur le graphique les premiers
termes de la suite (un). (On pourra s’aider pour le tracé d’un logiciel ou d’une calculatrice
graphique.)

4. Conjecturer la monotonie de la suite (un) et son éventuelle limite.

Étude mathématique de la suite (un)
5. Étudier les variations de la suite (un).
6. En déduire que la suite (un) a une limite que l’on déterminera.
7. Montrer que, pour tout n ∈ N∗, un ⩽ ln(n).
8. Montrer que eun ∼ n.
9. En déduire que un ∼ ln(n).
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Solution.

1. La fonction f est dérivable sur R comme somme de fonctions dérivables et, pour tout
réel x, f ′(x) = 1 + ex > 0 donc f est strictement croissante sur R.

De plus, lim
x→−∞

ex = 0 et lim
x→+∞

ex = +∞ donc, par somme, lim
−∞

f = −∞ et lim
+∞

f = +∞.
On en déduit le tableau de variation suivant :

x

Variations
de f

−∞ +∞

−∞−∞

+∞+∞

2. La fonction f est continue (car dérivable) et strictement croissante sur R donc, par le
théorème de la bijection continue, f réalise une bijection de R sur f(R) = R. Ainsi,
pour tout n ∈ N, l’équation f(x) = n admet une unique solution dans R .

3. À l’aide de GeoGebra, on obtient l’allure suivante :

−0.5 0.5 1

0.5

1

1.5

2

2.5

3

u0
u1

u2
u3

4. On peut conjecturer que (un) est croissante et tend vers +∞.
5. Soit n ∈ N. Alors, f(un) = n et f(un+1) = n + 1 donc f(un) ⩽ f(un+1). Comme f est

croissante, on en déduit que que un ⩽ un+1. Ainsi, (un) est croissante .

6. Comme (un) est croissante, elle admet une limite (finie ou infinie) d’après le théorème
des suites monotones. Supposons que (un) converge vers une limite finie ℓ. Comme f est
continue sur R, f(un) −−−−→

n→+∞
f(ℓ). En particulier, (f(un)) converge. Or, par définition,

pour tout n ∈ N, f(un) = n donc la suite (f(un)) diverge vers +∞. C’est absurde donc
(un) diverge vers +∞ .
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7. Soit n ∈ N∗. Par définition, f(un) = n et f(ln(n)) = ln(n) + eln(n) = ln(n) + n. Or, pour
tout n ⩾ 1, ln(n) ⩾ 0 donc f(ln(n)) ⩾ n i.e. f(ln(n)) ⩾ f(un). Comme f est croissante
sur R, on en déduit que ln(n) ⩾ un.

Ainsi, pour tout n ∈ N∗, un ⩽ ln(n) .
8. Pour tout n ∈ N, f(un) = n i.e. un + eun = n donc eun = n − un. Ainsi, pour tout

n ∈ N∗, eun

n
= 1 − un

n
. Or, par croissance de (un) et d’après la question précédente,

pour tout n ∈ N∗, 0 = u1 ⩽ un ⩽ ln(n) donc, en divisant par n > 0, 0 ⩽
un
n

⩽
ln(n)
n

.

Or, par croissances comparées, lim
n→+∞

ln(n)
n

= 0 donc, par le théorème d’encadrement,

lim
n→+∞

un
n

= 0. Par différence, on en déduit que lim
n→+∞

eun

n
= 1 donc eun ∼ n .

9. D’après la question précédente, lim
n→+∞

eun

n
= 1. De plus, par continuité de ln en 1,

lim
x→1

ln(x) = ln(1) = 0 donc, par composition, lim
n→+∞

ln
(eun

n

)
= 0. Or, pour tout n ∈ N∗,

ln
(eun

n

)
= ln(eun)− ln(n) = un − ln(n). Ainsi, pour tout n ∈ N,

un
ln(n) − 1 = un − ln(n)

ln(n) =
ln( eun

n
)

ln(n) .

Par quotient de limites, on en déduit que un
ln(n) − 1 −−−−→

n→+∞
0 donc un

ln(n) −−−−→n→+∞
1 et

ainsi un ∼ ln(n) .
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Sujet 15. Autour de la moyenne d’un nombre et de son
inverse (O2)

Partie 1. Étude d’une fonction d’une variable
On considère la fonction f définie sur R∗ par :

f(x) = 1
2

(
x+ 1

x

)
On note C sa courbe représentative.

1. Démontrer que f est impaire.
2. Dresser le tableau de variation complet de f .
3. La fonction f admet-elle des extremums sur R∗ ?
4. La courbe C admet-elle des asymptotes horizontales ou verticales ?
5. On dit que la droite d’équation y = ax+ b est asymptote oblique à C en +∞ (resp. −∞)

si :
lim

x→+∞
[f(x)− (ax+ b)] = 0

(
resp. lim

x→−∞
[f(x)− (ax+ b)] = 0

)
.

Démontrer que C possède en +∞ et en −∞ une asymptote oblique ∆ dont on précisera
l’équation.

Partie 2. Étude d’une suite
On considère la suite (un) définie par :

u0 = 2
∀n ∈ N un+1 = 1

2

(
un + 1

un

)
.

1. Calculer les premières valeurs de la suite (un), à la main ou avec un logiciel de votre
choix.
Conjecturer le sens de variation de la suite (un), ainsi que sa limite éventuelle.

2. Démontrer que la suite (un) est bien définie et que, pour tout n ∈ N, un > 0.
3. En ayant recours à la fonction f , démontrer que, pour tout n ∈ N, un ⩾ 1.
4. Démontrer que la suite (un) est décroissante.
5. En déduire que la suite (un) converge et déterminer sa limite.

Partie 3. Étude d’une fonction de deux variables
On considère la fonction g définie sur R∗ × R∗ par :

g(x, y) = 1
2

(
1
x

+ 1
y

)
(1 + x)(1 + y).
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1. Donner les deux dérivées partielles de g.
2. En quels points la fonction g peut-elle admettre un extremum local ?
3. a. Montrer que, pour tout (x, y) ∈ R∗ × R∗,

g(x, y) = 1 + f(x) + f(y) + f

(
x

y

)
.

b. En déduire que g présente un extremum local en (1, 1).
4. Démontrer que la fonction g ne présente pas d’extremum local en (−1,−1).
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Solution.

Partie 1

1. L’ensemble de définition de f est R∗ qui est centré en 0 et, pour tout réel x ̸= 0,

f(−x) = 1
2

(
−x+ 1

−x

)
= 1

2

(
−x− 1

x

)
= −1

2

(
x+ 1

x

)
= −f(x)

donc f est impaire .
2. La fonction f est dérivable sur R∗ comme combinaison linéaire de fonctions dérivables et,

pour tout réel x ̸= 0,

f ′(x) = 1
2

(
1− 1

x2

)
= x2 − 1

2x2 = (x− 1)(x+ 1)
x2 .

Pour tout réel x ̸= 0, le signe de f ′(x) est le signe du trinôme x2 − 1 = (x− 1)(x + 1)
donc f ′(x) ⩾ 0 si x ∈ ]−∞ ;−1] ∪ [1 ; +∞[ et f ′(x) ⩽ 0 si x ∈ [−1 ; 0[ ∪ ]0 ; +∞].

De plus, lim
x→−∞

1
x

= lim
x→+∞

1
x

= 0 donc, par somme, lim
x→−∞

f(x) = −∞ et lim
x→+∞

f(x) =
+∞.

Enfin, lim
x→0−

1
x

= −∞ et lim
x→0+

1
x

= +∞ donc, par somme, lim
x→0−

f(x) = −∞ et
lim
x→0+

f(x) = +∞.
On aboutit donc au tableau de variation suivant :

x

Variations
de f

−∞ −1 0 1 +∞

−∞−∞

00

−∞

+∞

11

+∞+∞

3. D’après le tableau, l’axe des ordonnées est asymptote verticale à C . En revanche, C ne
possède pas d’asymptote horizontale.

4. On en déduit que la fonction f ne possède pas d’extremums globaux sur R∗. En revanche,
elle possède deux extremums locaux : un maximum local égale à 0 atteint en −1 et
un maximum local égale à 1 atteint en 1 .

5. Pour tout réel x ≠ 0, f(x) = 1
2x+ 1

2x donc f(x)− 1
2x = 1

2x . Or, lim
x→−∞

1
2x = lim

x→+∞

1
2x = 0

donc, par définition, la droite ∆ d’équation y = 1
2x est asymptote à C en −∞ et en +∞ .

Partie 2.

1. On calcule les premières valeurs de (un) à l’aide de la fonction Python suivante :
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def suite(n):
u = 2
for i in range(n):

u = 1/2*(u + 1/u)
return u

On peut conjecturer que (un) est décroissante et converge (très vite !) vers 1.
2. Considérons, pour tout n ∈ N, la proposition P(n) : « un existe et un > 0 ».

Initialisation. Par définition, u0 existe et u0 = 2 > 0 donc P(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, un existe et un > 0 donc

un et 1
un

existent et ainsi un+1 existe. De plus, comme un > 0, 1
un

> 0 donc, par somme,
un+1 > 0. Dès lors, P(n+ 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N, un
existe et un > 0. Ainsi, (un) est bien définie et strictement positive .

3. Soit n ∈ N. Si n = 0 alors un = 2 ⩾ 1. Sinon, n > 0 donc un = f(un−1). Or, d’après la
question précédente, un−1 > 0 et, d’après la Partie 1., sur ]0 ; +∞[, f est minorée par 1
donc f(un−1) ⩾ 1. Ainsi, un ⩾ 1.

Le résultat est montré dans tous les cas donc, pour tout n ∈ N, un ⩾ 1 .
4. Soit n ∈ N. Alors,

un+1 − un = 1
2

(
un + 1

un

)
− un = un + 1− 2un

2un
= 1− un

2un
⩽ 0

car un ⩾ 1. Ainsi, (un) est décroissante .
5. Comme (un) est décroissante et minorée par 1, (un) converge vers un réel ℓ ⩾ 1 d’après le

théorème de la limite monotone. Alors, ℓ ̸= 0 donc 1
un
−−−−→
n→+∞

1
ℓ

et ainsi, par somme de

limites, un + 1
un
−−−−→
n→+∞

ℓ+ 1
ℓ
. Ainsi, lim

n→+∞
un+1 = 1

2

(
ℓ+ 1

ℓ

)
. Or, comme lim

n→+∞
un = ℓ,

lim
n→+∞

un+1 = ℓ donc, par unicité de la limite de (un+1), ℓ = 1
2

(
ℓ+ 1

ℓ

)
i.e. 2ℓ = ℓ+ 1

ℓ
donc

ℓ = 1
ℓ

et finalement ℓ2 = 1. Comme ℓ > 0, on conclut que ℓ = 1. Ainsi, lim
n→+∞

un = 1 .

Partie 3.
1. Pour tout (x, y) ∈ R∗ × R∗,

∂g

∂x
(x, y) = 1

2(1 + y)
[
− 1
x2 (1 + x) +

(
1
x

+ 1
y

)
× 1

]
= 1

2(1 + y)
(
− 1
x2 −

1
x

+ 1
x

+ 1
y

)

donc
∂g

∂x
(x, y) = 1

2(1 + y)
(

1
y
− 1
x2

)
.
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Les variables x et y ayant un rôle symétrique, on a de même, pour tout (x, y) ∈ R∗×R∗,

∂g

∂y
(x, y) = 1

2(1 + x)
(

1
x
− 1
y2

)
.

2. Si f admet un extremum local en (x, y) ∈ R∗ × R∗ alors (x, y) est un point critique de f .
Or,

∂g

∂x
(x, y) = 0

∂g

∂y
(x, y) = 0

⇐⇒


1
2(1 + y)

(
1
y
− 1
x2

)
= 0

1
2(1 + x)

(
1
x
− 1
y2

)
= 0

⇐⇒


1 + y = 0 ou 1

y
− 1
x2 = 0

1 + x = 0 ou 1
x
− 1
y2 = 0

⇐⇒

y = −1 ou y = x2

x = −1 ou x = y2

⇐⇒

y = −1
x = −1

ou

y = −1
x = 1

ou

y = 1
x = −1

ou

y = x2

x = y2

Or, comme x ̸= 0,y = x2

x = y2 ⇐⇒

y = x2

x = x4 ⇐⇒

y = x2

1 = x3 ⇐⇒

y = 1
x = 1

Ainsi, les points critiques de g sont (1, 1), (1,−1), (−1, 1) et (1, 1).
Dès lors, g ne peut présenter un extremum local qu’en (−1,−1), (1,−1), (−1, 1) et (1, 1) .

3. a. Pour tout (x, y) ∈ R∗ × R∗,

g(x, y) = 1
2

(
1
x

+ 1
y

)
(1 + y + x+ xy) = 1

2

(
1
x

+ y

x
+ 1 + y + 1

y
+ 1 + x

y
+ x

)

= 1 + 1
2

(
x+ 1

x

)
+ 1

2

(
y + 1

y

)
+ 1

2

(
x

y
+ y

x

)

donc g(x, y) = 1 + f(x) + f(y) + f(x
y
) .

b. On a vu dans la Partie 1. que, pour tout réel x > 0, f(x) ⩾ 1 donc, pour tout
(x, y) ∈ R∗

+ × R∗
+, f(x) ⩾ 1, f(y) ⩾ 1 et f(x

y
) ⩾ 1 de sorte que g(x, y) ⩾ 4. Or,

g(1, 1) = 1
2(1+1)(1+1)(1+1) = 4 donc, pour tout (x, y) ∈ R∗

+×R∗
+, g(x, y) ⩾ g(1, 1).

Ainsi, g présente un minimum local en (1, 1) .
4. L’image de (−1,−1) par g est g(−1,−1) = 0. Soit h un réel appartenant à ]−1 ; 1[ de

sorte que −1 + h < 0 et −1− h < 0. Alors,

g(−1 + h,−1 + h) = 1
2

( 1
−1 + h

+ 1
−1 + h

)
(1− 1 + h)(1− 1 + h) = h2

−1 + h
< 0
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car h2 > 0 et −1 + h < 0 et

g(−1 + h,−1− h) = 1
2

( 1
−1 + h

+ 1
−1− h

)
(1− 1 + h)(1− 1− h)

= 1
2

(−1− h) + (−1 + h)
(−1 + h)(−1− h) (−h2) = h2

1− h2 > 0

car |h| < 1 donc 1− h2 > 0.
Ainsi, dans tout voisinage de (−1,−1), il existe des points (a, b) tels que g(a, b) <

g(−1,−1) et des points (a, b) tels que g(a, b) > g(−1,−1) donc g ne présente pas
d’extremum local en (−1,−1).

Remarque On a g(1,−1) = g(−1, 1) = 0. De plus, si h ∈ ]−1 ; 1[ de sorte que −1 + h < 0
alors

g(1,−1 + h) = 1
2

(
1 + 1
−1 + h

)
× 2× (1− 1 + h) = −1 + h+ 1

−1 + h
× h = h

−1 + h

qui est du signe opposé de h car −1 + h < 0 donc dans tout voisinage de (1,−1), il existe des
points dont les images sont supérieures à g(1,−1) et des points dont les images sont inférieures
à g(1,−1). Ainsi, g ne présente pas d’extremum en (−1, 1). En échangeant le rôle de x et y, on
conclut de même que g ne présente pas d’extremum en (1,−1). Ainsi, le seul extremum de g sur
R∗ × R∗ est 4 atteint en (1, 1).
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Sujet 16. Étude d’une suite définie par une intégrale (O2)

1. Calculer, pour tout k ∈ N,
∫ 1

3

0
t2k dt.

2. Pour tout n ∈ N, on pose :

un = 1
2n+ 1

(1
3

)2n
et Sn =

n∑
k=0

uk

Exprimer, pour tout n ∈ N, Sn sous la forme d’une intégrale.

3. Pour tout n ∈ N, on pose In =
∫ 1

3

0

t2n+2

1− t2 dt.

a. Encadrer la fonction t 7−→ 1
1− t2 sur

[
0 ; 1

3

]
.

b. En déduire lim
n→+∞

In.

4. a. Déterminer deux réels a et b tels que, pour tout t ∈
[
0 ; 1

3

]
,

1
1− t2 = a

1− t + b

1 + t
.

b. En déduire la valeur de
∫ 1

3

0

1
1− t2 dt.

5. À l’aide des questions précédentes, montrer que la série
∑

un converge et que sa somme

est égale à 3
2 ln(2).

6. a. Écrire en Python une fonction d’argument n ∈ N qui renvoie la valeur de Sn.
b. Déterminer le plus petit entier n tel que Sn > 1,0397.
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Solution.

1. Soit k ∈ N. Alors, ∫ 1
3

0
t2k dt =

[
t2k+1

2k + 1

] 1
3

0
=

(1
3)2k+1

2k + 1 −
02k+1

2k + 1

i.e.
∫ 1

3

0
t2k dt = 1

2k + 1

(1
3

)2k+1
.

2. Soit n ∈ N. Alors,

Sn =
n∑
k=0

1
2k + 1

(1
3

)2k
=

n∑
k=0

1
2k + 1

(1
3

)2k
× 1

3 × 3 = 3
n∑
k=0

1
2k + 1

(1
3

)2k+1

donc, d’après la question précédente,

Sn = 3
n∑
k=0

∫ 1
3

0
t2k dt.

Par linéarité de l’intégrale, on en déduit que

Sn = 3
∫ 1

3

0

n∑
k=0

t2k dt.

Or, pour tout t ∈
[
0 ; 1

3

]
, en reconnaissant la somme des termes d’une suite géométrique,

n∑
k=0

t2k =
n∑
k=0

(t2)k = 1− (t2)n+1

1− t2 = 1− t2n+2

1− t2 .

On conclut donc que

∀n ∈ N Sn = 3
∫ 1

3

0

1− t2n+2

1− t2 dt .

3. a. Soit t ∈
[
0 ; 1

3

]
. Alors, 0 ⩽ t ⩽

1
3 donc, par croissance de la fonction carré sur R+,

0 ⩽ t2 ⩽
1
9. Ainsi, −1

9 ⩽ −t2 ⩽ 0 donc 8
9 ⩽ 1 − t2 ⩽ 1 et, par décroissance de la

fonction inverse sur R∗
+, 1 ⩽

1
1− t2 ⩽

9
8.

Ainsi, pour tout t ∈
[
0 ; 1

3

]
, 1 ⩽

1
1− t2 ⩽

9
8 .

b. Soit n ∈ N. Pour tout t ∈
[
0 ; 1

3

]
, en multipliant l’inégalité précédente par t2n+2 ⩾ 0,

il vient
t2n+2 ⩽

t2n+2

1− t2 ⩽
9
8t

2n+2.
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Par croissance de l’intégrale, on en déduit que
∫ 1

3

0
t2n+2 dt ⩽

∫ 1
3

0

t2n+2

1− t2 dt ⩽
∫ 1

3

0

9
8t

2n+2 dt

et donc, par linéarité de l’intégrale,
∫ 1

3

0
t2n+2 dt ⩽ In ⩽

9
8

∫ 1
3

0
t2n+2 dt

D’après le résultat de la question 1,
∫ 1

3

0
t2n+2 dt =

∫ 1
3

0
t2(n+1) dt = 1

2n+ 3

(1
3

)2n+3
−−−−→
n→+∞

0

car
∣∣∣∣13
∣∣∣∣ < 1.

Par le théorème d’encadrement, on conclut donc que lim
n→+∞

In = 0 .

4. a. Soit a et b deux réels. Alors, pour tout t ∈
[
0 ; 1

3

]
,

a

1− t + b

1 + t
= a(1 + t) + b(1− t)

(1− t)(1 + t) = (a− b)t+ a+ b

1− t2

donc, pour que l’égalité voulue soit réalisée, il suffit que a − b = 0 et a + b = 1 i.e.
a = b et 2a = 1 soit a = b = 1

2.

Ainsi, pour tout t ∈
[
0 ; 1

3

]
, 1

1− t2 =
1
2

1− t +
1
2

1 + t
.

b. Par linéarité de l’intégrale, on déduit de la question précédente que
∫ 1

3

0

1
1− t2 dt =

∫ 1
3

0

1
2

1− t +
1
2

1 + t
dt

= 1
2

∫ 1
3

0

1
1− t dt+ 1

2

∫ 1
3

0

1
1 + t

dt

= 1
2 [− ln(1− t)]

1
3
0 + 1

2 [ln(1 + t)]
1
3
0

= 1
2

[
− ln

(2
3

)
+ ln

(4
3

)]
= 1

2 ln
(3

2 ×
4
3

)
soit, finalement, ∫ 1

3

0

1
1− t2 dt = 1

2 ln(2) .
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5. Par linéarité de l’intégrale, pour tout n ∈ N,

Sn = 3
∫ 1

3

0

1
1− t2 −

t2n+2

1− t2 dt = 3
∫ 1

3

0

1
1− t2 dt− 3

∫ 1
3

0

t2n+2

1− t2 dt = 3× 1
2 ln(2)− 3In.

Or, on a vu que lim
n→+∞

In = 0 donc, par somme, lim
n→+∞

Sn = 3
2 ln(2). Comme (Sn)

est la suite des sommes partielles associée à la série
∑

un, on en déduit que la série∑
un est convergente et

+∞∑
n=0

un = 3
2 ln(2) .

6. a. La fonction suivante convient.

def somme(n):
S = 0
for k in range(n+1):

S += 1/(2*k+1) *(1/3) **(2*k)
return S

7. On peut adapter la fonction précédente de la manière suivante.

def seuil ():
S = 1
n = 0

while S <= 1.0397:
n += 1
S += 1/(2*n+1) *(1/3) **(2*n)

return n

On obtient n = 3 (ce qui illustre une convergence très rapide de la série).
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Sujet 17. Modélisation d’une population de cerfs (O2)

Soit µ et K deux réels strictement positifs. On considère la fonction f : [0 ; +∞[ −→ R
définie, pour tout x ∈ [0 ; +∞[, par

f(x) = xe1− µ
K
x.

On considère également la suite (xn)n∈N définie par la donnée de son premier terme x0 > 0 et la
relation de récurrence :

∀n ∈ N, xn+1 = f(xn).

1. Étude de la fonction f

a. Résoudre sur [0 ; +∞[ l’équation f(x) = x.
b. Justifier que f est dérivable sur [0 ; +∞[ et déterminer f ′.
c. Dresser le tableau de variations de f sur [0 ; +∞[. On y fera apparaître la limite de f

en +∞.
d. Tracer l’allure de la courbe représentative de f dans un repère orthonormé.

2. Étude de la suite (xn)n∈N

a. Quelle information nous apporte le résultat de la question 1.a. concernant la suite
(xn)n∈N ?

b. On suppose dans cette question que x0 ⩽ K
µ

.

i. Montrer que, pour tout n ∈ N, 0 ⩽ xn ⩽ K
µ

.
ii. Étudier la monotonie de (xn)n∈N.
iii. Étudier la convergence de (xn)n∈N.

c. Que se passe-t-il si x0 >
K
µ

?
3. Application

On étudie l’évolution de la population de cerfs dans une forêt. On suppose qu’au
début de chaque année d’observation n ∈ N, le nombre de cerfs vivant dans cette forêt
est donné par xn.
a. On suppose ici que x0 = 20, K = 100 et µ = 2.

Que peut-on dire de l’évolution de la population de cerfs de cette forêt au fil des ans ?
b. Même question lorsque x0 = 20, K = 100 et µ = 20.
c. Même question lorsque x0 = 20, K = 100 et µ = 200.
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Solution.
1. Étude de la fonction f

a. Pour tout x ∈ [0 ; +∞[,

f(x) = x⇐⇒ xe1− µ
K
x = x⇐⇒ xe1− µ

K
x − x = 0⇐⇒ x

(
e1− µ

K
x − 1

)
= 0

⇐⇒ x = 0 ou e1− µ
K
x = 1⇐⇒ x = 0 ou 1− µ

K
x = 0

⇐⇒ x = 0 ou x = K

µ

Ainsi, l’ensemble des solutions de f(x) = x est {0 ; K
µ
} .

b. La fonction f est dérivable sur [0 ; +∞[ comme produit et composée de fonctions
dérivables et, pour tout réel x ⩾ 0,

f ′(x) = 1× e1− µ
K
x + x×

(
− µ
K

e1− µ
K
x
)

donc f ′(x) =
(
1− µ

K
x
)

e1− µ
K
x .

c. Comme la fonction exponentielle est à valeurs strictement positive, pour tout réel x,
le signe de f ′(x) est le signe de 1− µ

K
x. Ainsi, f ′(x) ⩾ 0 si x ∈

[
0 ; K

µ

]
et f ′(x) ⩽ 0 si

x ∈
[
K
µ

; +∞
[
. On en déduit donc que f est croissante sur

[
0 ; K

µ

]
et décroissante sur[

K
µ

; +∞
[
.

De plus, pour tout réel x ⩾ 0, f(x) = e × x

e µ
K
x
. Or, comme µ

K
> 0, par crois-

sances comparées, lim
x→+∞

e µ
K
x

x
= +∞ donc, par inverse et produit par une constante,

lim
x→+∞

f(x) = 0.
On aboutit donc au tableau de variation suivant.

x

Variations
de f

0 K
µ +∞

00

K
µ
K
µ

00

d. On obtient une courbe dont l’allure est la suivante.

75



2. Étude de la suite (xn)n∈N

a. Si (xn) converge vers un réel ℓ ∈ R+ alors (xn+1) converge aussi vers ℓ. Or, comme f est
continue sur R+, lim

x→+∞
f(xn) = f(ℓ) donc, par unicité de la limite de (xn+1), f(ℓ) = ℓ.

Ainsi, d’après la question 1.a., si (xn) converge vers ℓ ∈ R+ alors ℓ = 0 ou ℓ = K
µ

.

b. i. Considérons, pour tout n ∈ N, la proposition P(n) : « 0 ⩽ xn ⩽ K
µ

».
Initialisation. Par hypothèse, x0 > 0 et x0 ⩽ K

µ
donc P(0) est vraie.

Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, 0 ⩽ xn ⩽ K
µ

et,
comme f est croissante sur

[
0 ; K

µ

]
, f(0) ⩽ f(xn) ⩽ f(K

µ
) i.e. 0 ⩽ xn+1 ⩽ K

µ
donc

P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

∀n ∈ N 0 ⩽ xn ⩽
K

µ
.

ii. Soit n ∈ N. Alors, xn ⩽ K
µ

donc, comme µ
K
> 0, µ

K
xn ⩽ 1 et ainsi 1 − µ

K
xn ⩾ 0.

Par croissance de la fonction exponentielle sur R, on en déduit que e1− µ
K
xn ⩾ 1

donc, en multipliant par xn ⩾ 0, xne1− µ
K
xn ⩾ xn i.e. xn+1 ⩾ xn.

Ainsi, on conclut que (xn) est croissante .
iii. La suite (xn)n∈N est croissante et majorée par K

µ
donc elle converge vers un réel

ℓ d’après le théorème de la limite monotone. De plus, comme (xn) est à valeurs
positives, ℓ ∈ R+. Ainsi, d’après la question 2.a., ℓ vaut 0 ou K

µ
. Or, comme (xn)

est croissante, elle est minorée par x0 > 0 donc ℓ ⩾ x0 > 0. Ainsi, ℓ ̸= 0 donc
ℓ = K

µ
.

On conclut donc que (xn) converge et que lim
n→+∞

xn = K
µ

.

c. Si x0 >
K
µ

alors, d’après l’étude de f , x1 = f(x0) ⩽ K
µ

donc, d’après ce qui précède, la
suite (xn+1) (dont le premier terme est x1 et qui vérifie la même relation de récurrence
que (xn)) et croissante et converge vers K

µ
.

Dès lors, (xn) est croissante à partir du rang 1 et converge vers K
µ

.

3. Application
a. Ici, K

µ
= 50 ⩾ x0 donc la population de cerfs va croire et tendre vers 50.

b. Ici, K
µ

= 5 ⩽ x0 donc la population de cerfs va décroître la première année puis
croître et tendre vers 5. (Remarque. Dans ce cas, f(x0) ≈ 1 donc on imagine que des
individus extérieurs à la forêt vont y venir durant l’année 1...)

c. Dans ce cas, K
µ

= 0,5 < 1 donc la population de cerfs s’éteint dès la première année.
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Sujet 18. Modèles de Maltus et de Verhulst (O2)

Nous allons étudier deux modèles utilisés pour décrire l’évolution d’une population.

Partie I. Modèle de Maltus
Soit a > 0. On considère l’équation différentielle d’inconnue y ∈ C 1 ([0 ; +∞[) :

(E1) ∀t ∈ [0 ; +∞[ , y′(t) = ay(t).

1. Déterminer l’ensemble des solutions de (E1).
2. Soit y0 > 0. Déterminer la solution de (E1) vérifiant la condition initiale y(0) = y0.
3. Soit y la solution de (E1) déterminée dans la question 2..

a. Déterminer, si elle existe, la limite de y en +∞.
b. Déterminer une fonction g telle que t 7−→ g(y(t)) soit une fonction affine dont on

exprimera les coefficients en fonction de a et de y0.

Partie II. Modèle de Verhulst
Soit r > 0 et K > 0. On considère l’équation différentielle d’inconnue y ∈ C 1 ([0 ; +∞[) :

(E2) ∀t ∈ [0 ; +∞[ , y′(t) = ry(t)
(

1− y(t)
K

)
.

On cherchera uniquement les solutions de (E2) à valeurs dans ]0 ;K[ c’est-à-dire les solutions y
telles que, pour tout t ∈ [0 ; +∞[, 0 < y(t) < K.

1. Soit y ∈ C 1 ([0 ; +∞[) une fonction à valeurs dans ]0 ;K[. Pour tout t ∈ [0 ; +∞[, on
pose z(t) = 1

y(t) . Montrer que y est solution de (E2) si et seulement si z est solution de
l’équation différentielle linéaire :

(E3) ∀t ∈ [0 ; +∞[ , z′(t) = −rz(t) + r

K
.

2. Déterminer l’ensemble des solutions de l’équation (E3).
3. Soit y0 ∈ ]0 ;K[. Déterminer la solution de (E2) vérifiant la condition initiale y(0) = y0.
4. Soit y la solution de (E2) déterminée dans la question 3..

a. Déterminer, si elle existe, la limite de y en +∞.
b. Montrer que la fonction h : t 7−→ ln

(
y(t)

K−y(t)

)
définie sur [0 ; +∞[ est une fonction

affine sur [0 ; +∞[ dont on exprimera les coefficients en fonction de r, K et y0.

Partie III. Application et identification de modèles
On observe empiriquement l’évolution de la croissance de bactéries Lactobacillus.
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temps (heures) 0 2 4 6 8 10 12

quantité (UFC.mL−1) 0,52 0,83 1,37 2,29 3,71 6,11 10,06

On observe empiriquement l’évolution de la croissance du nombre de plants d’algues Fucus
serratus.

temps (jours) 0 2 4 6 8 10 12

quantité (en milliers) 0,12 0,73 3,54 8,03 9,68 9,97 10,04

Les modèles étudiés ci-dessus pourraient-ils décrire l’évolution de la croissance des bactéries
Lactobacillus ou des algues Fucus serratus ?

Dans chaque cas, quel modèle correspondrait alors le mieux ?
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Solution.

Partie I. Modèle de Malthus
1. L’équation (E1) est équivalente à

∀t ∈ [0 ; +∞[ y′(t)− ay(t) = 0

donc, par théorème, l’ensemble des solutions de (E1) est {t 7−→ Ceat | C ∈ R} .
2. Soit C ∈ R et f : t 7−→ Ce−at. Alors,

f(0) = y0 ⇐⇒ Ce0 = y0 ⇐⇒ C = y0.

Ainsi, l’unique solution de (E1) telle que y(0) = y0 est t 7−→ y0eat .
3. a. Comme a > 0, lim

t→+∞
at = +∞. Or, lim

x→+∞
ex = +∞ donc, par composition, lim

t→+∞
eat =

+∞. Comme y0 > 0, on en déduit, par produit, que lim
t→+∞

y(t) = +∞ .

b. Pour tout réel t ⩾ 0, y(t) > 0 car y0 > 0 et ln(y(t)) = ln(y0eat) = ln(y0) + ln(eat) =
ln(y0) + at donc t 7−→ ln(y(t)) est une fonction affine dont le coefficient directeur
est a et l’ordonnée à l’origine est ln(y0).

Partie II. Modèle de Verhulst
1. Comme y ne s’annule pas sur [0 ; +∞[, z est bien définie sur [0 ; +∞[ et, comme y est

dérivable sur [0 ; +∞[, z l’est aussi et, pour tout réel t ⩾ 0, z′(t) = − y
′(t)
y(t)2 . Ainsi, z est

solution de (E3) si et seulement si, pour tout réel t ⩾ 0,

− y
′(t)
y(t)2 = −r × 1

y(t) + r

K

ce qui équivaut, en multipliant par −y(t)2 ̸= 0, à

y′(t) = ry(t)− r

K
y(t)2

i.e.
y′(t) = ry(t)

(
1− y(t)

K

)
.

Ainsi, on a montré que z est solution de (E3) si et seulement si y est solution de (E2) .

2. L’équation (E3) est équivalente à : pour tout t ∈ [0 ; +∞[, z′(t) + rz(t) = r

K
. L’équation

homogène associée est (H) : pour tout t ∈ [0 ; +∞[, z′(t) + rz(t) = 0. L’ensemble des
solutions de (H) est {t 7−→ Ce−rt | C ∈ R}

On cherche une solution particulière de (E3) soit la forme d’une fonction constante
h : t 7−→ a où a ∈ R. Pour tout réel t ⩾ 0, h′(t) + rh(t) = 0 + ra = ra donc, pour que h
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soit solution de (E3), il suffit que ra = r

K
i.e. que a = 1

K
. Ainsi, h : t 7−→ 1

K
est une

solution particulière de (E3).

On conclut que l’ensemble des solutions de (E3) est
{
t 7−→ Ce−rt + 1

K

∣∣∣∣ C ∈ R
}

.

3. Une fonction y est solution de (E2) si et seulement si 1
y

est solution de (E3) ce qui

équivaut à dire qu’il existe une réel C tel que, pour tout t ∈ [0 ; +∞[, 1
y(t) = Ce−rt+ 1

K
=

CKe−rt + 1
K

. Ainsi, y est solution de (E2) si et seulement s’il existe un réel C tel que,

pour tout réel t ⩾ 0, y(t) = K

CKe−rt + 1. De plus, on a alors y(0) = K

CK + 1 donc

y(0) = y0 ⇐⇒
K

CK + 1 = y0 ⇐⇒
K

y0
= CK + 1⇐⇒ CK = K

y0
− 1⇐⇒ C = 1

y0
− 1
K
.

Ainsi, y(0) = y0 si et seulement si C = K − y0

Ky0
donc la solution de (E2) telle que y(0) = y0

est y : t 7−→ K
K−y0
y0

e−rt + 1
soit encore

y : t 7−→ Ky0

(K − y0)e−rt + y0
.

Remarque : en toute rigueur, il faudrait vérifier que la fonction obtenue est bien à valeur
dans ]0 ;K[. C’est relativement clair car K > y0 donc, d’une part, pour tout réel t ⩾ 0,
y(t) ⩾ 0 et, d’autre part, pour tout réel t ⩾ 0, (K−y0)e−rt > 0 donc (K−y0)e−rt+y0 > y0
donc y(t) < K.

4. a. Comme r > 0, par le même raisonnement que dans la question 3.a., lim
t→+∞

e−at = 0

donc, par produit, somme et quotient de limites, lim
t→+∞

f(t) = K .

b. Remarquons que, pour tout t ∈ [0 ; +∞[, 0 < y(t) < K donc y(t)
K−y(t) > 0. Ainsi, h est

bien définie sur [0 ; +∞[ et, pour tout réel t ⩾ 0,
y(t)

K − y(t) = Ky0

(K − y0)ert + y0
× 1
K − Ky0

(K−y0)ert+y0

= Ky0

K(K − y0)e−rt +Ky0 −Ky0

= y0

(K − y0)e−rt = y0

K − y0
ert

donc, pour tout réel t ⩾ 0, h(t) = ln
(

y0

K − y0
ert
)

= ln
(

y0

K − y0

)
+ ln(ert) soit

∀t ∈ R+ h(t) = rt+ ln
(

y0

K − y0

)
.
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Partie III. Application et identification de modèles

temps (heures) 0 2 4 6 8 10 12

quantité (UFC.mL−1) 0,52 0,83 1,37 2,29 3,71 6,11 10,06

ln(quantité) −0,65 −0,19 0,31 0,83 1,31 1,81 2,31

On constate que le logarithme népérien de la quantité de bactéries a une croissance linéaire avec
un taux d’accroissement d’environ 0,25 donc on peut modéliser l’évolution par le modèle de
Malthus avec a = 0,25. Ainsi, on obtient que la population à l’instant t est modélisée par le
fonction y : t 7−→ 0,52e0,25t.

temps (jours) 0 2 4 6 8 10

quantité (en milliers) 0,12 0,73 3,54 8,03 9,68 9,97

ln(quantité/(1− quantité)) −4,41 −2,54 −0,6 1.41 3,41 5,8

La population semble se stabiliser autour de K = 10. On constate que le logarithme népérien
de la quantité divisée par 10 moins la quantité a un croissance relativement linéaire avec un
taux d’accroissement d’environ 1 donc on peut modéliser l’évolution par le modèle de Verhulst
avec r = 1. Ainsi, on obtient que la population à l’instant t est modélisée par la fonction
y : t 7−→ 1,2

9,88e−t + 0,12.
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Sujet 19. Racine carrée itérée (O2)
Soit t un réel strictement positif. On considère la suite (xn) définie par :x0 = t

∀n ∈ N, xn+1 = √xn.

1. a. Déterminer le signe de la fonction g définie sur [0 ; +∞[ par g(x) =
√
x− x.

b. On suppose que t = 2.
À l’aide d’un logiciel ou d’une calculatrice, déterminer des valeurs approchées des
premiers termes de la suite (xn).

c. On suppose que t > 1.
i. Démontrer que, pour tout n ∈ N, 1 ⩽ xn+1 ⩽ xn.
ii. En déduire que la suite (xn) converge et donner sa limite.

d. Que se passe-t-il si 0 < t < 1 ?
2. On considère les suites (un) et (vn) définies par :

pour tout n ∈ N, un = 2n(xn − 1) et vn = un
xn

= 2n
(

1− 1
xn

)

a. Démontrer que, pour tout n ∈ N, un+1 − un = −2n
(√

xn − 1
)2

.
En déduire le sens de variation de la suite (un).

b. Déterminer, de même, le sens de variation de la suite (vn).
c. On suppose que t > 1.

i. Démontrer que la suite (un) converge. On note L sa limite.
ii. En déduire que la suite (vn) converge également vers L.

d. Que se passe-t-il si 0 < t < 1 ?
3. Question complémentaire, non posée à l’oral

On suppose t ̸= 1.
a. Démontrer que :

∀n ∈ N, xn = t
1

2n .

b. Démontrer que xn − 1 ∼
n→+∞

ln(t)
2n .

c. En déduire la valeur de L.
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Solution.
1. a. Pour tout réel x ⩾ 0, g(x) =

√
x(1−

√
x) et

√
x ⩾ 0 donc le signe de g(x) est le signe

de 1−
√
x. Or, par croissance de la fonction racine carrée sur [0 ; +∞[, si 0 ⩽ x ⩽ 1

alors
√
x ⩽

√
1 i.e.

√
x ⩽ 1 et, si x ⩾ 1 alors

√
x ⩾

√
1 i.e.

√
x ⩾ 1. Ainsi, pour

tout x ∈ [0 ; 1], 1−
√
x ⩽ 0 et, pour tout x ∈ [1 ; +∞[, 1−

√
x ⩽ 1. On conclut que

g(x) ⩾ 0 pour tout x ∈ [0 ; 1] et g(x) ⩽ 0 pour tout x ∈ [1 ; +∞[ .
b. À l’aide du code Python suivant :

from math import sqrt

def suite(n):
x=2
for k in range(n):

print(x)
u=sqrt(x)

on obtient l’affichage des n premières valeurs de (xn).
Par exemple, l’appel suite(5) donne

2
1.4142135623730951
1.189207115002721
1.0905077326652577
1.0442737824274138

c. i. Considérons, pour tout n ∈ N, la proposition P(n) : « 1 ⩽ xn+1 ⩽ xn ».
Initialisation. Comme t > 1, d’après la question a., g(t) ⩽ 0 donc

√
t ⩽ t i.e.

x1 ⩽ x0. De plus, par croissance de la fonction racine carrée sur [0 ; +∞[, comme
t ⩾ 1,

√
t ⩾
√

1 i.e. x1 ⩾ 1. Ainsi, 1 ⩽ x1 ⩽ x0 donc P(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, 1 ⩽ xn+1 ⩽ xn donc,
par croissance de la fonction racine carrée sur [0 ; +∞[,

√
1 ⩽
√
xn+1 ⩽

√
xn i.e.

1 ⩽ xn+2 ⩽ xn+1 donc P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

∀n ∈ N, 1 ⩽ xn+1 ⩽ xn .

ii. La question précédente montre que (xn) est décroissante et minorée par 1 donc,
par le théorème de la limite monotone, (xn) converge vers un réel ℓ ⩾ 1. Ainsi,
lim

n→+∞
xn = ℓ donc, d’une part, lim

n→+∞
xn+1 = ℓ et, d’autre part, comme la fonction

racine carrée est continue sur [0 ; +∞[, lim
n→+∞

√
xn =

√
ℓ i.e. lim

n→+∞
xn+1 =

√
ℓ. Par

unicité de la limite de (xn+1), on en déduit que ℓ =
√
ℓ. En élevant au carré, il

s’ensuit que ℓ2 = ℓ puis, en divisant par ℓ ̸= 0 (puisque ℓ ⩾ 1), on conclut que
ℓ = 1. Ainsi, lim

n→+∞
xn = 1 .
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d. Si 0 < t < 1 alors 1 ⩾
√
t ⩾ t donc x0 ⩽ x1 ⩽. Par le même raisonnement par

récurrence, on en déduit que, pour tout n ∈ N, xn ⩽ xn+1 ⩽ 1 donc (xn) est croissante
et majorée par 1. Ainsi, par le théorème de la limite monotone, (xn) converge vers
un réel ℓ et le même raisonnement que précédemment montre que ℓ = 1. Ainsi, si
0 < t < 1, lim

n→+∞
xn = 1 .

2. a. Soit n ∈ N. Alors,

un+1 − un = 2n+1(xn+1 − 1)− 2n(xn − 1) = 2n (2 (√xn − 1)− (xn − 1))
= 2n(−xn + 2√xn − 1) = −2n(xn − 2√xn + 1) = −2n

(√
xn

2 − 2√xn + 1
)

soit finalement un+1 − un = −2n
(√

xn − 1
)2

.

Ainsi, pour tout n ∈ N, un+1 − un ⩽ 0 donc (un) est décroissante .
b. Soit n ∈ N. Alors,

vn+1 − vn = 2n+1
(

1− 1
xn+1

)
− 2n

(
1− 1

xn

)
= 2n

(
2
(

1− 1
√
xn

)
−
(

1− 1
xn

))

= 2n
(

1
xn
− 2× 1

√
xn

+ 1
)

= 2n
((

1
√
xn

)n
− 2× 1

√
xn

+ 1
)

= 2n
(

1
√
xn
− 1

)2

⩾ 0

donc (vn) est croissante .
c. i. On a montré, dans la question 1.c.i. que, lorsque t > 1, (xn) est minorée par 1

donc, pour tout n ∈ N, xn − 1 ⩾ 0 et donc (un) est minorée par 0. Ainsi, (un) est
décroissant et minorée par 0 donc (un) converge vers un réel L ⩾ 0 .

ii. On a vu que (xn) converge vers 1 donc, par quotient de limites, lim
n→+∞

vn = L
1 = L .

d. Si 0 < t < 1, les calcules précédents s’appliquent de la même façon pour montrer
que (un) est décroissante et que (vn) est croissante. De plus, dans ce cas, pour tout
n ∈ N, 0 < xn ⩽ 1 donc xn − 1 ⩽ 0 et ainsi, comme 2n > 0, un ⩽ 0. Dès lors, pour
tout n ∈ N, vn = un

xn
⩽ 0 (puisque un ⩽ 0 et xn > 0). Ainsi, (vn) est croissante et

majorée par 0 donc, par le théorème de la limite monotone, (vn) converge vers un réel
L. Or, pour tout n ∈ N, un = xnvn donc, comme xn −−−−→

n→+∞
1, par produit de limites,

lim
n→+∞

vn = lim
n→+∞

un = L .

3. a. Considérons, pour tout n ∈ N, la proposition Q(n) : « xn = t
1

2n ».
Initialisation. Comme t

1
20 = t1 = t = x0, Q(0) est vraie.

Hérédité. Soit n ∈ N. Supposons que Q(n) est vraie. Alors, xn = t
1

2n donc

xn+1 = √xn = x
1
2
n =

(
t

1
2n

) 1
2 = t

1
2n × 1

2 = t
1

2n+1
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donc Q(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

∀n ∈ N, xn = t
1

2n .

b. Pour tout n ∈ N, xn − 1 = t
1

2n − 1 = e
ln(t)
2n − 1 et, comme 2 > 1, ln(t)

2n −−−−→
n→+∞

0 donc

comme ln(t) ̸= 0 (car t ̸= 1), par les équivalents usuels, xn − 1 ∼ ln(t)
2n .

c. Ainsi, un = 2n(xn − 1) ∼ 2n × ln(t)
2n ∼ ln(t) donc un ∼ ln(t) et ainsi, par propriété,

lim
n→+∞

un = ln(t). On conclut donc que L = ln(t) .
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Sujets de probabilités : variables
aléatoires discrètes à support fini
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Sujet 20. Remplacement d’une boule noire par une boule
blanche (C2)

Soit a un nombre entier naturel non nul. Une urne contient a boules blanches et a boules
noires.

On pioche une boule de l’urne.
• Si elle est blanche, on la replace dans l’urne.
• Si elle est noire, on la remplace par une blanche.

On répète cette expérience.
Pour tout i ∈ N∗, on note Bi l’évènement « on obtient une boule blanche au i-ème tirage ».
Pour tout n ∈ N∗, on appelle Xn la variable aléatoire égale au nombre de boules noires tirées

au bout de n tirages.
1. Déterminer X1(Ω).
2. Déterminer, pour tout n ∈ N, Xn(Ω).
3. Calculer, pour tout n ∈ N, P(Xn = 0).
4. Montrer que, pour tout n ∈ N∗ et pour tout k ∈ J1, aK,

P(Xn = k) = a+ k

2a P(Xn−1 = k) + a− k + 1
2a P(Xn−1 = k − 1).

5. Montrer que la suite (P(Xn = a))n∈N est croissante puis convergente.
6. Montrer que, pour tout n ∈ N∗, 2aE(Xn) = (2a− 1)E(Xn−1) + a.
7. On pose, pour tout n ∈ N, en = E(Xn).

a. Montrer que la suite (en − a)n∈N est géométrique.
b. En déduire, pour tout n ∈ N, une expression de E(Xn) en fonction de n.
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Solution.
1. Si on tire une boule blanche au premier tirage alors X1 = 0 et, sinon, X1 = 1. Ainsi,

X1(Ω) = {0 ; 1} .
2. Soit n ∈ N. Au bout de n tirages, on a tiré entre 0 et min(n, a) boules noires donc

Xn(Ω) = J0,min(n, a)K .
3. Soit n ∈ N. Alors, (Xn = 0) = B1 ∩B2 ∩ · · · ∩Bn donc, par la formule des probabilités

composées

P(Xn = 0) = P(B1)P(B2 | B1) · · ·P(Bn | B1 ∩ · · · ∩Bn−1)

= 1
2 ×

1
2 × · · · ×

1
2

i.e. P(Xn = 0) =
(1

2

)n
.

4. Soit n ∈ N∗ et k ∈ J1, aK. L’évènement (Xn = k) est réalisé si et seulement si on a tiré k
boules noires lors des n− 1 premiers tirages et on tire une boule blanche au n-ème tirage
ou si on a tiré k− 1 boules noires au cours des n− 1 premiers tirages et on tire une boule
noire au n-ième tirage. Autrement dit,

(Xn = k) = [(Xn−1 = k) ∩Bn] ∪
[
(Xn−1 = k − 1) ∩Bn

]
donc, comme cette union est disjointe (puisque les deux évènements (Xn−1 = k) et
(Xn−1 = k − 1) sont incompatibles),

P(Xn = k) = P(Xn−1 = k)P(Bn | Xn−1 = k) + P(Xn−1 = k − 1)P(Bn | Xn−1 = k − 1).

Or, si (Xn−1 = k) est réalisé alors on a tiré k boules noires au cours des n− 1 premier
tirage donc, au moment du n-ème tirage, l’urne contient a+ k boules blanches et, ainsi,
par équiprobabilité des tirages, P(Bn | Xn−1 = k) = a+k

2a . De même, si (Xn−1 = k − 1)
est réalisé alors on a tiré k − 1 boules noires au cours des n − 1 premier tirage donc,
au moment du n-ème tirage, l’urne contient a − (k − 1) boules blanches et, ainsi, par
équiprobabilité des tirages, P(Bn | Xn−1 = k − 1) = a−k+1

2a .
On conclut donc que

P(Xn = k) = a+ k

2a P(Xn−1 = k) + a− k + 1
2a P(Xn−1 = k − 1) .

5. Soit n ∈ N∗. En appliquant ce qui précède avec k = a, on obtient

P(Xn = a) = P(Xn−1 = a) + 1
2aP(Xn−1 = a− 1).

Or, 1
2aP(Xn−1 = a − 1) ⩾ 0 donc P(Xn = a) ⩾ P(Xn−1 = a). On conclut donc que la

suite (P(Xn = a))n∈N est croissante .
De plus, par définition d’une probabilité, (P(Xn = a))n∈N est majorée par 1 donc, on
déduit du théorème de la limite monotone que (P(Xn = a))n∈N est convergente .
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6. Soit n ∈ N∗. D’après le résultat de la question 4., pour tout k ∈ J1, aK,

2akP(Xn = k) = k(a+ k)P(Xn−1 = k) + k(a− k + 1)P(Xn−1 = k − 1)

donc
a∑
k=1

2akP(Xn = k) =
a∑
k=1

[k(a+ k)P(Xn−1 = k) + k(a− k + 1)P(Xn−1 = k − 1)] .

Par linéarité de la somme puis grâce au changement d’indice j = k − 1, on en déduit que

2a
a∑
k=1

kP(Xn = k) =
a∑
k=1

k(a+ k)P(Xn−1 = k) +
a∑
k=1

k(a− k + 1)P(Xn−1 = k − 1)

=
a∑
k=1

k(a+ k)P(Xn−1 = k) +
a−1∑
j=0

(j + 1)(a− j)P(Xn−1 = j)

En remarquant que, dans les deux premières somme, le terme en k = 0 est nul et que,
dans le troisième, le terme en j = a est nul, on obtient

2a
a∑
k=0

kP(Xn = k) =
a∑
k=0

k(a+ k)P(Xn−1 = k) +
a∑
j=0

(j + 1)(a− j)P(Xn−1 = j)

=
a∑
k=0

[k(a+ k) + (k + 1)(a− k)] P(Xn−1 = k)

=
a∑
k=0

[(2a− 1)k + a] P(Xn−1 = k)

= (2a− 1)
a∑
k=0

kP(Xn−1 = k) + a
a∑
k=0

P(Xn−1 = k)

Or, Xn(Ω) et Xn−1(Ω) sont tous les deux inclus dans J0, aK donc
a∑
k=0

kP(Xn = k) = E(Xn),
a∑
k=0

kP(Xn−1 = k) = E(Xn−1) et
a∑
k=0

P(Xn = k) = 1 donc on conclut que

2aE(Xn) = (2a− 1)E(Xn−1) + a.

7. a. Soit n ∈ N. Alors, d’après la question précédente,

en+1−a = E(Xn+1)−a = 2a− 1
2a E(Xn)+1

2−a = 2a− 1
2a en+ a

2a−
2a2

2a = 2a− 1
2a (en−a).

Ainsi, (en − a)n∈N est une suite géométrique de raison 2a− 1
2a .

90



b. Comme X0 est une variable aléatoire certaine égale à 0, e0 = E(X0) = 0 donc
e0 − a = −a. On en déduit que, pour tout n ∈ N, en − a = −a

(2a− 1
2a

)n
donc

en = a− a
(2a− 1

2a

)n
. Ainsi,

∀n ∈ N E(Xn) = a
[
1−

(2a− 1
2a

)n]
.
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Sujet 21. Germination de graines (C4)

On dispose de n pots, avec n ∈ N∗.
On plante une graine dans chaque pot. Les germinations des graines sont indépendantes les

unes des autres.
Pour chaque graine, la probabilité de germer est égale à p, avec p ∈ ]0 ; 1[.
Pour chaque graine, la probabilité de ne pas germer est donc égale à q, avec q = 1− p.
1. On note X le nombre de graines ayant germé. Donner la loi de X et préciser, pour tout

i ∈ X(Ω), la probabilité P(X = i).
2. Dans les pots où la graine n’a pas germé, on plante une nouvelle graine.

On note Y le nombre de nouvelles graines ayant germé.
Donner, pour tout i ∈ X(Ω), la loi de Y sachant (X = i) et préciser, pour tout
(i, j) ∈ X(Ω)× Y (Ω), la probabilité P(X=i)(Y = j).

3. On note Z le nombre total de graines ayant germé. Ainsi, Z = X + Y .
a. Préciser Z(Ω) et exprimer, pour tout k ∈ Z(Ω), l’évènement (Z = k) à l’aide des

variables aléatoires X et Y .
b. En déduire, pour tout k ∈ Z(Ω), une expression sous forme de somme de la probabilité

P(Z = k).
4. Montrer que, pour tout k ∈ J0, nK et tout i ∈ J0, kK,(

n− i
k − i

)(
n

i

)
=
(
n

k

)(
k

i

)

5. a. Montrer que 1− p(1 + q) = q2.
b. Soit k ∈ Z(Ω). Développer (1 + q)k à l’aide de la formule du binôme de Newton et en

déduire une expression simple de
k∑
i=0

(
k

i

)
q−i.

c. Montrer que, pour tout k ∈ Z(Ω), P(Z = k) =
k∑
i=0

(
n

k

)(
k

i

)
pkq2n−i−k.

d. Montrer que Z suit une loi binomiale, dont on précisera les paramètres.
6. Déterminer l’espérance de Z et en donner une interprétation.
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Solution.
1. Si on numérote les pots de 1 à n et si on note, pour tout k ∈ J1, nK, Xk la variable

aléatoire égale à 1 si la graine du pot k germe et 0 sinon alors, pour tout k ∈ J1, nK, Xk

suit une loi de Bernoulli de paramètre p. Comme les germinations sont indépendantes,
les variables Xk sont mutuellement indépendantes. Or, X =

n∑
k=1

Xk donc X ↪→ B(n, p) .

Ainsi, pour tout i ∈ J0, nK, P(X = i) =
(
n

i

)
piqn−i .

2. Si (X = i) alors on a replanté n − i graines et, par le même raisonnement que pré-
cédemment, la loi de Y sachant (X = i) est la loi binomiale de paramètres n − i et
p.

Ainsi, pour tout i ∈ J0, nK et tout j ∈ J0, nK, P(X=i)(Y = j) =
(
n− i
j

)
pjqn−i−j .

3. a. Le nombre de graines qui ont germé est compris entre 0 et n donc Z(Ω) = J0, nK .
Soit k ∈ J0, nK. Comme ((X = i))i∈J0,nK est un système complet d’évènements,

(Z = k) = (Z = k) ∩
(

n⋃
i=0

(X = i)
)

=
n⋃
i=0

(X = i) ∩ (Z = k)

=
n⋃
i=0

(X = i) ∩ (X + Y = k)

=
n⋃
i=0

(X = i) ∩ (i+ Y = k)

=
n⋃
i=0

(X = i) ∩ (Y = k − i)

De plus, si k < i alors (Y = k − i) = ∅ donc, finalement,

(Z = k) =
k⋃
i=0

(X = i) ∩ (Y = k − i) .

Comme cette union est disjointe (car les évènement (X = i) sont deux à deux
incompatibles), on en déduit que

P(Z = k) =
k∑
i=0

P((X = i) ∩ (Y = k − i)) =
k∑
i=0

P(X = i)P(X=i)(Y = k − i)

=
k∑
i=0

(
n

i

)
piqn−i

(
n− i
k − i

)
pk−iqn−i−(k−i)

donc

P(Z = k) =
k∑
i=0

(
n

i

)(
n− i
k − i

)
pkq2n−k−i .
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4. Soit k ∈ J0, nK et i ∈ J0, kK. Alors,(
n− i
k − i

)(
n

i

)
= (n− i)!

(k − i)!(n− i− (k − i))! ×
n!

i!(n− i)! = n!
i!(k − i)!(n− k)!

et (
n

k

)(
k

i

)
= n!
k!(n− k)! ×

k!
i!(k − i)! = n!

i!(k − i)!(n− k)!
donc (

n− i
k − i

)(
n

i

)
=
(
n

k

)(
k

i

)
.

5. a. Comme p = 1− q, 1− p(1 + q) = 1− (1− q)(1 + q) = 1− (1− q2) = 1− 1 + q2 donc
1− p(1 + q) = q2 .

b. D’après la formule du binôme de Newton, (1 + q)k =
k∑
i=0

(
k

i

)
1iqk−i donc

(1 + q)k =
k∑
i=0

(
k

i

)
qk−i .

On en déduit que (1 + q)k =
k∑
i=0

(
k

i

)
qkq−i donc, par linéarité de la somme, (1 + q)k =

qk
k∑
i=0

(
k

i

)
q−i et ainsi

k∑
i=0

(
k

i

)
q−i = (1 + q)k

qk
.

c. Soit k ∈ J0, nK. On déduit des questions 3.b. et 4.,

P(Z = k) =
k∑
i=0

(
n

i

)(
n− i
k − i

)
pkq2n−k−i =

k∑
i=0

(
n

k

)(
k

i

)
pkq2n−k−i

d. Par linéarité de la somme, on en déduit que, pour tout k ∈ J0, nK,

P(Z = k) =
(
n

k

)
pkq2n−k

k∑
i=0

(
k

i

)
q−i

donc, d’après la question 5.b., pour tout k ∈ J0, nK,

P(Z = k) =
(
n

k

)
pkq2n−k (1 + q)k

qk
=
(
n

k

)
(p(1 + q))kq2n−2k =

(
n

k

)
(p(1 + q))k

(
q2
)n−k

.
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Dès lors, d’après la question 5.a.,

P(Z = k) =
(
n

k

)
(p(1 + q))k (1− p(1 + q))n−k .

On conclut donc que Z suit une loi binomiale de paramètres n et p(1 + q) .

6. Dès lors, E(Z) = np(1 + q) . Cette espérance représente le nombre moyen de graines qui
germent.

95



Sujet 22. Le loueur de voiture (O1)

Un concessionnaire dispose de 2 voitures qu’il peut louer chaque jour, pour un prix de 30e.
On définit les variables aléatoires suivantes :
• X est le nombre de clients qui veulent lui louer une voiture ;
• Y est le nombre de voitures qu’il loue ;
• G est le chiffre d’affaire qu’il réalise sur la journée.

1. On suppose dans cette question que la loi de X est donnée par le tableau suivant :

k 0 1 2 3

P(X = k) 1
6

1
4

1
2

1
12

.

a. Déterminer la loi de Y , son espérance et sa variance.
b. Déterminer l’espérance et la variance de G.
c. Calculer le chiffre d’affaire réalisé en moyenne par le concessionnaire sur 30 jours.

2. Reprendre les questions précédentes en supposant que X suit une loi binomiale de
paramètres 6 et 1

2.

3. Reprendre les questions précédentes en supposant que X suit une loi de Poisson de
paramètre 2.
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Solution.

1. a. Par définition, Y (Ω) = {0 ; 1 ; 2}. De plus, {Y = 0} = {X = 0} donc P(Y = 0) = 1
6,

{Y = 1} = {X = 1} donc P(Y = 1) = 1
4 et {Y = 2} = {X ⩾ 2} donc, comme les

évènements {X = 2} et {X = 3} sont incompatibles, P(Y = 2) = P(X = 2)+P(X =
3) = 1

2 + 1
12 = 7

12.
Ainsi, on peut résumer la loi de Y dans le tableau suivant :

k 0 1 2

P(Y = k) 1
6

1
4

7
12

.

Dès lors,

E(Y ) = 0× 1
6 + 1× 1

4 + 2× 7
12

soit E(Y ) = 17
12 .

Enfin,

E(Y 2) = 02 × 1
6 + 12 × 1

4 + 22 × 7
12 = 31

12
donc, par la formule de König-Huygens,

V(Y ) = E(Y 2)− E(Y )2 = 31
12 −

(17
12

)2

soit V(Y ) = 83
144 .

b. Par définition, G = 30Y donc, par linéarité de l’espérance E(G) = 30E(Y ) = 30× 17
12

i.e. E(G) = 85
2 .

Par propriété, V(G) = 302V(G) = 900V(G) = 900× 83
144 soit V(G) = 2075

4 .

c. Si on note, pour tout i ∈ J1, 30K, Gi le chiffre d’affaire réalisé le jour i alors le
chiffre d’affaire total sur 30 jours est T = G1 + G2 + · · · + G30. Par linéarité de la

moyenne, on en déduit que le chiffre d’affaire moyen sur 30 jours est E(T ) =
30∑
i=1

E(Gi).

Or, chaque Gi a la même loi que G donc E(T ) = 30E(G) i.e. E(T ) = 1275. Ainsi,
le gain moyen du concessionnaire sur 30 jours est 1275e .
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2. a. De même, P(Y = 0) = P(X = 0) =
(

6
0

)(1
2

)0 (1
2

)6
= 1

64 et P(Y = 1) = P(X =

1) =
(

6
1

)(1
2

)1 (1
2

)5
= 3

32. Enfin, P(Y = 2) = 1−P(Y = 0)−P(Y = 1) = 57
64.

Ainsi, on peut résumer la loi de Y par le tableau suivant :

k 0 1 2

P(Y = k) 1
64

3
32

57
64

.

Ainsi,
E(Y ) = 0× 1

64 + 1× 3
32 + 2× 57

64

soit E(Y ) = 15
8 .

De plus,
E(Y 2) = 02 × 1

64 + 12 × 3
32 + 22 × 57

64 = 117
32

donc, par la formule de König-Huygens,

V(Y ) = E(Y 2)− E(Y )2 = 117
32 −

(15
8

)2

soit V(Y ) = 9
64

b. On en déduit que E(G) = 30 × 15
8 i.e. E(G) = 225

4 et V(G) = 900 × 9
64 soit

V(G) = 2025
16 .

c. Avec les mêmes notations que précédemment, E(T ) = 30E(G) i.e. E(T ) = 3375
2 .

Ainsi, le gain moyen du concessionnaire sur 30 jours est 1687,50e .

3. a. De même, P(Y = 0) = P(X = 0) = 20

0! e−2 = e−2 et P(Y = 1) = 21

1! e−2 = 2e−2. Enfin,
P(Y = 2) = 1−P(Y = 0)−P(Y = 1) = 1− 3e−2.

Ainsi, on peut résumer la loi de Y par le tableau suivant :

k 0 1 2

P(Y = k) e−2 2e−2 1− 3e−2
.
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Ainsi,
E(Y ) = 0× e−2 + 1× 2e−2 + 2× (1− 3e−2)

soit E(Y ) = 2− 4e−2 .
De plus,

E(Y 2) = 02 × e−2 + 12 × 2e−2 + 22 × (1− 3e−2) = 4− 10e−2

donc, par la formule de König-Huygens,

V(Y ) = E(Y 2)− E(Y )2 = 4− 10e−2 −
(
2− 4e−2

)2

= 4− 10e−2 − (4− 16e−2 + 16e−4)

i.e. V(Y ) = 6e−2 − 16e−4 .

b. On en déduit que E(G) = 30(2− 4e−2) et V(G) = 900(6e−2 − 16e−4) .
c. Avec les mêmes notations que précédemment, E(T ) = 30E(G) = 30(60 − 120e−2).

Ainsi, le gain moyen du concessionnaire sur 30 jours est environ 1312,79e .
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Sujet 23. Division cellulaire (O1)

Dans tout l’exercice, p désigne un réel appartenant à ]0 ; 1[.

Partie A. Étude d’une suite
On considère la fonction f définie sur R par

f(x) = 1− p+ px2

ainsi que la suite (vn) définie par v0 = 0
∀n ∈ N, vn+1 = f(vn)

.

1. Étudier le sens de variations de la fonction f .
2. Montrer que, pour tout n ∈ N, 0 ⩽ vn ⩽ 1.

3. Montrer que, pour tout réel x, f(x) = x si et seulement si x = 1 ou x = 1− p
p

.
Ranger ces deux solutions dans l’ordre croissant. On discutera selon les valeurs de p.

4. Montrer que si p ⩽
1
2, alors la suite (vn) est croissante et converge vers un réel à

déterminer.
5. Que se passe-t-il si p > 1

2 ?

Partie B. Application
On considère des cellules pouvant
• soit se diviser en deux cellules filles, avec une probabilité égale à p ;
• soit mourir, avec une probabilité égale à q = 1− p.

Pour tout n ∈ N, on note Xn la variable aléatoire correspondant au nombre de cellules à la
nème génération.

On suppose que X0 = 1 de façon certaine.
1. Déterminer la loi de X1, son espérance et sa variance.
2. Pour tout n ∈ N, on note un = P(Xn = 0).

a. Donner u0 et u1.
b. Soit n ∈ N. Établir, à partir du système complet d’événements {(X1 = 0), (X1 = 2)},

une relation entre un et un+1.
3. Déterminer la limite de la suite (un).
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Solution.

Partie A. Étude d’une suite
1. La fonction f est une fonction polynomiale du second degré dont le coefficient dominant

est p > 0 et qui atteint son minimum en x0 = 0
2p = 0. On en déduit donc que

f est décroissante sur ]−∞ ; 0] et croissante sur [0 ; +∞[ .
2. Considérons, pour tout n ∈ N, la proposition P(n) : « 0 ⩽ vn ⩽ 1 ».

Initialisation. v0 = 0 ∈ [0 ; 1] donc P(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, 0 ⩽ vn ⩽ 1 donc, comme

f est croissante sur [0 ; +∞[, f(0) ⩽ f(vn) ⩽ f(1). Or, f(0) = 1 − p ⩾ 0 car p ⩽ 1 et
f(1) = 1 donc 0 ⩽ f(vn) ⩽ 1 i.e. 0 ⩽ vn+1 ⩽ 1. Ainsi, P(n+ 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N, 0 ⩽ vn ⩽ 1 .
3. Soit x ∈ R. Alors,

f(x) = x⇐⇒ 1− p+ px2 = x⇐⇒ px2 − x+ 1− p = 0

Le discriminant de pX2−X+1−p = 0 est ∆ = (−1)2−4p(1−p) = 1−4p+4p2 = (1−2p)2.
Ainsi, pX2 −X + 1− p possède deux racines (non nécessairement distinctes) :

x1 =
−(−1)−

√
(1− 2p)2

2p = 1− |1− 2p|
2p et x2 =

−(−1) +
√

(1− 2p)2

2p = 1 + |1− 2p|
2p .

Si 1− 2p ⩾ 0, on obtient x1 = 1 et x2 = 1− p
p

et si 1− 2p ⩽ 0, on obtient x1 = 1− p
p

et
x2 = 1.

Ainsi, dans tous les cas, f(x) = x si et seulement si x = 1 ou x = 1− p
p

.

Comme x2 − x1 = |1− 2p|
p

⩾ 0, x2 ⩾ x1. Ainsi, si 1 − 2p ⩾ 0 alors 1− p
p

⩾ 1 et si

1− 2p ⩽ 0 alors 1− p
p

⩽ 1.

Autrement dit, 1− p
p

⩾ 1 si p ⩽ 1
2 et 1− p

p
⩽ 1 si p ⩾ 1

2 .

4. Supposons que p ⩽ 1
2. Considérons, pour tout n ∈ N, la proposition Q(n) : « vn ⩽ vn+1 ».

Initialisation. v0 = 0 et v1 = 1− p donc, comme p ⩽ 1, v1 ⩾ v0 donc Q(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que Q(n) est vraie. Alors, vn ⩽ vn+1 donc, comme

f est croissante sur [0 ; +∞[, f(vn) ⩽ f(vn+1) i.e. vn+1 ⩽ vn+2. Ainsi, Q(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N, vn ⩽

vn+1.
Ainsi, (vn) est croissante .
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Dès lors, (vn) est croissante et majorée par 1 donc, d’après le théorème de la limite
monotone, (vn) converge vers une limite ℓ ⩽ 1 .

Alors, vn −−−−→
n→+∞

ℓ donc, d’une part, vn+1 −−−−→
n→+∞

ℓ et, d’autre part, par produit et
somme, 1− p+ pv2

n −−−−→n→+∞
1− p+ pℓ2. Par unicité de la limite de (vn+1), on en déduit

que ℓ = 1− p+ ℓ2 donc, d’après la question 3., ℓ = 1 ou ℓ = 1− p
p

. Or, comme p ⩽ 1
2,

1− p
p

⩾ 1 donc, comme ℓ ⩽ 1, ℓ = 1 .

5. Si p > 1
2, (vn) demeure croissante (car le raisonnement de la question précédente n’utilise

pas le fait que p ⩽ 1
2 pour montrer que (vn) est croissante) donc, comme précédemment,

(vn) converge vers 1 ou vers 1− p
p

.

Montrons par récurrence que (vn) est majorée par 1− p
p

.

Initialisation. v0 = 0 ⩽
1− p
p

car p ∈ ]0 ; 1[.

Hérédité. Soit n ∈ N. Supposons que vn ⩽
1− p
p

. Alors, comme f est croissante sur

[0 ; +∞[, f(vn) ⩽ f

(
1− p
p

)
i.e. vn+1 ⩽

1− p
p

.

Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N, vn ⩽
1− p
p

.

Dès lors, ℓ ⩽ 1− p
p

< 1 donc ℓ = 1− p
p

.

Partie B. Application
1. Comme l’évènement (X0 = 1) est un évènement certain, il y a initialement 1 seule cellule.

Ainsi, X1(Ω) = {0 ; 2}, P(X1 = 0) = p et P(X1 = 1) = p .

Dès lors, E(X1) = 0× q + 2× p donc E(X) = 2p .
De plus, E(X2

1 ) = 02 × q + 22 × p = 4p donc, par la formule de König-Huygens,
V(X1) = E(X2

1 )− E(X1)2 = 4p− (2p)2 = 4p− 4p2 donc V(X) = 4p(1− p) = 4pq .

2. a. Comme (X0 = 1) est un évènement certain, u0 = 0 . De plus, on a vu précédemment
que u1 = q .

b. En utilisant la formule de probabilités totales avec le système complet d’évènements
{(X1 = 0), (X1 = 2)}, on obtient

un+1 = P(Xn+1 = 0)
= P(X1 = 0)P(Xn+1 = 0 | X1 = 0) + P(X1 = 2)P(Xn+1 = 0 | X1 = 2)
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Or, P(Xn+1 = 0 | X1 = 0) = 1 et, s’il y a 2 cellules à la génération 1, la probabilité
qu’il n’y en ait plus à la génération n+ 1 est la probabilité que la descendance de chacune
de ces 2 cellules s’éteigne en au plus n générations. Or, pour chacun des deux cellules,
la probabilité que leur descendance s’éteigne en au plus n générations est un donc, par
indépendance, la probabilité qu’il n’y ait plus de cellules à la génération n + 1 est u2

n.
Ainsi, un+1 = u1 × 1 + u0 × u2

n = q + pu2
n soit un+1 = 1− p+ pu2

n .
3. Par définition, u0 = 0 et, pour tout n ∈ N, un+1 = f(un) donc, pour tout n ∈ N, un = vn.

On déduit donc des résultats de la Partie A que

lim
n→+∞

un =


1 si p ⩽ 1

21− p
p

si p ⩾ 1
2
.
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Sujet 24. Les cents pas (O1)
Un homme fait les cent pas.
Il se déplace sur un axe infini, gradué par pas de 1 de −∞ à +∞.
À chaque déplacement, il va vers la droite avec probabilité p ou vers la gauche avec probabilité

q = 1− p.

0−1 1

pq

Initialement, l’homme est en 0.
Pour tout n ∈ N, on note Xn la position de l’homme après n déplacements. En particulier,

on a X0 = 0.
Soit n ∈ N∗. On note Yn le nombre de pas vers la droite effectués après n déplacements.
1. Donner la loi de Yn, son espérance et sa variance.
2. Exprimer la variable aléatoire Xn en fonction de Yn.
3. En déduire l’espérance et la variance de Xn.
4. Déterminer la probabilité d’être revenu en 0 après n déplacements.
5. Déterminer la loi de Xn.
6. Dans cette question, on suppose que p = 1

2 et n = 2N avec N ∈ N∗.
a. Expliciter la loi de Xn dans ce cas.
b. Calculer E(Xn) par deux méthodes :

— en utilisant le résultat de la question 3. ;
— en utilisant la loi de Xn.

c. Exprimer de même V (Xn) par deux méthodes, en déduire que :

N∑
k=1

k2
(

2N
N + k

)
= N4N−1
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Solution.
1. Les n déplacements constitue un schéma de Bernoulli en prenant comme succès « L’homme

se déplace vers la droite ». La variable aléatoire Yn compte le nombre de succès donc
Yn ↪→ B(n, p) .

Par propriété, E(Yn) = np et V(Yn) = npq .
2. L’homme fait n pas en tout dont Yn vers la droite. Il fait donc n− Yn pas vers la gauche

et sa position finale est donc Yn × 1 + (n− Yn)× (−1) i.e. Xn = 2Yn − n .
3. Par linéarité de l’espérance, on en déduit que E(Xn) = 2E(Yn) − n = 2np − n i.e.

E(Xn) = n(2p− 1) .
Par propriété de la variance, V(Xn) = 22V(Yn) donc V(Xn) = 4npq .

4. Remarquons que

P(Xn = 0) = P(2Yn − n = 0) = P
(
Yn = n

2

)
.

Or, Yn est à valeurs entières donc si n est impair alors n
2 /∈ N donc P(Xn = 0) = 0.

De plus, si n est pair alors P(Yn = n
2 ) =

(
n
n
2

)
p

n
2 qn− n

2 =
(
n
n
2

)
(pq)n

2 .

Ainsi, P(Xn = n) =


0 si n est impair(

n
n
2

)
(pq)n

2 si n est pair
.

5. Commençons par remarquer que Xn(Ω) = {2k | k ∈ J−n
2 ,

n
2 K} si n est pair et Xn(Ω) =

{2k + 1 | k ∈ J−n−1
2 , n−1

2 K} si n est impair. De plus,
• si n est pair alors, pour tout k ∈ J−n

2 ,
n
2 K,

P(Xn = 2k) = P(2Yn − n = 2k) = P
(
Yn = n

2 + k
)

=
(

n
n
2 + k

)
p

n
2 +kq

n
2 −k

=
(

n
n+2k

2

)
p

n+2k
2 q

n−2k
2

• si n est impair alors, pour tout k ∈ J−n−1
2 , n−1

2 K,

P(Xn = 2k + 1) = P(2Yn − n = 2k + 1) = P
(
Yn = n+ 1

2 + k
)

=
(

n
n+1

2 + k

)
p

n+1
2 +kq

n−1
2 −k

=
(

n
n+2k+1

2

)
p

n+2k+1
2 q

n−2k−1
2

Ainsi, on peut remarquer que, dans tous les cas,

∀j ∈ Xn(Ω) P(Xn = j) =
(
n
n+j

2

)
p

n+j
2 q

n−j
2 .
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6. a. Si n = 2N alors n est pair donc Xn(Ω) = {2k | k ∈ J−N,NK} et, pour tout
k ∈ J−N,NK,

P(Xn = 2k) =
(

2N
N + k

)(1
2

)N+k (1
2

)N−k
=
(

2N
N + k

)(1
2

)2N
.

b. D’après le résultat de la question 3., E(Xn) = n(2× 1
2 − 1) donc E(Xn) = 0 .

Par ailleurs, par définition,

E(Xn) =
N∑

k=−N
2kP(Xn = 2k) =

N∑
k=−N

2k ×
(

2N
N + k

)(1
2

)2N

=
(1

2

)2N−1
 −1∑
k=−N

k

(
2N
N + k

)
+ 0 +

N∑
k=1

k

(
2N
N + k

)
=
(1

2

)2N−1
 N∑
j=1

(−j)
(

2N
N − j

)
+

N∑
k=1

k

(
2N
N + k

)
=
(1

2

)2N−1 [
−

N∑
k=1

k

(
2N

N − k

)
+

N∑
k=1

k

(
2N
N + k

)]

Or, par le principe de symétrie, pour tout k ∈ J−N,NK,(
2N

N − k

)
=
(

2N
2N − (N − k)

)
=
(

2N
N + k

)
donc finalement

E(Xn) =
(1

2

)2N−1 [
−

N∑
k=1

k

(
2N
N + k

)
+

N∑
k=1

k

(
2N
N + k

)]

i.e. E(Xn) = 0 .
c. D’après la question 3., V(Xn) = 4× 2N × 1

2 ×
1
2 = 2N . D’autre part, par le théorème

de transfert,

E(X2
n) =

N∑
k=−N

(2k)2P(Xn = 2k) =
N∑

k=−N
4k2 ×

(
2N
N + k

)(1
2

)2N

= 4× 1
4N

 −1∑
k=−N

k2
(

2N
N + k

)
+ 0 +

N∑
k=1

k2
(

2N
N + k

)
= 1

4N−1

 N∑
j=1

(−j)2
(

2N
N − j

)
+

N∑
k=1

k2
(

2N
N + k

)
= 1

4N−1

[
N∑
k=1

k2
(

2N
N + k

)
+

N∑
k=1

k2
(

2N
N + k

)]

= 2
4N−1

N∑
k=1

k2
(

2N
N + k

)
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Or, d’après la formule de König-Huygens, V(X) = E(X2)− E(X)2 = E(X2) donc

2
4N−1

N∑
k=1

k2
(

2N
N + k

)
= 2N

i.e.
N∑
k=1

k2
(

2N
N + k

)
= N4N−1 .
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Sujet 25. Déplacement aléatoire sur un axe gradué (O1)
On déplace un objet sur un axe gradué de 0 à +∞, selon le protocole suivant.
Initialement, l’objet est en 0.
À chaque tour, on lance un dé bien équilibré :
— si on obtient 5 ou 6, on avance l’objet d’une position ;
— sinon, on replace l’objet en 0.

0 1 2 3 4 5

Pour tout entier n ∈ N, on note Xn la position de l’objet à l’issue n-ième tour.
1. Déterminer la loi de X1, son espérance, sa variance.
2. Déterminer la loi de X2, son espérance, sa variance.
3. Montrer que, pour tout n ∈ N∗ et tout k ∈ J1, nK, P(Xn = k) = 1

3P(Xn−1 = k − 1).
4. Montrer que, pour tout n ∈ N∗, P(Xn = 0) = 2

3 .
5. Montrer que, pour tout n ∈ N∗, E(Xn) = 1

3E(Xn−1) + 1
3 .

6. Pour tout n ∈ N, on pose un = E(Xn)− 1
2 .

a. Montrer que la suite (un) est géométrique.
b. En déduire, pour tout n ∈ N, l’expression de E(Xn) en fonction de n.
c. Donner la limite de E(Xn) en +∞.
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Solution.
1. Commençons par remarquer que X1(Ω) = {0 ; 1}. De plus, par équiprobabilité des faces,

P(X1 = 1) = 2
6 = 1

3 . Ainsi, X1 suit une loi de Bernoulli de paramètre 1
3 . Par suite,

E(X1) = 1
3 et V(X1) = 1

3 ×
2
3 = 2

9 .

2. Commençons par remarquer que X2(Ω) = {0; ; 1 ; 2}.
Notons Y la variable aléatoire valant 1 si le second lancer de dés donne un chiffre supérieur
ou égal à 5 et 0 sinon. Alors, Y ↪→ B(1

3) donc
• (X2 = 0) = (Y ⩽ 0) donc P(X2 = 0) = 2

3 ;
• (X2 = 1) = (X1 = 0) ∩ (Y = 1) donc, par indépendance,

P(X2 = 1) = P(X1 = 0)P(Y = 1) = 2
3 ×

1
3 = 2

9;

• (X2 = 2) = (X1 = 1) ∩ (Y = 1) donc, par indépendance,

P(X2 = 2) = P(X1 = 1)P(Y = 1) = 1
3 ×

1
3 = 1

9 .

Ainsi, E(X2) = 0× 2
3 × 1× 2

9 + 2× 1
9 soit E(X2) = 4

9 .
Enfin, par le théorème de transfert, E(X2

2 ) = 02 × 2
3 × 12 × 2

9 + 22 × 1
9 = 2

3 donc, par la
formule de König-Huygens, V(X2) = E(X2

1 )− E(X1)2 = 2
3 − (4

9)2 soit V(X2) = 38
81

3. Soit n ∈ N∗. Notons Yn la variable aléatoire égale à 1 si le n-ième lancer donne un
résultat supérieur ou égal à 5 et 0 sinon. Là encore, Yn ↪→ B(1

3). De plus, pour tout
k ∈ J1, nK, (Xn = k) = (Xn−1 = k − 1) ∩ (Yn = 1) donc, par indépendance des lancers,
P(Xn = k) = P(Yn = 1)P(Xn−1 = k − 1).
Ainsi, pour tout k ∈ J1, nK, P(Xn = k) = 1

3P(Xn−1 = k − 1) .

4. Avec les notations de la question précédente, (Xn = 0) = (Yn = 0) donc on conclut que
P(Xn = 0) = P(Yn = 0) = 2

3 .
5. Soit n ∈ N∗. Alors,

E(Xn) =
n∑
k=0

kP(Xn = k) =
n∑
k=1

k

3P(Xn−1 = k − 1)

= 1
3

n−1∑
j=0

(j + 1)P(Xn−1 = j)

= 1
3

n−1∑
j=0

jP(Xn−1 = j) + 1
3

n−1∑
j=0

P(Xn−1 = j).

Or, comme Xn−1(Ω) = J0, n− 1K,
n−1∑
j=0

jP(Xn−1 = j) = E(Xn−1) et
n−1∑
j=0

P(Xn−1 = j) = 1

donc on conclut que E(Xn) = 1
3E(Xn−1) + 1

3 .
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6. a. Soit n ∈ N. Alors,

un+1 = E(Xn+1)−
1
2 = 1

3E(Xn) + 1
3 −

1
2 = 1

3E(Xn)− 1
6 = 1

3

(
E(Xn)− 1

2

)
= 1

3un.

Ainsi, (un) est une suite géométrique de raison 1
3 .

b. On déduit de la question précédente que, pour tout n ∈ N, un = u0 ×
(

1
3

)n
. Or,

u0 = E(X0)− 1
2 = 0− 1

2 = −1
2 donc, pour tout n ∈ R, un = −1

2

(
1
3

)n
.

Or, pour tout n ∈ N, un = E(Xn)− 1
2 donc E(Xn) = un + 1

2 et ainsi on conclut que,
pour tout n ∈ N, E(Xn) = 1

2 −
1
2

(
1
3

)n
.

c. Comme −1 < 1
3 < 1, lim

n→+∞

(
1
3

)n
= 0 donc, par produit et somme, lim

n→+∞
E(Xn) = 1

2 .
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Sujets de probabilités : variables
aléatoires discrètes à support infini
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Sujet 26. Traîne de la loi de Poisson (C1)

Soit X une variable aléatoire suivant la loi de Poisson de paramètre λ > 0.
1. a. Rappeler la loi de Poisson, son espérance et sa variance.

b. Rappeler l’inégalité de Tchebychev et ses hypothèses.

c. Démontrer que P(|X − λ| ⩾ λ) ⩽ 1
λ

.

d. En déduire que P(X ⩾ 2λ) ⩽ 1
λ

.

2. Pour tout réel t ⩾ 0, si la série converge, on pose GX(t) =
+∞∑
k=0

P(X = k)tk.

a. Vérifier que, pour tout réel t ⩾ 0, GX(t) = eλ(t−1).
b. Exprimer, pour tout réel t ⩾ 0, GX(t) sous la forme d’une espérance.
c. Rappeler l’inégalité de Markov et ses hypothèses.
d. En déduire que, pour tout réel t > 0, P(tX ⩾ t2λ) ⩽ eλ(t−1−2 ln(t)).
e. Déterminer le minimum de la fonction f : t 7−→ t− 1− 2 ln(t) sur ]0 ; +∞[.
f. Démontrer que, pour tous réels t > 1 et x ⩾ 0,

x ⩾ 2λ⇐⇒ tx ⩾ t2λ.

g. En déduire P(X ⩾ 2λ) ⩽
(
e

4

)λ
.

3. À l’aide de GeoGebra, comparer les deux majorations de P(X ⩾ 2λ) obtenues dans les
questions précédentes.
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Solution.
1. a. Dire que X suit une loi de Poisson de paramètre λ signifie que X(Ω) = N et que,

pour tout k ∈ N, P(X = k) = λk

k! e−λ .

Par théorème, E(X) = V(X) = λ .
b. L’inégalité de Bineaymé-Tchebychev stipule que si Y est une variable aléatoire ad-

mettant une variance alors, pour tout réel ε > 0,

P(|Y − E(Y )| ⩾ ε) ⩽ V(Y )
ε2 .

c. En appliquant cette inégalité à Y = X (qui admet bien une variance) et ε = λ > 0,
on obtient

P(|X − λ| ⩾ λ) ⩽ λ

λ2

i.e.
P(|X − λ| ⩾ λ) ⩽ 1

λ
.

d. On remarque que si X ⩾ 2λ alors X − λ ⩾ λ donc |X − λ| ⩾ λ. Ainsi, {X ⩾ 2λ} ⊂
{|X − λ| ⩾ λ} donc, par croissance de la probabilité,

P(X ⩾ 2λ) ⩽ P(|X − E(X)| ⩾ λ)

et ainsi, grâce à la question précédente,

P(X ⩾ 2λ) ⩽ 1
λ
.

2. a. Pour tout réel t ⩾ 0 et tout k ∈ N, P(X ⩾ k)tk = λk

k! e−λ × tk = (λt)k
k

e−λ donc, au
facteur constant e−λ près, la série

∑
P(X ⩾ k)tk est une série exponentielle. Elle est

donc convergente est

+∞∑
k=0

P(X ⩾ k)tk = e−λ
+∞∑
k=0

(λt)k
k! = e−λ × eλt = e−λ+λt

donc, pour tout réel t ⩾ 0, GX(t) = eλ(t−1) .
b. Soit un réel t ⩾ 0. Alors,

GX(t) =
+∞∑
k=0

tkP(X = k)

donc, par le théorème de transfert, GX(t) = E(X t) .
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c. L’inégalité de Markov stipule que si Y est une variable aléatoire positive admettant
une espérance alors, pour tout réel a > 0,

P(X ⩾ a) ⩽ E(X)
a

.

d. Soit un réel t > 0. D’après la question 2.b., la variable aléatoire Y = tX admet une
espérance égale à GX(t). De plus, elle est positive donc, en lui appliquant l’inégalité
de Markov avec a = t2λ > 0, on obtient

P(tX ⩾ t2λ) ⩽ GX(t)
t2λ

.

Or, t2λ = e2λ ln(t) donc
GX(t)
t2λ

= eλ(1−t)

e2λ ln(t) = eλ(t−1)−2λ ln(t) = eλ(t−1−2 ln(t)).

Ainsi, on conclut que, pour tout réel t > 0, P(tX ⩾ t2λ) ⩽ eλ(t−1−2 ln(t)) .
e. La fonction f est dérivable sur ]0 ; +∞[ comme somme de fonctions dérivables et,

pour tout réel t > 0,
f ′(t) = 1− 2× 1

t
= t− 2

t
.

Pour tout t > 0, le signe de f ′(t) est le signe de t− 2 donc f est décroisante sur ]0 ; 2]
et croissante sur [2 ; +∞[. Ainsi, f atteint son minimum en 2 et ce minimum vaut
f(2) = 1− 2 ln(2) .

f. Soit un réel t > 1 et un réel x > 0. Alors, par stricte croissance de la fonction
exponentielle sur R,

tx ⩾ t2λ ⇐⇒ ex ln(t) ⩾ e2λ ln(t) ⇐⇒ x ln(t) ⩾ 2λ ln(t).

Or, comme t > 1, ln(t) > 0 donc

tx ⩾ t2λ ⇐⇒ x ⩾ 2λ .

g. En appliquant ce qui précède avec t = 2 > 1, on obtient que, pour tout réel x ⩾ 0,

x ⩾ 2λ⇐⇒ 2x ⩾ 22λ

Comme X est à valeurs positives, on en déduit que {X ⩾ 2λ} = {2X ⩾ 22λ} donc
P(X ⩾ 2λ) = P(2X ⩾ 22λ). Dès lors, d’après la question 2.d., P(X ⩾ 2λ) ⩽ eλf(2)

i.e.
P(X ⩾ 2λ) ⩽ eλ(1−2 ln(2)).

Or,

eλ(1−2 ln(2)) = eλ(1−ln(4)) =
(
e1−ln(4)

)λ
=
(

e1

eln(4)

)λ
=
(
e

4

)λ
.

Ainsi, on conclut que

P(X ⩾ 2λ) ⩽
(
e

4

)λ
.
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3. À l’aide de GeoGebra, on obtient les courbes suivantes pour les fonctions g : x 7−→ 1
x

et

h : x 7−→
(
e

4

)x
définies sur ]0 ; +∞[. Comme Cg est située au-dessus de Ch, on en déduit

que, quelle que soit la valeur de λ, la seconde inégalité fournit une meilleure majoration
que la première.

1 2 3 4 5 6 7 8 9

1

2

3

4

Cg

Ch
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Sujet 27. Clinique vétérinaire pour chiens et chats (C7)

Dans une clinique vétérinaire, on note X le nombre de chats et Y le nombre de chiens
présents lors d’une semaine. On suppose que X et Y sont des variables aléatoires indépendantes,
que X suit la loi de Poisson de paramètre λ ⩾ 0 et que Y suit la loi de Poisson de paramètre
µ ⩾ 0.

1. Rappeler la définition de la loi de Poisson.
2. Rappeler l’espérance de X. Démontrer la formule.
3. Rappeler la variance de X. Démontrer la formule.
4. On pose Z = X + Y .

a. Déterminer l’espérance et la variance de Z.
b. Déterminer l’ensemble Z(Ω) des valeurs prises par la variable Z.
c. Exprimer, pour tout k ∈ Z(Ω), l’évènement (Z = k) en fonction de X et Y .

d. Soit k ∈ N. Développer et simplifier l’expression (λ+ µ)k
k!

e. Démontrer que Z suit une loi de Poisson dont on précisera le paramètre.
5. On rappelle l’inégalité de Bienaymé-Tchebychev : pour tout ε > 0,

P(|X − E(X)| ⩾ ε) ⩽ V(X)
ε2 .

On suppose dans la suite que λ = 13 et µ = 17. La clinique est capable d’accueillir un
maximum de 80 animaux.
a. Majorer la probabilité de l’évènement (Z ⩾ 80).
b. La clinique devrait-elle investir pour augmenter sa capacité d’accueil ?
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Solution.
1. On dit qu’une variable X suit une loi de Poisson de paramètre λ si X(Ω) = N et si,

pour tout n ∈ N, P(X = n) = λn

n! e−λ .

2. Par théorème E(X) = λ. Pour le démontrer, considérons un entier n ∈ N. Alors,

n∑
k=0

kP(X = k) =
n∑
k=0

k × λk

k! e−λ = e−λ
n∑
k=1

k × λk

k × (k − 1)! = e−λ
n∑
k=1

λk

(k − 1)!

=
j=k−1

e−λ
n−1∑
j=0

λj+1

j! = λe−λ
n−1∑
j=0

λj

j! −−−−→n→+∞
λe−λ × eλ = λ

Ainsi, la série nP(X = n) converge et sa somme vaut λ donc X admet une espérance et
E(X) = λ .

3. Par théorème V(X) = λ. Pour le démontrer, considérons un entier n ∈ N. Alors,

n∑
k=0

k2P(X = k) =
n∑
k=0

k2 × λk

k! e−λ = e−λ
n∑
k=1

k2 × λk

k × (k − 1)! = e−λ
n∑
k=1

k
λk

(k − 1)!

= e−λ
n∑
k=1

(k − 1 + 1) λk

(k − 1)!

= e−λ
n∑
k=1

(k − 1) λk

(k − 1)! + e−λ
n∑
k=1

λk

(k − 1)!

Or, d’une part,

e−λ
n∑
k=1

(k − 1) λk

(k − 1)! = e−λ
n∑
k=2

(k − 1) λk

(k − 1)× (k − 2)! = e−λ
n∑
k=2

λk

(k − 2)!

=
j=k−2

e−λ
n−2∑
j=0

λj+2

j! = λ2e−λ
n−2∑
j=0

λj

j! −−−−→n→+∞
λ2e−λ × eλ = λ2

et, d’autre part, d’après le calcul de la question précédente,

e−λ
n∑
k=1

λk

(k − 1)! =
n∑
k=0

kP(X = k) −−−−→
n→+∞

E(X) = λ.

Ainsi, la série
∑

n2P(X = n) converge et sa somme vaut λ2 + λ donc, par le théorème
de transfert, X2 admet une espérance et E(X2) = λ2 − λ.

Dès lors, par la formule de König-Huygens, X admet une variance et

V(X) = E(X2)− E(X)2 = λ2 + λ− λ2

soit V(X) = λ .
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Autre méthode. On peut commencer par calculer la variance de X(X − 1). Soit
n ∈ N. Alors,
n∑
k=0

k(k − 1)P(X = k) =
n∑
k=0

k(k − 1)× λk

k! e−λ = e−λ
n∑
k=2

k(k − 1)× λk

k(k − 1)× (k − 2)!

= e−λ
n∑
k=2

λk

(k − 2)! = =
j=k−2

e−λ
n−2∑
j=0

λj+2

j!

= λ2e−λ
n−2∑
j=0

λj

j! −−−−→n→+∞
λ2e−λ × eλ = λ2

Ainsi, la série
∑

n(n− 1)P(X = n) converge et sa somme vaut λ2. Par le théorème de
transfert, on en déduit que X(X − 1) admet une espérance et E(X(X − 1)) = λ2. Or,
X2 = X(X− 1) +X donc, comme X(X− 1) et X admettent une espérance, par linéarité,
X2 admet une espérance et E(X2) = E(X(X − 1)) + E(X) = λ2 +λ. Ensuite, on conclut
comme dans la première méthode à l’aide de la formule de König-Huygens.

4. a. Par linéarité, E(Z) = E(X) + E(Y ) donc E(Z) = λ+ µ . De plus, comme X et Y
sont indépendantes, V(Z) = V(X) + V(Y ) donc V(Z) = λ+ µ .

b. X(Ω) = N et Y (Ω) = N donc Z(Ω) = N .
c. Soit k ∈ N. Alors, comme ((X = i))i∈N est un système complet d’évènements,

(Z = k) =
(+∞⋃
i=0

(X = i)
)
∪ (Z = k) =

+∞⋃
i=0

[(X = i) ∩ (Z = k)]

=
+∞⋃
i=0

[(X = i) ∩ (X + Y = k)] =
+∞⋃
i=0

[(X = i) ∩ (Y = k −X)]

=
+∞⋃
i=0

[(X = i) ∩ (Y = k − i)]

De plus, si i > k alors k − i < 0 donc (Y = k − i) = ∅. Ainsi, on conclut que

(Z = k) =
k⋃
i=0

[(X = i) ∩ (Y = k − i)] .

d. Grâce à la formule du binôme de Newton,

(λ+ µ)k
k! = 1

k!

k∑
i=0

(
k

i

)
λiµk−i = 1

k!

k∑
i=0

k!
i!(k − i)!λ

iµk−i =
k∑
i=0

λiµk−i

i!(k − i)!

soit finalement
(λ+ µ)k

k! =
k∑
i=0

λi

i!
µk−i

(k − i)! .
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e. Soit k ∈ N. D’après le résultat de la question c.,

P(Z = k) = P
(

k⋃
i=0

[(X = i) ∩ (Y = k − i)]
)
.

Or, les évènements (X = i) pour i ∈ J0, kK sont deux à deux disjoints donc

P(Z = k) =
k∑
i=0

P ((X = i) ∩ (Y = k − i))

et, comme X et Y sont indépendantes,

P(Z = k) =
k∑
i=0

P(X = i)P(Y = k − i) =
n∑
i=0

λi

i! e−λ µk−i

(k − i)!e
−µ

=
n∑
i=0

λi

i!
µk−i

(k − i)!e
−λ−µ = e−λ−µ

n∑
i=0

λi

i!
µk−i

(k − i)! .

Ainsi, grâce au résultat de la question d.,

P(Z = k) = (λ+ µ)k
k! e−(λ+µ)

donc Z suit une loi de Poisson de paramètre λ+ µ .
5. a. D’après la question précédente, Z suit une loi de Poisson de paramètre 13 + 17 = 30

donc E(Z) = V(Z) = 30. En remarquant que

Z ⩾ 80 =⇒ Z − 30 ⩾ 50 =⇒ |Z − 30| ⩾ 50,

on peut affirmer que (Z ⩾ 80) ⊂ (|Z − E(Z)| ⩾ 50) donc, par l’inégalité de Bienaymé-
Tchebytchev,

P(Z ⩾ 80) ⩽ P(|Z − E(Z)| ⩾ 50) ⩽ 30
502 = 3

250
i.e. P(Z ⩾ 80) ⩽ 0,012 .

b. La probabilité que la capacité d’accueil de la clinique soit dépassée est

P(Z > 80) ⩽ P(Z ⩾ 80) ⩽ 0,012

donc la clinique n’a pas intérêt à s’agrandir .
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Sujet 28. Tatouage de lapins (O1)

Un éleveur possède 100 lapins qui doivent se faire tatouer. Il choisit successivement des lapins
au hasard : si le lapin est tatoué, on le repose dans le clapier ; sinon, on le tatoue et on le repose
dans le clapier. On continue ainsi jusqu’à avoir tatoué tous les lapins.

On modélise la situation en assimilant chaque lapin à un jeton et le clapier à une urne, dans
laquelle on effectue des tirages avec remise. On note X la variable aléatoire correspondant au
nombre de tirages nécessaires pour tatouer tous les lapins.

Pour tout n ⩾ 1, on note Xn le nombre de tirages effectués, une fois qu’on a tiré n− 1 jetons
différents, pour obtenir un n-ème jeton différent des précédents. Par exemple, si les tirages
donnent :

3, 3, 3, 1, 1, 2, 3, 2, 4, . . .

alors X1 = 1, X2 = 3, X3 = 2, X4 = 3, etc

Première partie
1. Donner la loi de X1, ainsi que son espérance.
2. Donner la loi de X2, ainsi que son espérance.
3. Soit un entier n ∈ J1, 100K. Donner la loi de Xn, ainsi que son espérance.
4. Calculer l’espérance de X. On donnera le résultat sous la forme d’une somme.

Deuxième partie
1. Vérifier que

E(X) =
100∑
j=1

100
j
.

2. Soit j ∈ J2, 100K. Montrer que
∫ j+1

j

1
t

dt ⩽ 1
j
⩽
∫ j

j−1

1
t

dt.

3. En déduire que

∫ 101

1

1
t

dt ⩽
100∑
j=1

1
j
⩽ 1 +

∫ 100

1

1
t

dt

puis donner un encadrement de E(X) à l’aide de la fonction ln.

Troisième partie
On admet que les variables aléatoires X1, X2, . . ., X100 sont indépendantes.
1. Exprimer V(X) en fonction de V(X1), V(X2), . . ., V(X100).
2. Déterminer alors la valeur de V(X). On donnera le résultat sous la forme d’une somme.
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Solution.

Première partie
1. La variable aléatoire est X1 est constante égale à 1 puisqu’aucun jeton n’a été tiré avant le

premier. Ainsi, la loi de X1 est la loi certaine telle que P(X1 = 1) = 1 . Son espérance
est donc E(X1) = 1 .

2. Une fois qu’un premier jeton k a été tiré, la succession de tirages qui suit constitue un
schéma de Bernoulli (puisqu’il y a remise) en prenant comme succès l’évènement S : « ne
pas tirer le jeton k ». La variable X2 est alors égale au rang du premier succès donc, par
propriété, elle suit une loi géométrique de paramètre P(S) = 99

100 . On en déduit que son

espérance est E(X2) = 100
99 .

3. Une fois qu’on a tiré n− 1 jetons différents, la succession de tirages qui suit constitue un
schéma de Bernoulli (puisqu’il y a remise) en prenant comme succès l’évènement S : « ne
pas tirer un jeton déjà tiré précédemment ». La variable Xn est alors égale au rang du pre-
mier succès donc elle suit une loi géométrique de paramètre P(S) = 100−(n−1)

100 = 101−n
100 .

On en déduit que son espérance est E(Xn) = 100
101−n .

4. Par définition X =
100∑
k=1

Xk donc, par linéarité de l’espérance, E(X) =
100∑
n=1

E(Xn) donc

E(X) =
100∑
n=1

100
101− n .

Deuxième partie
1. À l’aide du changement d’indice j = 101− n, il vient

E(X) =
100∑
j=1

100
j

.

2. La fonction inverse est décroissante sur ]0 ; +∞[ donc, pour tout t ∈ [j ; j + 1], 1
t
⩽

1
j

.
Par croissance de l’intégrale, on en déduit que∫ j+1

j

1
t

dt ⩽
∫ j+1

j

1
j

dt = 1
j

(j + 1− j) = 1
j
.

De même, pour tout t ∈ [j − 1 ; j], 1
t
⩾

1
j

donc

∫ j

j−1

1
t

dt ⩾
∫ j

j−1

1
j

dt = 1
j

(j − (j − 1)) = 1
j
.
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Ainsi, on conclut que ∫ j+1

j

1
t

dt ⩽ 1
j
⩽
∫ j

j−1

1
t

dt .

3. En sommant les inégalités précédentes, on obtient
100∑
j=2

∫ j+1

j

1
t

dt ⩽
100∑
j=2

1
j
⩽

100∑
j=2

∫ j

j−1

1
t

dt

donc, par la relation de Chasles,∫ 101

2

1
t

dt ⩽
100∑
j=2

1
j
⩽
∫ 100

1

1
t

dt

De plus, pour tout t ∈ [1 ; 2], par décroissance de la fonction inverse sur ]0 ; +∞[, 1
t
⩽ 1

donc, par croissance de l’intégrale,∫ 2

1

1
t

dt ⩽
∫ 2

1
1 dt = 1× (2− 1) = 1.

On en déduit que ∫ 2

1

1
t

dt+
∫ 101

2

1
t

dt ⩽ 1 +
100∑
j=2

1
j

i.e., par la relation de Chasles et le fait que 1
1 = 1,

∫ 101

1

1
t

dt ⩽
100∑
j=1

1
j
.

De plus,
100∑
j=1

1
j

= 1 +
100∑
j=2

1
j
⩽ 1 +

∫ 100

1

1
t

dt.

Ainsi, on conclut que ∫ 101

1

1
t

dt ⩽
100∑
j=1

1
j
⩽ 1 +

∫ 100

1

1
t

dt .

Or, ∫ 101

1

1
t

= [ln(t)]101
1 = ln(101)− ln(1) = ln(101)

et ∫ 100

1

1
t

dt = [ln(t)]100
1 = ln(100)− ln(1) = ln(100)

donc
ln(101) ⩽

100∑
j=1

1
j
⩽ 1 + ln(100)

En multipliant cette double inégalité par 100, on conclut que

100 ln(101) ⩽ E(X) ⩽ 100 + 100 ln(100) .
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Troisième partie

1. On a vu dans la première partie que X =
100∑
k=1

Xk donc V(X) = V
( 100∑
k=1

Xk

)
. Comme X1,

X2, ..., X100 sont indépendantes, on en déduit que

V(X) =
100∑
k=1

V(Xk) .

2. Comme X1 suit une loi certaine, V(X1) = 0. Ensuite, pour tout k ∈ J2, 100K, Xk ↪→
G (101−k

100 ) donc

V(Xk) =
1− 101−k

100
(101−k

100 )2 = k − 1
100 ×

1002

(101− k)2 = 100(k − 1)
(101− k)2

donc

V(X) =
100∑
k=2

100(k − 1)
(101− k)2 .
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Sujet 29. Un jeu à 2 joueurs (O1)

Xavier et Yann participe à un jeu dont le principe est le suivant :
• les deux joueurs lancent chacun et de façon simultanée un dé (cubique, équilibré et dont

les faces sont numérotées de 1 à 6) ;
• ils répètent l’opération jusqu’à ce que l’un d’eux obtienne un 6 ; si ce joueur est seul à

obtenir un 6 à ce tour, il est alors déclaré gagnant ;
• le perdant continue alors à lancer son dé jusqu’à obtenir lui aussi un 6. Il devra verser au

gagnant un montant en euros égal au nombre de lancers supplémentaires qu’il aura dû
réaliser avant d’obtenir lui aussi un 6 ;
• dans le cas où les deux joueurs obtiennent un 6 lors du même tour, il n’y a ni gagnant ni

perdant et le jeu s’arrête.
Par exemple, si Xavier obtient son premier 6 au 5e lancer et Yann obtient son premier 6 au 8e

lancer alors Xavier est déclaré gagnant et Yann doit lui verser 3 e.
On définit les variables aléatoires suivantes :
• X désigne le nombre de lancers nécessaires à Xavier pour obtenir 6 ;
• Y désigne le nombre de lancers nécessaires à Yann pour obtenir 6 ;
• Z = min(X, Y ) ;
• T = max(X, Y ) ;
• G désigne le nombre d’euros attribués au gagnant.

1. Exprimer le gain G en fonction de Z et T .
2. Donner la loi de X et la loi de Y , leur espérance et leur variance.
3. a. Exprimer, pour tout n ∈ N∗, l’évènement (Z ⩾ n) en fonction des variables aléatoires

X et Y .
b. Calculer, pour tout n ∈ N∗, la probabilité P(X ⩾ n) et en déduire la probabilité

P(Z ⩾ n).
c. Déterminer la loi de Z.

4. Soit n ∈ N∗.
a. Comparer, d’une part, les évènements (Z = n) ∩ (T = n) et (X = n) ∩ (Y = n) et,

d’autre part, les évènements (Z = n) ∪ (T = n) et (X = n) ∪ (Y = n).
b. Exprimer P [(Z = n) ∪ (T = n)] de deux façons différentes.

En déduire P(T = n).
c. Calculer E(T ).

5. Déterminer, en euros, le gain moyen du gagnant.
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Solution.
1. La variable Z représente le nombre de lancers effectués par le gagnant et T le nombre de

lancers effectués par le perdant donc G = T − Z .
2. Les variables X et Y correspondent au rang du premier succès dans un schéma de

Bernoulli, en prenant comme succès « Obtenir 6 ».

Dès lors, X et Y suivent des lois géométriques de paramètre 1
6 .

Par théorème, E(X) = E(Y ) = 6 et V(X) = V(Y ) =
1− 1

6
(1

6)2 = 30 .

3. a. Soit n ∈ N∗. L’évènement (Z ⩾ n) est réalisé si et seulement si (X ⩾ n) et (Y ⩾ n)
sont réalisés donc (Z ⩾ n) = (X ⩾ n) ∩ (Y ⩾ n) .

b. Soit n ∈ N∗. Alors,

P(X ⩾ n) =
+∞∑
k=n

(5
6

)k−1 1
6 =
j=k−n

1
6

+∞∑
j=0

(5
6

)j+n−1

= 1
6

(5
6

)n−1 +∞∑
j=0

(5
6

)j
= 1

6

(5
6

)n−1 1
1− 5

6

Ainsi, P(X ⩾ n) =
(5

6

)n−1
.

Comme Y suit la même loi que X, on a également P(Y ⩾ n) =
(5

6

)n−1
.

Dès lors, comme X et Y sont indépendantes,

P(Z ⩾ n) = P((X ⩾ n) ∩ (Y ⩾ n)) = P(X ⩾ n)P(Y ⩾ n) =
[(5

6

)n−1]2

donc P(Z ⩾ n) =
(25

36

)n−1
.

c. Soit n ∈ N∗. En remarquant que (Z = n) = (Z ⩾ n) \ (Z ⩾ n + 1) et que
(Z ⩾ n+ 1) ⊂ (Z ⩾ n), on déduit de la question précédente que

P(Z = n) = P(Z ⩾ n)−P(Z ⩾ n+ 1) =
(25

36

)n−1
−
(25

36

)n
=
(25

36

)n−1 (
1− 25

36

)
=
(25

36

)n−1 11
36

Ainsi, Z ↪→ G
(11

36

)
.

4. a. Par définition, l’une des deux variables Z ou T vaut X et l’autre vaut Y donc
(Z = n) ∩ (T = n) = (X = n) ∩ (Y = n) et (Z = n) ∪ (T = n) = (X = n) ∪ (Y = n) .
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b. D’une part,

P((Z = n) ∪P(T = n)) = P(Z = n) + P(T = n)−P((Z = n) ∩ (T = n))
= P(Z = n) + P(T = n)−P((X = n) ∩ (Y = n))

et, d’autre part,

P((Z = n) ∪P(T = n)) = P((X = n) ∪ (Y = n))
= P(X = n) + P(Y = n)−P((X = n) ∩ (Y = n))
= 2P(X = n)−P((X = n) ∩ (Y = n))

car X et Y ont même loi. Ainsi, P(Z = n) + P(T = n) = 2P(X = n) donc

P(T = n) = 2P(X = n)−P(Z = n) = 2
(5

6

)n−1 1
6 −

(25
36

)n−1 11
36

i.e.

P(T = n) = 1
3

(5
6

)n−1
− 11

36

(25
36

)n−1
.

c. On peut remarquer que Z + T = X + Y donc T = X + Y − Z. Par linéarité de
l’espérance, on en déduit que

E(T ) = E(X) + E(Y )− E(Z) = 2E(X)− E(Z) = 2× 6− 36
11

soit E(T ) = 96
11 .

5. Comme G = T − Z, par linéarité de l’espérance

E(G) = E(T )− E(Z) = 96
11 −

36
11 = 60

11

donc le gain moyen de gagnant est 60
11 ≈ 5,45 euros .
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Sujet 30. Empilement de dés (O1)

1. On souhaite empiler, les uns sur les autres, des dés cubiques et de même taille. Pour tout
k ∈ N∗, lorsque k − 1 dés ont déjà été empilés, la probabilité que le k-ième dé ne fasse
pas écrouler l’édifice lors de sa pose est de 1

k
. On note N le nombre de dés empilés avant

que l’édifice ne s’écroule (on ne comptera pas le dernier dé, responsable de la chute de
l’édifice).
a. Déterminer l’univers image de N que l’on notera N(Ω).
b. Pour tout i ∈ N∗, on note

Ai : « Lors de sa pose, le i-ème dé empilé n’a pas fait s’écrouler l’édifice. »
Pour tout k ∈ N(Ω), écrire l’évènement (N = k) à partir des évènements Ai.

c. Déterminer la loi de N et vérifier qu’on a

+∞∑
k=1

P(N = k) = 1

.
d. Montrer que N + 1 admet une espérance et déterminer sa valeur.
e. En déduire que N admet une espérance et déterminer sa valeur.

2. On dispose de 4 dés cubiques équilibrés numérotés de 1 à 4. Les faces de chacun de ces 4
dés sont numérotées de 1 à 6. On lance les 4 dés simultanément. On reprend les dés avec
lesquels on n’a pas obtenu 6 que l’on relance simultanément, et ainsi de suite jusqu’à
avoir quatre 6 sur la table. On note T le nombre lancers effectués. Pour tout i ∈ J1, 4K,
on note Ti le nombre de lancers effectués pour obtenir la face 6 avec le dé numéro i.
a. Pour tout i ∈ J1, 4K, déterminer la loi de Ti et donner (si elles existent) son espérance

et sa variance.
b. Exprimer T en fonction de T1, T2, T3 et T4.
c. Pour tout k ∈ N, déterminer P(T ⩽ k).
d. En déduire la loi de T .
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Solution.
1. a. Il faut poser au moins un dé sur un autre pour que l’édifice s’écroule donc N(Ω) = N∗ .

b. Soit k ∈ N∗. Alors, (N = k) = A1 ∩ A2 ∩ · · · ∩ Ak ∩ Ak+1 .
c. D’après la formule des probabilités composées, pour tout k ∈ N∗,

P(N = k) = P(A1)PA1(A2) · · ·PA1∩A2∩···∩Ak−1(Ak)PA1∩A2∩···∩Ak
(Ak+1)

= 1× 1
2 × · · · ×

1
k
×
(

1− 1
k + 1

)
= 1
k! ×

k + 1− 1
k + 1

donc, pour tout k ∈ N∗, P(N = k) = k

(k + 1)! .

Soit n ∈ N∗. Alors, en faisant apparaître une somme téléscopique,
n∑
k=1

P(n = k) =
n∑
k=1

k

(k + 1)! =
n∑
k=1

k + 1− 1
(k + 1)! =

n∑
k=1

k + 1
(k + 1)! −

1
(k + 1)!

=
n∑
k=1

1
k! −

1
(k + 1)! = 1− 1

(n+ 1)! −−−−→n→+∞
1

donc
+∞∑
k=1

P(N = k) = 1 .

d. Par le théorème de transfert, N + 1 admet un espérance si et seulement si la série∑
(k + 1)P(N = k) converge. Soit n ∈ N∗. Alors,

n∑
k=1

(k + 1)P(N = k) =
n∑
k=1

(k + 1) k

(k + 1)! =
n∑
k=1

(k + 1)k
(k + 1)k(k − 1)!

=
n∑
k=1

1
(k − 1)! =

j=k−1

n−1∑
j=0

1
j! −−−−→n→+∞

e

Ainsi, N + 1 admet une espérance et E(N + 1) = e .
e. Comme N = (N + 1)− 1, par linéarité de l’espérance, N admet une espérance est

E(N) = E(N + 1)− 1 i.e. E(N) = e− 1 .
2. a. Soit i ∈ J1, 4K. La succession de lancers du dé numéro i constitue un schéma de

Bernoulli (éventuellement infini) en prenant comme succès « Obtenir 6 ». Ainsi, la
variable Ti qui donne le rang du premier succès pour le dé numéro i suit une loi
géométrique de paramètre 1

6 .

Par théorème, E(Ti) = 1
1
6

soit E(Ti) = 6 et V(Ti) =
1− 1

6
(1

6)2 = 5
6 × 62 soit

V(Ti) = 30 .
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b. La variable aléatoire T est le nombre de lancers nécessaires pour que les 4 dés donnent
6 donc T = max(T1, T2, T3, T4) .

c. Soit n ∈ N. Alors,

(T ⩽ k) = (max(T1, T2, T3, T4) ⩽ k) = (T1 ⩽ k) ∩ (T2 ⩽ k) ∩ (T3 ⩽ k) ∩ (T4 ⩽ k)

donc, comme T1, T2, T3 et T4 sont mutuellement indépendantes et ont la même loi

P(T ⩽ k) = P(T1 ⩽ k)P(T2 ⩽ k)P(T3 ⩽ k)P(T4 ⩽ k) = P(T1 ⩽ k)4.

Or,

P(T1 ⩽ k) =
k∑
j=1

(5
6

)j−1 1
6 =
n=j−1

1
6

k−1∑
n=0

(5
6

)n
= 1

6 ×
1−

(
5
6

)k
1− 5

6
= 1−

(5
6

)k
.

On conclut que, pour tout k ∈ N∗, P(T ⩽ k) =
[
1−

(5
6

)k]4

.

d. Pour tout k ∈ N∗,
P(T = k) = P(T ⩽ k)−P(T ⩽ k − 1)

donc

∀k ∈ N∗ P(T = k) =
[
1−

(5
6

)k]4

−
[
1−

(5
6

)k−1]4

.
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Sujet 31. Capture d’esturgeons femelles (O1)

Soit p ∈ ]0 ; 1[.
Un étang contient des esturgeons, dont une proportion p de femelles.
Un biologiste y pêche dans le but d’obtenir une femelle.
S’il obtient un mâle, il le rejette à l’eau et recommence.

Partie A
Dans cette partie, on suppose que le biologiste pêche jusqu’à obtenir une femelle.
On définit la variable aléatoire X égale au rang de la tentative qui apporte une femelle.
1. Donner X(Ω).
2. Donner la loi de X, son espérance et sa variance.
3. Démontrer la valeur de E(X).

Partie B
Dans cette partie, on suppose que le biologiste s’arrête soit lorsqu’il a obtenu une femelle,

soit lorsqu’il a effectué N tentatives (N étant un entier naturel non nul fixé).
On définit la variable aléatoire XN par :
• XN = k si la kème tentative donne une femelle ;
• XN = 0 si aucune femelle n’est obtenue à l’issue des N tentatives.

1. Donner XN(Ω).
2. Calculer P(XN = k) pour tout k ∈ XN(Ω).
3. Déterminer, en fonction de p, la plus petite valeur de N pour que la probabilité d’obtenir

une femelle soit supérieure ou égale à 0,9.

4. Pour x ∈ R \ {1}, que vaut
N∑
k=0

xk ?

En dérivant l’égalité précédente, montrer que, pour tout x ∈ R \ {1},

N∑
k=1

kxk−1 = 1 + xN(Nx−N − 1)
(1− x)2

5. Calculer E(XN).
6. Déterminer lim

N→+∞
E(XN). Que reconnaît-on ?

7. Soit YN la variable aléatoire égale au nombre total d’esturgeons pêchés.
Donner la loi de probabilité de YN et calculer E(YN).
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Solution.

Partie A
1. Par définition, X(Ω) = N∗ .
2. La variable X représente le premier succès dans un schéma de Bernoulli (en prenant

comme succès « pêcher un esturgeon femelle ») donc X ↪→ G (p) .

Par propriété, E(X) = 1
p

et V(X) = 1−p
p2 .

3. Soit n ∈ N∗. Alors,
n∑
k=1

kP(X = k) =
n∑
k=1

k(1− p)k−1p = p
n∑
k=0

k(1− p)k−1.

Or, comme 0 < p < 1, 0 < 1− p < 1 donc, en reconnaissant une somme partielle de série
géométrique dérivée convergente,

n∑
k=1

kP(X = k) −−−−→
n→+∞

p× 1
(1− (1− p))2 = p

p2 = 1
p

donc X admet une espérance et E(X) = 1
p

.

Partie B

1. Par définition, XN(Ω) = J1, NK .

2. Pour tout i ∈ J1, NK, notons Ai : « la pêcheur attrape un esturgeon femelle à la ième

tentative ». Alors, pour tout k ∈ J1, nK,

(XN = k) = A1 ∩ A2 ∩ · · · ∩ Ak−1 ∩ Ak

donc, par la formule de probabilités composées,

P(XN = k) = P(A1)P(A2 | A1) · · ·P
(
Ak−1

∣∣∣∣∣
k−1⋂
i=1

Ai

)
P
(
Ak

∣∣∣∣∣
k−1⋂
i=1

Ai

)
= (1− p)k−1p.

De plus, P(XN = 0) = 1−
N∑
k=1

P(XN = k) donc, comme 1− p ̸= 1,

P(Xn = 0) = 1−
N∑
k=1

(1− p)k−1p = 1− p
N−1∑
j=0

(1− p)j = 1− p× 1− (1− p)N
1− (1− p) = (1− p)N .

Ainsi, pour tout k ∈ J0, NK, P(XN = k) =

(1− p)k−1p si k ∈ J1, NK
(1− p)N si k = 0

.
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3. La probabilité d’obtenir une femelle est
N∑
k=1

(1− p)k−1p et

N∑
k=1

(1−p)k−1p ⩾ 0,9⇐⇒ 1−
N∑
k=1

(1−p)k−1p ⩽ 0,1⇐⇒ (1−p)N ⩽ 0,1⇐⇒ N ln(1−p) ⩽ ln(0,1)

par croissance de ln sur ]0 ; +∞[. De plus, comme 0 < 1− p < 1, ln(1− p) < 0 donc
N∑
k=1

(1− p)k−1p ⩾ 0,9⇐⇒ N ⩾
ln(0,1)

ln(1− p) .

Ainsi, la valeur cherchée est le plus petit entier N supérieur ou égal à ln(0,1)
ln(1−p) .

4. Pour tout réel x ̸= 1,
N∑
k=0

xk = 1− xN+1

1− x .

En dérivant par rapport à x, on en déduit que, pour tout réel x ̸= 1,
N∑
k=0

kxk−1 = −(N + 1)xN(1− x)− (1− xN+1)(−1)
(1− x)2

= −(N + 1)xN + (N + 1)xN+1 + 1− xN+1

(1− x)2

−(N + 1)xN +NXN+1 + 1
(1− x)2

donc, comme le terme de la somme est nul pour k = 0,
N∑
k=1

kxk−1 = 1 + xN(Nx−N − 1)
(1− x)2 .

5. Par définition,

E(XN) =
N∑
k=0

kP(XN = k) =
N∑
k=1

k(1− p)k−1p = p
n∑
k=1

k(1− p)k−1

donc, comme 1− p ̸= 0, d’après la question précédente,

E(XN) = p× 1 + (1− p)N(N(1− p)−N − 1)
(1− (1− p))2 = p× 1 + (1− p)N(−Np− 1)

p2

donc E(XN) = 1− (Np+ 1)(1− p)N
p

.

6. On peut réécrire E(XN) = 1− pN(1− p)N − (1− p)N
p

. Or, comme 0 < 1 − p < 1,

(1− p)N −−−−→
N→+∞

0 et, par croissances comparées, N(1− p)N = Neln(1−p)N −−−−→
N→+∞

0 car
ln(1− p) < 0. Ainsi, par somme de limites, lim

N→+∞
E(XN) = 1

p
.

On retrouve ainsi l’espérance de X (qui correspond, en quelque sorte, au cas N = +∞).
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7. Par définition, YN(Ω) = J1, NK.
Soit k ∈ J1, NK.
Si k < N alors (YN = k) est réalisé si et seulement si (XN = k) donc P(Yn = k) =

P(XN = k) = (1− p)k−1p.
De plus, (YN = N) si et seulement si (XN = N) ou (XN = 0) donc P(YN = N) =

P((XN = N) ∪ (XN = 0)) et, comme cette union est disjointe,

P(YN = N) = P(XN = N) + P(XN = 0) = (1− p)N−1p+ (1− p)N

= (1− p)N−1(p+ (1− p) = (1− p)N−1.

Ainsi, pour tout k ∈ J1, NK, P(YN = k) =

(1− p)k−1p si k ∈ J1, N − 1K
(1− p)N−1 si k = N

.

On en déduit, en utilisant le résultat de la question 4. avec N − 1 au lieu de N , que

E(YN) =
N∑
k=1

kP(YN = k) =
N−1∑
k=1

k(1− p)k−1p+N(1− p)N−1

= p
N−1∑
k=1

k(1− p)k−1 +N(1− p)N−1

= p× 1 + (1− p)N−1((N − 1)(1− p)− (N − 1)− 1)
(1− (1− p))2 +N(1− p)N−1

= 1 + (1− p)N−1(−(N − 1)p− 1 +Np)
p

donc E(YN) = 1− (1− p)N
p

.
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Sujet 32. Loi du second succès (O1)

Première partie
Une épreuve comporte deux issues : succès ou échec.
La probabilité du succès est notée p, avec p ∈ ]0 ; 1[.
La probabilité de l’échec est notée q = 1− p.
On répète cette épreuve de façon indépendante jusqu’à ce qu’on obtienne deux succès.
On note X la variable aléatoire égale au numéro de l’épreuve amenant le deuxième succès.
Pour tout i ∈ N∗, on note Ri l’événement « l’épreuve numéro i est un succès ».
1. Calculer P(X = 2), P(X = 3), P(X = 4).
2. Préciser X(Ω) et calculer P(X = k) pour tout k ∈ X(Ω).
3. Calculer la probabilité de l’événement A : « il ne se produit pas de deuxième succès ».

Deuxième partie
Un ticket de métro coûte 2 e.
En cas de fraude, la première amende est de 40 e et la seconde est de 80 e.
À chaque trajet, la probabilité pour un usager d’être contrôlé est égale à p.
Tom décide de compter le nombre de trajets qu’il effectue. La variable aléatoire T désigne le

numéro du trajet où il est contrôlé pour la deuxième fois.
1. Donner la loi de T . Calculer son espérance.
2. Démontrer que, pour tout n ∈ N∗, P(T > n) = (1− p)n−1 [(n− 1)p+ 1].
3. On suppose que p = 10−3. Calculer P(T > 60). Interpréter le résultat.
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Solution.
Première partie

1. Comme (X = 2) = R1 ∩ R2 et comme les évènements R1 et R2 sont indépendantes,
P(X = 2) = P(R1)P(R2) i.e. P(X = 2) = p2 .

Comme (X = 3) = (R1 ∩R2 ∩R3) ∪ (R1 ∩R2 ∩R3), comme cette union est disjointe
et comme R1, R2 et R3 sont indépendants :

P(X = 3) = P(R1 ∩R2 ∩R3) + P(R1 ∩R2 ∩R3)
= P(R1)P(R2)P(R3) + P(R1)P(R2)P(R3) = pqp+ qpp

donc P(X = 3) = 2p2q .
Enfin, on a de même

(X = 4) = (R1 ∩R2 ∩R3 ∩R4) ∪ (R1 ∩R2 ∩R3 ∩R4) ∪ (R1 ∩R2 ∩R3 ∩R4)

donc, comme l’union est disjointe et les évènements R1, R2, R3 et R4 sont indépendants,
P(X4) = pq2p+ qpqp+ q2p2 i.e. P(X = 4) = 3p2q2.

2. Il faut et il suffit d’avoir au moins 2 expérience pour pouvoir avoir 2 succès donc
X(Ω) = N \ {0 ; 1} .

Soit un entier k ⩾ 2. Notons Y la variable aléatoire égale au nombre de succès obtenus
lors des k − 1 premières expériences. Comme les répétitions sont indépendantes, Y suit
une loi binomiale B(k − 1, p). Or, (X = k) = (Y = 1) ∩Rk donc, comme les évènements
(Y = 1) et Rk sont indépendants (puisque le résultat de la k-ième épreuve est indépendant
des k − 1 épreuves précédentes),

P(X = k) = P(Y = 1)P(Rk) =
(
k − 1

1

)
p1qk−2 × p

donc P(X = k) = (k − 1)p2qk−2 .
3. Le contraite de A est « il existe un entier k ⩾ 2 tel qu’on obtient un second succès à la

k-ième épreuve » donc A =
+∞⋃
k=2

(X = k). Or, les évènements (X = k) pour k ⩾ 2 sont

deux à deux incompatibles donc

P(A) =
+∞∑
k=2

P(X = k) =
+∞∑
k=2

(k − 1)p2qk−2 = p2
+∞∑
k=2

(k − 1)qk−2 =
j=k−1

p2
+∞∑
j=1

jqj−1.

On reconnaît la somme d’une série géométrique dérivée convergente (car q ∈ [0 ; 1[) donc

P(A) = p2 × 1
(1− q)2 = p2 × 1

p2 = 1.

Par suite, P(A) = 0 i.e. A est un évènement négligeable .
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Deuxième partie
1. D’après les résultats de la Première partie (et en supposant que les contrôles sont

indépendants), T (Ω) = N \ {0 ; 1} et, pour tout entier k ⩾ 2,

P(T = k) = (k − 1)p2(1− p)k−2 .

Soit un entier n ⩾ 2. Alors,
n∑
k=2

kP(X = k) =
n∑
k=2

k(k − 1)p2(1− p)k−2 = p2
n∑
k=2

k(k − 1)(1− p)k−2.

On reconnaît une somme partielle d’une série géométrique dérivée seconde convergente
(car 1− p ∈ [0 ; 1[) donc

n∑
k=2

kP(X = k) −−−−→
n→+∞

p2 × 2
(1− (1− p))3 = 2

p
.

Ainsi, T admet une espérance et E(T ) = 2
p

.

2. Soit n ∈ N∗. Alors,

P(T > n) =
+∞∑

k=n+1
(k − 1)p2(1− p)k−2 = p2

+∞∑
k=n+1

(k − 1)(1− p)k−2

=
j=k−n−1

p2
+∞∑
j=0

(j + n)(1− p)j+n−1

= p2(1− p)n
+∞∑
j=0

(j + n)(1− p)j−1

= p2(1− p)n
+∞∑
j=0

j(1− p)j−1 + n
+∞∑
j=0

(1− p)j−1


p2(1− p)n

 1
(1− (1− p))2 + n(1− p)−1

+∞∑
j=0

(1− p)j


= p2(1− p)n
[

1
p2 + n(1− p)−1 × 1

1− (1− p)

]

= p2(1− p)n
[

1
p2 + n

p(1− p)

]

= p2(1− p)−n × 1− p+ np

p2(1− p)

soit P(T > n) = (1− p)n−1 [1 + (n− 1)p]

Autre méthode. Notons Y la variable aléatoire égale au nombre de contrôles au
cours des n premiers trajets. Alors, comme précédemment, Y suit une loi binomiale de
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paramètres n et p. Or, (T > n) = (Y = 0) ∪ (Y = 1) donc, comme cette union est
disjointe,

P(T > n) = P(Y = 0) + P(Y = 1) =
(
n

0

)
p0(1− p)n +

(
n

1

)
p1(1− p)n−1

= (1− p)n + np(1− p)n−1 = (1− p)n−1 [1− p+ np]

i.e. P(T > n) = (1− p)n−1 [1 + (n− 1)p] .

3. Si p = 10−3 et n = 60 alors

P(T > 60) =
( 999

1000

)59 (
1 + 59

1000

)
=
( 999

1000

)59
× 1059

1000 ≈ 0,998.

Ainsi, la probabilité que Tom ne soit contrôlé qu’une seul fois en 60 trajets est environ
0,998. Or, si Tom paye son ticket à chaque trajet, cela lui revient à 120 e alors que s’il
ne paye pas, la probabilité qu’il n’ait qu’une seul amende et qu’il paie donc 40 e est très
proche de 1. Ainsi, il a donc intérêt à frauder !
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Sujet 33. Tirage avec ajout de boule noire (O1)

Une urne contient initialement 1 boule blanche et 1 boule noire.
On effectue des tirages selon le protocole suivant :
— si on obtient une boule noire, on arrête ;
— si on obtient une boule blanche, on la remet dans l’urne et on rajoute une boule noire.
Pour tout k ∈ N∗, on note :
• Bk l’événement « on obtient une boule blanche au k-ième tirage » ;
• Nk l’événement « on obtient une boule noire au k-ième tirage ».

On note T le numéro du tirage qui amène une boule noire.
1. Donner T (Ω).
2. Soit un entier n ⩾ 2. Si l’on n’a pas obtenu de boule noire lors n− 1 premiers tirages,

quel est le contenu de l’urne au moment du n-ième tirage ?
3. Donner, pour tout entier n ⩾ 2, PB1∩B2∩···∩Bn−1(Bn).
4. Calculer, pour tout n ∈ N∗, P(B1 ∩B2 ∩ · · · ∩Bn).
5. Déterminer la loi de T .
6. a. Écrire le polynôme X2 comme combinaison linéaire de X(X + 1), X + 1 et 1.

b. Écrire le polynôme X3 comme combinaison linéaire de (X − 1)X(X + 1), X + 1 et 1.
7. a. En utilisant la question 6.a., calculer E(T ).

b. En utilisant la question 6.b., calculer V(T ).
8. a. On note Y = T + 1. En utilisant la variable aléatoire Y , proposer une autre méthode

de calcul de E(T ).
b. On note Z = (T + 1)(T − 1). En utilisant la variable aléatoire Z, proposer une autre

méthode de calcul de E (T 2).
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Solution.

1. On peut tirer une boule noire à n’importe quel tirage à partir du premier donc T (Ω) = N∗ .

2. Si les n− 1 premiers tirages ont amené des boules blanches, on a ajouté dans l’urne n− 1
boules noires dont, au moment du n-ième tirage l’urne contient 2 + n− 1 = n+ 1 boules :
1 blanche et n noires .

3. Soit un entier n ⩾ 2. Si l’évènement B1 ∩B2 ∩ · · · ∩Bn est réalisé, on effectue un n-ième
tirage et la composition de l’urne est celle déterminée dans la question précédente. Ainsi,
par équiprobabilité des tirages, PB1∩B2∩···∩Bn−1(Bn) = 1

n+1 .

4. Soit n ∈ N∗. Alors, d’après la formule des probabilités composées,

P(B1 ∩B2 ∩ · · · ∩Bn) = P(B1)PB1(B2) · · ·PB1∩B2∩···∩Bn−1(Bn) = 1
2 ×

1
3 × · · ·

1
n+ 1

i.e. P(B1 ∩B2 ∩ · · · ∩Bn) = 1
(n+1)! .

5. Soit n ∈ N∗. Alors, (T = n) = B1 ∩B2 ∩ · · · ∩Bn−1 ∩Nn donc

P(T = n) = P(B1 ∩B2 ∩ · · · ∩Bn−1)PB1∩B2∩···∩Bn−1(Nn) = 1
n! ×

n

n+ 1

soit P(T = n) = n
(n+1)! .

6. a. Comme X(X + 1) = X2 +X, on peut écrire X2 = X(X + 1)− (X + 1) + 1 .
b. Comme (X − 1)X(X + 1) = X(X − 1)(X + 1) = X(X2 − 1) = X3 − X, on peut

écrire X3 = (X − 1)X(X + 1) + (X + 1)− 1 .

7. a. Soit n ∈ N∗. Alors,

n∑
k=1

kP(T = k) =
n∑
k=1

k2

(k + 1)! =
n∑
k=1

k(k + 1)− (k + 1) + 1
(k + 1)!

=
n∑
k=1

k(k + 1)
(k + 1)! −

n∑
k=1

k + 1
(k + 1)! +

n∑
k=1

1
(k + 1)!

=
n∑
k=1

1
(k − 1)! −

n∑
k=1

1
k! +

n∑
k=1

1
(k + 1)!

=
n−1∑
j=0

1
j! −

(
n∑
k=0

1
k! − 1

)
+

n+1∑
i=2

1
i!

=
n−1∑
j=0

1
j! −

n∑
k=0

1
k! + 1 +

n+1∑
i=0

1
i! − 2 −−−−→

n→+∞
e− 1

Ainsi, T admet une espérance et E(T ) = e− 1 .
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b. Soit n ∈ N∗. Alors,
n∑
k=1

k2P(T = k) =
n∑
k=1

k3

(k + 1)! =
n∑
k=1

(k − 1)k(k + 1) + (k + 1)− 1
(k + 1)!

=
n∑
k=2

(k − 1)k(k + 1)
(k + 1)! +

n∑
k=1

k + 1
(k + 1)! −

n∑
k=1

1
(k + 1)!

=
n∑
k=2

1
(k − 2)! +

n∑
k=1

1
k! −

n∑
k=1

1
(k + 1)!

=
n−2∑
j=0

1
j! +

n∑
k=0

1
k! − 1−

n+1∑
i=2

1
i!

=
n−2∑
j=0

1
j! +

n∑
k=0

1
k! − 1−

(
n+1∑
i=0

1
i! − 2

)
−−−−→
n→+∞

e+ 1

Ainsi, T 2 admet une espérance et E(T 2) = e+ 1 .
Par la formule de könig-Huygens, on en déduit que T admet une variance et que

V(T ) = E(t2)− E(T )2 = e+ 1− (e− 1)2 = e+ 1− (e2 − 2e+ 1)

soit V(T ) = e(3− e) .
8. a. Par définition Y (Ω) = N \ {0 ; 1} et, pour tout entier k ⩾ 2,

P(Y = k) = P(T + 1 = k) = P(T = k − 1) = k − 1
k! .

Soit un entier n ⩾ 2. Alors,

n∑
k=2

kP(Y = k) =
n∑
k=2

k(k − 1)
k! =

n∑
k=2

1
(k − 2)! =

n−2∑
j=0

1
j! −−−−→n→+∞

e.

Ainsi, Y admet une espérance et E(Y ) = e. Or, par linéarité, E(T ) = E(Y )− 1 donc
E(T ) = e− 1.

b. Par le théorème de transfert, Z admet une espérance si et seulement si la série∑
(k + 1)(k − 1)P(T = k) converge. Soit n ∈ N∗. Alors,

n∑
k=1

(k + 1)(k − 1)P(T = k) =
n∑
k=1

(k + 1)k(k − 1)
(k + 1)! =

n∑
k=2

1
(k − 2)! =

n−2∑
j=0

1
j! −−−−→n→+∞

e

donc Z admet une espérance et E(Z) = e. Or, Z = T 2 − 1 donc T 2 = Z + 1 et ainsi,
par linéarité, E(T 2) = E(Z) + 1 = e+ 1 .
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Sujet 34. Capture d’un couple d’esturgeons (O1)

Un biologiste pêche des esturgeons.
Il souhaite pêcher un esturgeon mâle et un esturgeon femelle pour les placer dans un aquarium

afin qu’ils se reproduisent.
Pour cela, il effectue successivement différentes tentatives. On suppose qu’à chaque tentative,

le biologiste a une probabilité p ∈ ]0 ; 1[ de pêcher un esturgeon.
On suppose que les proportion de mâles et de femelles sont identiques.
Soit X la variable aléatoire réelle égale au nombre de tentatives nécessaire pour pêcher le

premier esturgeon (mâle ou femelle).
Soit Y la variable aléatoire égale au nombre de tentatives supplémentaires nécessaires

pour pêcher un esturgeon de sexe opposé.
On suppose que les variables aléatoires X et Y sont indépendantes.
1. Déterminer la loi de X puis donner son espérance et sa variance.
2. Déterminer la loi de Y puis donner son espérance et sa variance.
3. On pose Z = X + Y .

a. Donner une interprétation de la variable aléatoire Z.
b. Déterminer Z(Ω).
c. Calculer P(Z = 2) et P(Z = 3).
d. Pour tout n ∈ Z(Ω), exprimer l’évènement (Z = n) en fonction de X et Y .

e. Calculer, pour tout entier n ⩾ 2, la somme
n−1∑
k=1

(
1− p
1− p

2

)k−1

.

f. En déduire la loi de Z.

141



Solution.

1. Par définition, le loi X est la loi du premier succès dans un schéma de Bernoulli donc
X ↪→ G (p) . On en déduit que E(X) = 1

p
et V(X) = 1−p

p2 .

2. Pour une tentative, notons E : « le biologiste pêche un esturgeon », M : « le biologiste
pêche un mâle » et M : « le biologiste pêche une femelle ». Comme les proportions de
mâles et de femelles sont identiques, P(M | E) = P(M | F ) = 1

2 . On en déduit que
P(E ∩M) = P(E)P(M | E) = p

2 et P(E ∩ F ) = P(E)P(F | E) = p
2 .

Une fois que le biologiste a pêché le premier esturgeon, il lui faut recommencer ses
tentatives jusqu’à pêcher un esturgeon du sexe opposé. La loi de la variable Y qui compte
le nombre de tentatives nécessaires est donc la loi du premier succès dans un schéma de
Bernoulli de paramètre 1

2p . Ainsi, Y ↪→ G (p2) donc E(Y ) = 2
p

et V(Y ) = 1− p
2

( p
2 )2 = 4−2p

p2 .

3. a. La variable aléatoire Z représente le nombre de tentatives nécessaires au biologiste
pour pêcher deux esturgeons de sexes différents.

b. Comme X(Ω) = N∗ et Y (Ω) = N∗, Z(Ω) = N \ {0 ; 1} .

c. Comme (Z = 2) = (X = 1) ∩ (Y = 1) et comme X et Y sont indépendantes,

P(Z = 2) = P(X = 1)P(Y = 1) = p× p

2

donc P(Z = 2) = p2

2 .
De même, (Z = 3) = (X = 1, Y = 2) ∪ (X = 2, Y = 1) donc, comme cette union est
disjointe,

P(Z = 3) = P(X = 1)P(Y = 2) + P(X = 2)P(Y = 1)

= p×
(

1− p

2

)
p

2 + (1− p)p× p

2

= p2

2

(
1− p

2 + 1− p
)

donc P(Z = 3) = p2(4−3p)
4 .

d. Soit un entier n ⩾ 2. Alors, (Z = n) =
n−1⋃
k=1

(X = k) ∩ (Y = n− k) .

e. Soit un entier n ⩾ 2.
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Comme p ̸= 0, 1− p ̸= 1− p
2 donc 1− p

1− p
2
̸= 1. Ainsi,

n−1∑
k=1

(
1− p
1− p

2

)k−1

=
n−2∑
j=0

(
1− p
1− p

2

)j
=

1−
(

1− p
1− p

2

)n−1

1− 1− p
1− p

2

=
1−

(
1− p
1− p

2

)n−1

1− p
2 − (1− p)
1− p

2

=
1−

(
1− p
1− p

2

)n−1

p
2

1− p
2

donc
n−1∑
k=1

(
1− p
1− p

2

)k−1

=
1− p

2
p
2

1−
(

1− p
1− p

2

)n−1
 .

f. Soit un entier n ⩾ 2. D’après le résultat de la question d.

P(Z = n) = P
(
n−1⋃
k=1

(X = k) ∩ (Y = n− k)
)
.

Comme cette union est disjointe,

P(Z = n) =
n−1∑
k=1

P(X = k, Y = n− k)

et, comme X et Y sont indépendantes,

P(Z = n) =
n−1∑
k=1

P(X = k)P(Y = n− k)

=
n−1∑
k=1

(1− p)k−1p×
(

1− p

2

)n−k−1
× p

2

= p2

2

(
1− p

2

)n−2 n−1∑
k=1

(
1− p
1− p

2

)k−1

= p2

2

(
1− p

2

)n−2
×

1− p
2

p
2

1−
(

1− p
1− p

2

)n−1


= p
(

1− p

2

)n−1
×

(1− p
2)n−1 − (1− p)n−1

(1− p
2)n−1

donc

P(Z = n) = p

[(
1− p

2

)n−1
− (1− p)n−1

]
.
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Sujets de probabilités : variables
aléatoires à densité
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Sujet 35. Le jeu des ampoules (C3)

Lors d’un jeu télévisé, 400 ampoules sont allumées dans une pièce.
Un candidat ouvre la porte de la pièce, à l’instant x de son choix (x ∈ R+).
Le gain du candidat est égal au nombre d’ampoules encore allumées lorsqu’il ouvre la porte,

multiplié par le temps x.
On suppose que les durées de vie des ampoules sont indépendantes les unes des autres, et

que la durée de vie de chaque ampoule suit une loi exponentielle de paramètre λ > 0.
1. On note T une variable aléatoire de loi exponentielle de paramètre λ.

a. Rappeler la densité de T et son espérance.
b. Calculer la variance de T .
c. Montrer que pour tous réels s et t strictement positifs.

P(T > s+ t | T > s) = P(T > t)

2. On note A le nombre d’ampoules encore allumées à l’instant x.
Donner la loi de A ainsi que son espérance et sa variance.

3. On note G le gain du candidat.
a. Exprimer G en fonction de x et de A. En déduire E(G) en fonction de x.
b. Déterminer la valeur xm de x pour laquelle l’espérance du gain est maximale.

4. Dans cette question, on suppose que x = xm.
a. Justifier que l’on peut approximer la loi de A par une loi normale dont on précisera

les paramètres.
b. Dans cette question, la probabilité que le gain dépasse 1000 euros est égale à 0,001.

Déterminer une valeur approchée de λ.
On donne Φ(3,0902) ≈ 0,999, où Φ est la fonction de répartition de la loi normale

centrée réduite.
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Solution.

1. a. La densité de T est la fonction f définie sur R par

∀t ∈ R, f(t) =

λe−λt si t ⩾ 0
0 sinon

.

On a alors E(T ) = 1
λ

.

b. Par le théorème de transfert, la variable T 2 admet une espérance si et seulement
l’intégrale

∫ +∞

−∞
t2f(t) dt =

∫ +∞

0
t2 × λe−λt dt converge.

Soit un réel A > 0. Les fonctions u : t 7−→ t2 et v : t 7−→ −e−λt sont de classe C 1

sur R et, pour tout réel t, u′(t) = 2t et v′(t) = λe−λt donc, en intégrant par parties,
∫ A

0
t2 × λe−λt dt =

[
t2 × (−e−λt)

]A
0
−
∫ A

0
2t× (−e−λt) dt = −A2e−λA + 2

∫ A

0
te−λt dt.

Or, par croissance comparée, comme λ > 0, lim
A→+∞

A2e−λA = 0. De plus, comme T

admet une espérance égale à 1
λ

,

∫ A

0
te−λt dt = 1

λ

∫ A

0
t(λe−λt) dt = 1

λ

∫ A

0
tf(t) dt −−−−→

A→+∞

1
λ

E(T ).

On en déduit donc que
∫ A

0
t2f(t) dt −−−−→

A→+∞
0 + 2 1

λ
E(T ) = 2

λ2 .

Ainsi, T 2 admet une espérance et E(T 2) = 2
λ

. Par la formule de König-Huygens, on
en déduit que T admet une variance et que

V(T ) = E(T 2)− E(T )2 = 2
λ2 −

(1
λ

)2
= 2
λ2 −

1
λ2

soit finalement V(T ) = 1
λ2 .

c. Pour tout réel x ⩾ 0,

P(T > x) = 1−P(T ⩽ x) = 1−
∫ x

0
λe−λt dt = 1−

[
−eλt

]x
0

= 1−
(
−e−λx − (−e0)

)
= 1 + e−λx − 1 = e−λx.
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Par définition,

P(T > s+ t | T > s) = P({T > s+ t} ∩ {T > s})
P(T > s) .

Or, comme t > 0, {T > s+ t} ⊂ {T > s} donc {T > s+ t} ∩ {T > s} = {T > s+ t}
et ainsi

P(T > s+ t | T > s) = P(T > s+ t)
P(T > s) = e−λ(s+t)

e−λs = e−λ(s+t)+λs = e−λt

i.e.
P(T > s+ t | T > s) = P(T > t) .

Cela traduit que la loi exponentielle est sans mémoire i.e. que la probabilité qu’une
ampoule ait une durée de vie de t heures supplémentaires sachant qu’elle a déjà
fonctionné s heures est la même que la probabilité que l’ampoule ait initialement une
durée de vie de t heures.

2. Numérotons les ampoules de 1 à 400 et notons, pour tout k ∈ J1, 400K, Xk la variable
aléatoire de Bernoulli dont le succès est « l’ampoule k est encore allumée à l’instant
x ». Alors, le paramètre de Xk est P(T > x) = e−λx. Comme les durées de vie des
ampoules sont supposées indépendantes, les variables aléatoires Xk sont indépendantes.

Or, A =
400∑
k=1

Xk donc A suit une loi binomiale de paramètres n = 400 et p = e−λx .

On en déduit que E(A) = 400e−λx et V(A) = 400e−λx(1− e−λx) .

3. a. Par définition G = xA . Par linéarité de l’espérance, on en déduit que E(G) = xE(A)
i.e. E(G) = 400xe−λx .

b. Considérons la fonction g : x 7−→ 400xe−λx définie sur R+. Cette fonction est dérivable
comme produit et composée de fonctions dérivables et, pour tout réel x ⩾ 0,

g′(x) = 400e−λx + 400x(−λe−λx) = 400(1− λx)e−λx.

Or, pour tout réel x, 400e−λx > 0 donc le signe de g′(x) est le signe de 1− λx. On
en déduit que g′(x) ⩾ 0 si x ∈

[
0 ; 1
λ

]
et g′(x) ⩽ 0 si x ∈

[1
λ

; +∞
[
. Ainsi, g est

croissante sur
[
0 ; 1
λ

]
et décroissante sur

[1
λ

; +∞
[
. On en déduit que g atteint son

maximum en xm = 1
λ

.

Ainsi, E(G) est maximale en xm = 1
λ

.

4. On suppose que x = xm = 1
λ

donc λx = 1.
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a. Comme n = 400 ⩾ 30, np = 400e−1 ≈ 147 ⩾ 5 et n(1− p) = 400(1− e−1) ≈ 252 ⩾ 5,

par le théorème de de Moivre-Laplace, on sait que la loi de B = A− 400e−1√
400e−1(1− e−1)

peut être approximée par une loi normale centrée réduite donc la loi de A peut être
approximée par une loi normale d’espérance 400e−1 et de variance 400e−1(1− e−1).

b. L’énoncé précise que P(G > 1000) = 0,001. Or,

G > 1000⇐⇒ 1
λ
A > 1000⇐⇒ A > 1000λ

⇐⇒ A− 400e−1√
400e−1(1− e−1)

>
1000− 400e−1√
400e−1(1− e−1)

B >
1000λ− 400e−1√
400e−1(1− e−1)

Ainsi, P

B >
1000λ− 400e−1√
400e−1(1− e−1)

 = 0,001 donc, en passant au complémentaire,

P

B ⩽
1000λ− 400e−1√
400e−1(1− e−1)

 = 0,999. Or, comme B suit approximativement une

loi N (0, 1), pour tout réel x, P(B ⩽ x) ≈ Φ(x). Ainsi, Φ
 1000λ− 400e−1√

400e−1(1− e−1)

 ≈
0,999. Or, Φ est strictement croissante sur R donc injective et l’énoncé précise que
Φ(3,0902) ≈ 0,999 donc 1000λ− 400e−1√

400e−1(1− e−1)
≈ 3,0902.

On en déduit que λ ≈
3,0902

√
400e−1(1− e−1) + 400e−1

1000 soit λ ≈ 0,177 .
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Sujet 36. Parc d’imprimantes dans une usine (C8)

1. On considère la fonction H définie sur [0 ; 1] par H(x) = 1− 10x9 + 9x10.
a. Étudier les variations de H sur [0 ; 1].
b. Montrer que H réalise une bijection de [0 ; 1] vers un ensemble à déterminer.
c. Avec ε = 0,025, déterminer graphiquement a et b tels que H(a) = 1− ε et H(b) = ε.

(On pourra utiliser GeoGebra)
d. Déterminer t1 et t2 tels que H(e−t1) = ε et H(e−t2) = 1− ε.

2. Dix imprimantes équipent une usine. Cette usine est fonctionnelle si au moins 9 de ces
machines fonctionnent.

Pour tout k ∈ J1, 10K, on appelle Dk la variable aléatoire donnant le temps de
fonctionnement, en année, de la k-ème imprimante.

Les 10 variables aléatoires Dk sont mutuellement indépendantes et suivent la même
loi exponentielle.

La durée moyenne de fonctionnement d’une imprimante est de 5 ans.
a. Déterminer la fonction de répartition de la loi exponentielle.
b. Déterminer, pour tout réel t ⩾ 0, la probabilité qu’une imprimante fonctionne au

moins t années.
3. Pour tout réel t ⩾ 0, on note Nt la variable aléatoire donnant le nombre d’imprimantes

qui fonctionnent au temps t.
Montrer que, pour tout réel t ⩾ 0 et tout entier n ∈ J0, 10K,

P(Nt = n) =
(

10
n

)(
e− t

5
)n (

1− e− t
5
)10−n

.

4. Soit D la variable aléatoire donnant le nombre d’années de fonctionnement de l’usine.
a. Déterminer la fonction de répartition de D.
b. Déterminer un intervalle de temps I = [u ; v] tel que P(D ∈ I) = 0,95.
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Solution.
1. a. La fonction H est un polynôme donc elle est dérivable sur [0 ; 1] et, pour tout x ∈ [0 ; 1],

H ′(x) = −90x8 + 90x9 = 90x8(x− 1).

Pour tout réel x ∈ [0 ; 1], x8 ⩾ 0 et x− 1 ⩽ 0 donc H ′(x) ⩽ 0. De plus, H ′ ne s’annule
qu’en 0 et 1 donc H est strictement décroissante sur [0 ; 1] .

b. La fonction H est continue (car elle est dérivable) et strictement décroissante sur
[0 ; 1]. De plus, H(0) = 1 et H(1) = 0 donc, par le théorème de la bijection continue,
H réalise une bijection de [0 ; 1] dans lui-même .

c. On trace, à l’aide de GeoGebra, la courbe de H et les droites d’équation y = 0,025 et
y = 0,975.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
CH

A

B

Les points d’intersection A et B ont pour abscisses respectives environ 0,555 et 0,975
donc a ≈ 0,555 et b ≈ 0,975 .

d. Comme H est bijective,

H(e−t) = 0,025⇐⇒ e−t = b⇐⇒ −t = ln(b)⇐⇒ t = − ln(b).

Ainsi, t1 = − ln(b) ≈ 0,025 .
De la même façon, t2 = − ln(a) ≈ 0,589 .
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2. a. Si X est une variable aléatoire suivant une loi exponentielle de paramètre λ alors,
pour tout réel x,
• si x < 0, P(X ⩽ x) = 0 ;
• si x ⩾ 0, P(X ⩽ x) =

∫ x

0
λe−λt dt =

[
−e−λt

]x
0

= 1− e−λx.
Ainsi, la fonction de répartition FX de X est définie par

∀x ∈ R FX(x) =

 0 si x < 0
1− e−λx si x ⩾ 0

.

b. Soit un réel t ⩾ 0. La probabilité qu’une imprimante fonctionne au moins t années est

P(D1 ⩾ t) = 1−P(D1 < t) = 1− FD1(t) = e−λt

(la deuxième égalité découlant du fait que D1 est une variable aléatoire à densité donc
P(D1 < t) = P(D1 ⩽ t)).

La durée de vie moyenne d’une imprimante est 5 ans donc E(D1) = 5 i.e. 1
λ

= 5
donc λ = 1

5 .

Ainsi, la probabilité qu’une imprimante fonctionne au moins t années est e− t
5 .

3. Soit t ⩾ 0. Notons Xk la variable aléatoire valant 1 si l’imprimante k fonctionne au temps
t et 0 sinon. Ainsi, Xk est une variable aléatoire suivant une loi de Bernoulli de paramètre

e− t
5 . De plus, Nt =

10∑
k=1

Xk et les variables aléatoires Xk sont indépendantes car les durées

de vies Dk sont indépendantes. Ainsi, Nt suit une loi binomiale de paramètres 10 et e− t
5 .

On conclut donc que

∀n ∈ J0, 10K P(Nt = n) =
(

10
n

)(
e− t

5
)n (

1− e− t
5
)10−n

.

4. a. Par définition, pour tout réel t < 0, P(D ⩽ t) = 0. De plus, pour tout réel t ⩾ 0,

P(D ⩽ t) = P(Nt < 9) = 1−P(Nt = 9)−P(Nt = 10)

= 1−
(

10
9

)(
e− t

5
)9 (

1− e− t
5
)
−
(

10
10

)(
e− t

5
)10

= 1− 10
(
e− t

5
)9 (

1− e− t
5
)
−
(
e− t

5
)10

= 1− 10
(
e− t

5
)9

+ 10
(
e− t

5
)10
−
(
e− t

5
)10

= 1− 10
(
e− t

5
)9

+ 9
(
e− t

5
)10

Ainsi, la fonction de répartition FD de D est définie par

∀t ∈ R FD(t) =

 0 si t < 0
1− 10

(
e− t

5
)9

+ 9
(
e− t

5
)10

si t ⩾ 0
.
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5. Comme D est une variable aléatoire à densité, pour tous réels a et b,

P(D ∈ [u ; v]) = P(D ⩽ v)−P(D < u) = P(D ⩽ v)−P(D ⩽ u) = FD(v)− FD(u).

Or, pour tout t ⩾ 0, −t ⩽ 0 donc e−t ∈ [0 ; 1]. Ainsi, pour tout t ⩾ 0, FD(t) = H(e− t
5 ).

On déduit alors de la question 1. que

P(D ∈ [5t1 ; 5t2]) = H(e−t2)−H(e−t1) = 1− 0,025− 0,025 = 0,95.

Ainsi, l’intervalle I = [5t1 ; 5t2] ≈ [0,125 ; 2,945] convient .
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Sujet 37. Montage de panneaux solaires (O2)

Dans cet exercice, on pourra utiliser sans démonstration la propriété suivante : une variable
aléatoire X est une variable à densité si et seulement si sa fonction de répartition F est continue
sur R et de classe C 1 sur R sauf, éventuellement, en un nombre fini de points. De plus, dans
ce cas, on peut obtenir une densité de X en dérivant la fonction F en tout point où elle est
dérivable et en lui donnant la valeur arbitraire 0 en tout point où F n’est pas dérivable.

Soit un nombre réel λ > 0.
1. Soit Z une variable aléatoire qui suit la loi exponentielle de paramètre λ.

a. Donner une densité de Z, notée fZ , ainsi que son espérance (sous la forme d’une
intégrale, puis donner sa valeur sans calcul).

b. Donner le moment d’ordre 2 de Z, c’est-à-dire E(Z2).
2. Soit f définie par :

∀t ∈ R f(t) =

 0 si t < 0
λ2te−λt si t ⩾ 0

.

Vérifier que f est une densité de probabilité.
3. On considère deux variables aléatoires réelles indépendantes T1 et T2 admettant toutes

deux la fonction f comme densité de probabilité.
a. Déterminer leur fonction de répartition F .
b. Montrer que T1 et T2 admettent une espérance et la calculer.
On considère différents systèmes de montage de panneaux solaires. On se limite aux
systèmes comportant deux panneaux. On admet que T1 modélise la durée du vie du
premier panneau et T2 la durée de vie du second.

4. Le premier système, noté S, tombe en panne lorsque l’un de ses deux éléments tombe en
panne. On dit que le système S est monté en série. On note U l’instant où le système S
tombe en panne.
a. Exprimer, pour tout réel k, l’évènement (U > k) en fonction de T1 et T2.
b. Déterminer la fonction de répartition FU de U puis une densité fU de U .

5. Le second système, noté S ′, tombe en panne lorsque ses deux éléments tombent en panne.
On dit que le système S ′ est monté en parallèle. On note V l’instant où le système S ′

tombe en panne.
a. Exprimer, pour tout réel k, l’évènement (V ⩽ k) en fonction de T1 et T2.
b. Déterminer la fonction de répartition FV de V puis une densité fV de V .
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Solution.
1. a. Par définition, une densité de Z est la fonction fZ définie sur R par

∀t ∈ R fZ(t) =

 0 si t < 0
λe−λt si t ⩾ 0

.

Comme fZ est nulle sur R∗
−, l’espérance de Z est

E(Z) =
∫ +∞

0
tfZ(t) dt =

∫ +∞

0
λte−λt dt .

Par théorème, E(Z) = 1
λ

.

b. Soit A > 0. Alors, ∫ A

0
t2fZ(t) dt =

∫ A

0
λt2e−λt dt.

Considérons les fonctions u : t 7−→ t2 et v : t 7−→ −e−λt. Ces deux fonctions sont de
classe C 1 sur R et u′ : t 7−→ 2t et v′ : t 7−→ λe−λt donc, en intégrant par parties,∫ A

0
t2fZ(t) dt =

[
−t2e−λt

]A
0
−
∫ A

0
2t× (−e−λt) dt = −A2e−λA + 2

∫ A

0
te−λt dt.

Or, Comme λ > 0, par croissances comparées, lim
A→+∞

A2e−λA = 0 et, d’après les
résultats de la question 1.,∫ A

0
te−λt dt = 1

λ

∫ A

0
tfZ(t) dt −−−−→

A→+∞

1
λ

E(Z) = 1
λ2 .

Ainsi, par somme de limite,
∫ A

0
t2fZ(t) dt −−−−→

A→+∞

2
λ2 donc, par le théorème de transfert,

Z admet un moment d’ordre 2 et E(Z2) = 2
λ2 .

2. La fonction f est nulle sur ]−∞ ; 0[ et continue sur [0 ; +∞[ comme composée et produit
de fonctions continues donc f est continue par morceaux sur R. De plus, pour tout
t ∈ ]−∞ ; 0[, f(t) = 0 ⩾ 0 et, pour tout t ∈ [0 ; +∞[, f(t) = λ2te−λt ⩾ 0 car t ⩾ 0 et exp
est à valeurs positives. Ainsi, f est positive sur R. Enfin,∫

R
f(t) dt =

∫ +∞

0
λ2te−λt = λ

∫ +∞

0
λte−λt dt = λE(Z) = λ× 1

λ
= 1.

On conclut donc que f est une densité de probabilité sur R .
3. a. Soit un réel x. Si x < 0 alors

F (x) = P(T1 ⩽ x) =
∫ x

−∞
0 dt = 0.
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Si x ⩾ 0 alors

F (x) = P(T1 ⩽ x) =
∫ x

0
λ2te−λt dt = λ

∫ x

0
t× λe−λt dt.

Considérons les fonctions u : t 7−→ t et v : t 7−→ −e−λt. Ces deux fonctions sont de
classe C 1 sur R et u′ : t 7−→ 1 et v′ : t 7−→ λe−λt donc, en intégrant par parties,∫ x

0
t× λe−λt dt =

[
−te−λt

]x
0
−
∫ x

0
1× (−e−λt) dt = −xe−λx +

∫ x

0
e−λt dt

= −xe−λx +
[
−1
λ

e−λt
]x

0
= −xe−λx − 1

λ
e−λx −

(
−1
λ

)
donc F (x) = 1− e−λx − λxe−λx.

Ainsi, F est la fonction définie sur R par

∀x ∈ R F (x) =

 0 si x < 0
1− e−λx − λxe−λx si x ⩾ 0

.

b. Comme f est nulle sur ]−∞ ; 0[, les variables T1 et T2 admettent une espérance si et
seulement si l’intégrale

∫ +∞

0
tf(t) dt converge. Or,

∫ +∞

0
tf(t) dt =

∫ +∞

0
λ2t2e−λt dt = λ

∫ +∞

0
t2 × λte−λt dt = λE(Z2).

Ainsi, d’après le résultat de la question 1.b., cette intégrale converge et vaut λ× 2
λ2 = 2

λ

donc T1 et T2 admette une espérance et E(T1) = E(T2) = 2
λ

.

4. a. L’évènement (U > k) signifie que le système fonctionne au-delà de l’instant k donc
que les deux panneaux fonctionnent au-delà de l’instant k.

Ainsi, (U > k) = (T1 > k) ∩ (T2 > k) .
b. Comme les variables aléatoires T1 et T2 donc indépendantes, on en déduit que, pour

tout réel x,

FU(x) = P(U ⩽ x) = 1−P(U > x) = 1−P((T1 > x) ∩ (T2 > x))
= 1−P(T1 > x)P(T2 > x) = 1− (1−P(T1 ⩽ x))(1−P(T2 ⩽ x))
= 1− (1− F (x))(1− F (x)) = 1− (1− 2F (x) + F (x)2)
= 1− 1 + 2F (x)− F (x)2

soit finalement, pour tout réel x, FU(x) = 2F (x)− F (x)2 .
La fonction FU est continue sur R (car F l’est) et de classe C 1 sur R \ {0} (car F

l’est également) donc U est une variable aléatoire à densité fU et, pour tout t ̸= 0,
fU(t) = F ′

U(t).
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Ainsi, pour tout réel t < 0, fU(t) = 2F ′(t)− 2F ′(t)F (t) = 0 et, pour tout t > 0,

fU(t) = 2F ′(t)− 2F ′(t)F (t) = 2f(t)− 2f(t)F (t)
= 2λ2te−λt − 2λ2te−λt(1− e−λt − λte−λt)
= 2λ2te−λt(e−λt + λte−λt)
= 2λ2t(1 + λt)e−2λt

Ainsi, une densité fU de U est la fonction définie sur R par

∀t ∈ R fU(t) =

 0 si t < 0
2λ2t(1 + λt)e−2λt si t ⩾ 0

.

5. a. L’évènement (V ⩽ k) signifie que le système tombe en panne au plus tard à l’instant
k donc que les deux panneaux fonctionnent sont en panne à l’instant k.

Ainsi, (V ⩽ k) = (T1 ⩽ k) ∩ (T2 ⩽ k) .
b. Comme les variables aléatoires T1 et T2 donc indépendantes, on en déduit que, pour

tout réel x,

FV (x) = P(V ⩽ x) = P((T1 ⩽ x) ∩ (T2 ⩽ x)) = P(T1 ⩽ x)P(T2 ⩽ x)

donc, pour tout réel x, FV (x) = F (x)2 .
La fonction FV est continue sur R (car F l’est) et de classe C 1 sur R \ {0} (car F

l’est également) donc V est une variable aléatoire à densité fV et, pour tout t ̸= 0,
fV (t) = F ′

V (t).
Ainsi, pour tout réel t < 0, fV (t) = 2F ′(t)F (t) = 0 et, pour tout t > 0,

fV (t) = 2F ′(t)F (t) = 2f(t)− 2f(t)F (t) = 2λ2te−λt(1− e−λt − λte−λt).

Ainsi, une densité fV de V est la fonction définie sur R par

∀t ∈ R fV (t) =

 0 si t < 0
2λ2te−λt(1− e−λt − λte−λt) si t ⩾ 0

.
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Sujet 38. La course à pied (O2)

Lors d’une course nocturne, un nombre n ∈ N∗ de coureurs passent la ligne d’arrivée entre
minuit et une heure du matin. Pour tout entier i ∈ J1, nK, on modélise l’heure d’arrivée du
coureur numéro i par une variable aléatoire Ui de loi uniforme sur l’intervalle [0 ; 1]. On suppose
que toutes les variables aléatoires Ui sont mutuellement indépendantes. On note, pour tout
i ∈ J1, nK, FUi

la fonction de répartition de Ui et fUi
une fonction densité de Ui.

1. Soit i ∈ J1, nK. Donner l’expression d’une fonction de densité de Ui et l’espérance de Ui.
2. Calculer la probabilité qu’un coureur arrive entre 00h20 et 00h30.
3. On définit pour k ∈ J1, nK, la variable aléatoire Tk égale au temps du k-ième coureur le

plus rapide. On note Fk la fonction de répartition de Tk.

a. Soit t ∈ [0 ; 1]. Exprimer l’évènement (T1 > t) à l’aide des variables aléatoires Ui,
i ∈ J1, nK.
En déduire la valeur de P(T1 ⩽ t).

b. Que vaut F1(t) lorsque t > 1 ? lorsque t < 0 ? lorsque t ∈ [0 ; 1] ?
c. En déduire l’expression d’une fonction de densité de T1.
d. Lorsqu’il y a 12 coureurs en lice, calculer l’espérance de T1.

4. Pour tout réel t ∈ [0 ; 1], on note Nt la variable aléatoire égale au nombre de coureurs
arrivés dans l’intervalle de temps [0 ; t]. Dans toute cette question, on considère un réel
t ∈ [0 ; 1] et un entier k ∈ J1, nK.

a. Reconnaître la loi de Nt.
b. Exprimer l’évènement (Tk ⩽ t) en fonction de Nt et de k.

c. Justifier que P(Tk ⩽ t) =
n∑
i=k

(
n

i

)
ti(1− t)n−i.

d. Montrer que Fk(t) = 1− Fn−k+1(1− t).

e. À l’aide d’une intégration par parties, montrer que E(Tk) =
∫ 1

0
(1− Fk(x)) dx.
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Solution.
1. Une densité de Ui est la fonction fUi

définie sur R par

∀t ∈ R fUi
(t) =

 1 si t ∈ [0 ; 1]
0 sinon

.

Par propriété, E(Ui) = 1
2 .

2. Comme 20 min = 1
3 h et 30 min = 1

2 h, la probabilité que le coureur i arrive entre 0h20
et 0h30 est

P
(1

3 ⩽ Ui ⩽
1
2

)
=
∫ 1

2

1
3

1 dt = 1
2 −

1
3 = 1

6 .

Ainsi, la probabilité qu’un coureur arrive entre 0h20 et 0h30 est 1
6 .

3. a. L’évènement (T1 > t) est réalisé si le coureur le plus rapide arrive après l’instant t, ce
qui signifie que tous les coureur arrivent après l’instant t. Ainsi,

(T1 > t) =
n⋂
i=1

(Ui > t) .

Comme les variables Ui sont mutuellement indépendantes, on en déduit que

P(T1 > t) = P(U1 > t)P(U2 > t) · · ·P(Un > t).

Or, pour tout i ∈ J1, nK,

P(Ui > t) =
∫ 1

t
1 dx = 1− t

donc P(T1 > 1) = (1− t)n. Comme (T1 ⩽ t) = (T1 > t), on conclut que

P(T1 ⩽ t) = 1− (1− t)n.

b. Si t > 1, l’évènement (T1 ⩽ t) est un évènement certain donc P(T1 ⩽ t) = 1 i.e.
F1(t) = 1 .
Si t < 0, l’évènement (T1 ⩽ t) est un évènement impossible donc P(T1 ⩽ t) = 0 i.e.
F1(t) = 0 .
Si t ∈ [0 ; 1], d’après la question précédente, P(T1 < t) = 1 − (1 − t)n donc
F1(t) = 1− (1− t)n .

c. Pour tout t ∈ ]−∞ ; 0[, F ′
1(t) = 0, pour tout t ∈ ]1 ; +∞[, F ′

1(t) = 0 et, pour tout
t ∈ ]0 ; 1[, F ′

1(t) = n(1− t)n−1 donc une densité de T1 est la fonction g définie sur R
par :

∀t ∈ R g(t) =

n(1− t)n−1 si t ∈ [0 ; 1]
0 sinon

.
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d. Comme g est nulle en-dehors du segment [0 ; 1], T1 admet une espérance et

E(T1) =
∫ 1

0
tg(t) dt =

∫ 1

0
12t(1− t)11 dt.

Considérons les fonctions u : t 7−→ t et v : t 7−→ −(1−t)12. Ce sont des polynômes donc
elles sont de classe C 1 sur R et, pour tout réel t, u′ : t 7−→ 1 et v′ : t 7−→ 12(1− t)11.
Ainsi, en intégrant par parties,

E(T1) =
[
−t(1− t)12

]1
0
−
∫ 1

0
1× (−(1− t)12) dt =

∫ 1

0
(1− t)12 dt =

[
−(1− t)13

13

]1

0

donc E(T1) = 1
13 .

4. a. Pour tout k ∈ J1, nK, notons Xk la variable aléatoire égale à 1 si le coureur k arrive
dans l’intervalle de temps [0 ; 1] et 0 sinon. Ainsi, pour tout k ∈ J1, nK, Xk suit une loi
de Bernoulli de paramètre P(Uk ⩽ t) = 1−P(Uk > t) = t. Comme les variables Uk
sont mutuellement indépendantes, il en est de même des variables Xk donc, comme
Nt =

n∑
k=1

Xk, on conclut que Nt suit une loi binomiale de paramètres n et t .

b. L’évènement (Tk ⩽ t) est réalisé si les k premiers coureurs sont arrivés dans l’intervalle
de temps [0 ; t] donc (Tk ⩽ t) = (Nt ⩾ k) .

c. On en déduit que

P(Tk ⩽ t) = P(Nt ⩾ k) = P

 n⋃
j=k

(Nt = i)


donc, comme les évènements (Nt = i) sont deux à deux incompatibles,

P(Tk ⩽ t) =
n∑
i=k

(
n

i

)
ti(1− t)n−i .

d. Ainsi,

Fk(t) =
n∑
i=k

(
n

i

)
ti(1− t)n−i =

j=n−i

n−k∑
j=0

(
n

n− j

)
tn−j(1− t)j

=
n−k∑
j=0

(
n

j

)
tn−j(1− t)j = 1−

n∑
j=n−k+1

(
n

j

)
(1− t)j(1− (1− t))tn−j.

Or, l’expression trouvée dans la question précédente est valable pour tout t ∈ [0 ; 1] et
tout k ∈ J1, nK donc, comme 1− t ∈ [0 ; 1] et n− k + 1 ∈ J1, nK, on conclut que

Fk(t) = 1− Fn−k+1(1− t) .
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e. Comme Tk est à valeurs dans [0 ; 1], sa densité est nulle en-dehors de cet intervalle.
Ainsi, comme Fk est une primitive d’une densité de Tk,

E(Tk) =
∫ 1

0
xF ′

k(x) dx.

On considère les fonctions u : x 7−→ x et Fk qui sont de classe C 1 sur [0 ; 1] (car Fk
est un polynôme) donc, en intégrant par parties,

E(Tk) = [xFk(x)]10 −
∫ 1

0
Fk(x) dx = Fk(1)−

∫ 1

0
Fk(x) dx.

Or, l’évènement (Tk ⩽ 1) est un évènement certain donc Fk(1) = 1 et ainsi

E(Tk) = 1−
∫ 1

0
Fk(x) dx =

∫ 1

0
1 dx−

∫ 1

0
Fk(x) dx

et, par linéarité de l’intégrale, on conclut que

E(Tk) =
∫ 1

0
(1− Fk(x)) dx .
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Sujet 39. Étude de la croissance d’une plante (O2)

La taille X d’une plante suit, en conditions naturelles, une loi uniforme sur l’intervalle [3 ; 8].
Dans une pépinière, à la fin de la croissance naturelle de la plante :

— si sa taille est inférieure ou égale à 4, on lui met un engrais qui fait doubler sa taille ;
— si sa taille est supérieure à 4, on ne fait rien.

On note Y la variable aléatoire correspondant à la taille finale de la plante.
1. Donner une densité fX de X, ainsi que la fonction de répartition FX de X.
2. Exprimer Y en fonction de X, puis donner l’ensemble des valeurs prises par Y .
3. Pour tout réel t, calculer P [(Y ⩽ t) ∩ (X ⩽ 4)] et P [(Y ⩽ t) ∩ (X > 4)]. On discutera

selon les valeurs du réel t.
4. En déduire que la fonction de répartition FY de Y est donnée par :

FY (t) =


0 si t < 4
t−4

5 si 4 ⩽ t < 6
3t−14

10 si 6 ⩽ t ⩽ 8
1 si t > 8

.

5. Démontrer que FY est continue sur R.
6. En admettant que Y est une variable aléatoire à densité, en donner une densité fY .
7. Calculer l’espérance de Y .
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Solution.
1. Par définition, une densité de X est fX définie sur R par

∀t ∈ R fX(t) =


1
5 si t ∈ [3 ; 8]
0 sinon.

La fonction de répartition FX de X est définie sur R par :

∀t ∈ R, FX(t) = P(X ⩽ t) =
∫

−∞
fX(x) dx .

Si t < 3 alors, pour tout (X ⩽ t) est une évènement impossible donc FX(t) = 0.
Si t ∈ [3 ; 8] alors

FX(t) =
∫ t

0

1
5 dx =

[
x

5

]t
3

= t− 3
5

Si t > 8 alors (X ⩽ t) est une évènement certain donc FX(t) = 1.

Ainsi, pour tout réel x, FX(t) =


0 si t < 3
t−3

5 si t ∈ [3 ; 8]
1 si t > 8.

.

2. Si X ⩽ 4 alors Y = 2X et si X > 4 alors Y = X. Dans le premier cas, Y prend les valeurs
entre 6 et 8 et, dans le second cas, les valeurs entre 4 (exclu) et 8 donc Y (Ω) = ]4 ; 8] .

3. On remarque que (Y ⩽ t) ∩ (X ⩽ 4) = (2X ⩽ t) ∩ (X ⩽ 4).
Si t < 6 alors (2X ⩽ t) = ∅ car X ⩾ 3 donc P[(Y ⩽ t) ∩ (X ⩽ 4)] = 0.
Si t > 8 alors (2X ⩽ t)∩(X ⩽ 4) = (X ⩽ 4) donc P[(Y ⩽ t)∩(X ⩽ 4)] = P(X ⩽ 4) = 1

5 .
Si 6 ⩽ t ⩽ 8 alors (2X ⩽ t) ∩ (X ⩽ 4) = (2X ⩽ t) = (X ⩽ t

2) donc, dans ce cas-là,
P[(Y ⩽ t) ∩ (X ⩽ 4)] = P(X ⩽ t

2) = t−6
10 .

Ainsi, pour tout réel t, P[(Y ⩽ t) ∩ (X ⩽ 4)] =


0 sit < 6
t−6
10 si 6 ⩽ t ⩽ 8
1
5 si t > 8

.

On remarque que (Y ⩽ t) ∩ (X > 4) = (X ⩽ t) ∩ (X > 4).
Si t < 4 alors (X ⩽ t) ∩ (X > 4) = ∅ donc P[(Y ⩽ t) ∩ (X > 4)] = 0.
Si 4 ⩽ t ⩽ 8 alors (X ⩽ t) ∩ (X > 4) = (4 < X ⩽ 4) donc P[(Y ⩽ t) ∩ (X ⩽ 4)] =
FX(t)− FX(4) = t−3

5 −
1
5 = t−4

5 .
Si t > 8 alors (X < t) ∩ (X > 4) = (4 < X ⩽ 8) = FX(8)− FX(4) = 1− 1

5 = 4
5 .

Ainsi, pour tout réel t, P[(Y ⩽ t) ∩ (X ⩽ 4)] =


0 sit < 4
t−4

5 si 4 ⩽ t ⩽ 8
4
5 si t > 8

.

4. Soit t ∈ R. Comme les évènements (X ⩽ 4) et (X > 4) forment un système complet
d’évènements, d’après la formule des probabilité totales,

FY (t) = P(Y ⩽ t) = P[(Y ⩽ t) ∩ (X ⩽ 4)] + P[(Y ⩽ t) ∩ (X > 4)].
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Ainsi, grâce au résultat de la question précédente,
• si t < 4, FY (t) = 0 + 0 = 0 ;
• si 4 ⩽ t < 6, FY (t) = t−4

5 + 0 = t−4
5 ;

• si 6 ⩽ t ⩽ 8, FY (t) = t−6
10 + t−4

5 = 3t−14
10 ;

• si t > 8, FY (t) = 1
5 + 4

5 = 1.

Ainsi, pour tout réel t, FY (t) =


0 si t < 4
t−4

5 si 4 ⩽ t < 6
3t−14

10 si 6 ⩽ t ⩽ 8
1 si t > 8

.

5. La fonction FY est clairement continue sur chaque intervalle ]−∞ ; 4[, [4 ; 6[, [6 ; 8[ et
[8 ; +∞[.

De plus, lim
t→4−

FY (t) = lim
t→4

0 = 0 = FY (4), ce qui assure que FY est continue en 4.

De même, lim
t→6−

FY (t) = lim
t→6

t−4
5 = 2

5 = FY (6), ce qui assure que FY est continue en 6.

Enfin, lim
t→8−

FY (t) = lim
t→8

3t−14
10 = 10

10 = 1 = FY (8), ce qui assure que FY est continue en
8.

Ainsi, on conclut que FY est continue sur R .
6. Une densité de Y s’obtient en dérivant FY partout où elle est dérivable (et en prenant

des valeurs arbitraires ailleurs) donc une densité de Y est la fonction fY définie sur R par

∀t ∈ R fY (t) =


0 si t < 4
1
5 si 4 ⩽ t < 6
3
10 si 6 ⩽ t < 8
0 si t > 8

.

7. Comme fY est nulle en dehors du segment [4 ; 8], Y est une espérance et

E(Y ) =
∫ 8

4
tfY (t) dt =

∫ 6

4

t

5 dt+
∫ 8

6

3t
10 dt =

[
t2

10

]6

4
+
[

3t2
20

]8

6
= 36

10−
16
10 + 3× 64

20 − 3× 36
20

soit E(Y ) = 31
5 .
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Sujets de probabilités : couples de
variables aléatoires
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Sujet 40. Rangs d’apparition des deux premières boules
noires (C3)

Une urne contient 3 boules blanches et 2 boules noires.

Partie A. Tirage sans remise
Dans cette partie, on effectue des tirages sans remise.
On note X1 la variable aléatoire égale au rang d’obtention de la première boule noire et X2

la variable aléatoire égale au rang d’obtention de la deuxième boule noire.
1. Donner X1(Ω) et X2(Ω).
2. Les variables aléatoires X1 et X2 sont-elles indépendantes ?
3. Déterminer la loi conjointe du couple (X1, X2).
4. Déterminer les lois marginales de X1 et de X2.
5. On définit la variable aléatoire Y = 6−X2. Montrer que Y a la même loi que X1.
6. Donner une relation entre E(X1) et E(X2).
7. Calculer E(X1) et en déduire E(X2).

Partie B. Tirage avec remise
Dans cette partie, on effectue des tirages avec remise.
On note Y1 la variable aléatoire égale au rang d’obtention de la première boule noire et Y2 la

variable aléatoire égale au rang d’obtention de la deuxième boule noire.
1. On considère le programme suivant, écrit en langage Python.

from random import *

p = 2/5
nb_tirages = 1
while random () > p:

nb_tirages += 1
print( nb_tirages )

Que renvoie ce programme ?
2. Donner la loi de Y1, son espérance et sa variance.
3. Donner Y2(Ω).
4. Déterminer la loi conjointe du couple (Y1, Y2).
5. En déduire la loi de Y2.
6. On définit la variable aléatoire Z = Y2 − Y1. Montrer que Z a la même loi que Y1.
7. Donner une relation entre E(Y1) et E(Y2).
8. En déduire l’espérance de Y2.
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Solution.

Partie A. Tirage sans remise
1. Comme il n’y a pas remise, X1(Ω) = J1, 4K et X2(Ω) = J2, 5K.
2. Comme X1 < X2, (X1 = 2)∩ (X2 = 2) = ∅ donc, P((X1 = 2)∩ (X2 = 2)) = 0. Or, par la

formule de probabilités composées, P(X1 = 2) = 3
5×

2
4 = 3

10 et P(X2 = 2) = 1
5×

1
4 = 1

20
donc P(X1 = 2)P(X2 = 2) ̸= 0. Ainsi, X1 et X2 ne sont pas indépendantes .

3. Comme on l’a dit, si i ⩾ j, P(X1 = i,X2 = j) = 0. Ensuite, pour tout (i, j) ∈ J1, 4K×J2, 5K,
la probabilité de l’évènement (X1 = i,X2 = j) est la probabilité que, dans une permutation
des 5 boules, il y ait une boule noire au i-ème tirage et au j-ième tirage. Or, il y a 5! = 120
permutations et il y a 2!× 3! = 12 façons de répartir les boules pour que la i-ème et la
j-ième soient noires (2 ! façons de placer les deux boules noires aux rangs i et j et 3!
façons de placer les boules blanches dans les 3 rangs restants). Par équiprobabilité, on en
déduit que P(X1 = i,X2 = j) = 12

120 = 1
10.

Ainsi, la loi conjointe de (X1, X2) est donnée par

∀(i, j) ∈ J1, 4K× J2, 5K P(X1 = i,X2 = j) =


1
10 si i < j

0 sinon
.

4. On peut utiliser une tableau pour déterminer les lois marginales :

X2

X1 1 2 3 4 Loi de X2

2 1
10 0 0 0 1

10
3 1

10
1
10 0 0 1

5
4 1

10
1
10

1
10 0 3

10
5 1

10
1
10

1
10

1
10

2
5

Loi de X1
2
5

3
10

1
5

1
10 1

5. Comme X2(Ω) = J2, 5K, Y (Ω) = J6 − 5, 6 − 2K = J1, 4K = X1(Ω). De plus, d’après le
tableau ci-dessus,

• P(Y = 1) = P(6−X2 = 1) = P(X2 = 5) = 2
5 = P(X1 = 1)

• P(Y = 2) = P(6−X2 = 2) = P(X2 = 4) = 3
10 = P(X1 = 2)

• P(Y = 3) = P(6−X2 = 3) = P(X2 = 3) = 1
5 = P(X1 = 3)

• P(Y = 4) = P(6−X2 = 4) = P(X2 = 2) = 1
10 = P(X1 = 4)

Ainsi, Y a la même loi de X1 .
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6. On en déduit que E(X1) = E(Y ) = E(6 − X2) donc, par linéarité de l’espérance,
E(X1) = 6− E(X2) .

7. Par définition, E(X1) = 1 × 2
5 + 2 × 3

10 + 3 × 1
5 + 4 × 1

10 donc E(X1) = 2 . Comme

E(X1) = 6− E(X2), on en déduit que E(X2) = 4 .

Partie B. Tirage avec remise
1. Ce programme simule la variable aléatoire Y1 i.e. il renvoie le nombre (aléatoire) de

tirages nécessaires pour obtenir la première boule noire.
2. La variable Y1 donne le rang du premier succès dans un schéma de Bernoulli (puisqu’il y

a remise) donc Y1 ↪→ G
(2

5

)
. Par théorème, E(Y1) = 5

2 et V(Y1) =
1− 2

5
(2

5)2 = 3
5 ×

25
4

donc V(Y1) = 15
4 .

3. La deuxième boule noire arrive au minimum au deuxième tirage donc Y2(Ω) = N \ {0 ; 1} .
4. Comme précédemment, si (i, j) ∈ Y1(Ω) × Y2(Ω) est un couple tel que i ⩾ j alors

P(Y1 = i, Y2 = j) = 0.
Soit (i, j) ∈ Y1(Ω) × Y2(Ω) tel que i < j. Notons, pour tout k ∈ N∗, Nk : « obtenir

une boule noire au k-ième tirage ». Alors,

(Y1 = i, Y2 = j) = N1 ∩ · · · ∩Ni−1 ∩Ni ∩Ni+1 ∩ · · · ∩Nj−1 ∩Nj

donc, par indépendance,

P(Y1 = i, Y2 = j) =
(3

5

)i−1
× 2

5 ×
(3

5

)j−i−1
× 2

5 =
(3

5

)i−1+j−i−1
×
(2

5

)2
= 4

25

(3
5

)j−2
.

Ainsi, la loi conjointe de (Y1, Y2) est donnée par

∀(i, j) ∈ Y1(Ω)× Y2(Ω) P(Y1 = i, Y2 = j) =

 4
25

(
3
5

)j−2
si i < j

0 sinon
.

5. Comme ({Y1 = i})i∈N∗ est un système complet d’évènements, on déduit de la formule des
probabilités totales que

∀j ∈ Y2(Ω) P(Y2 = j) =
+∞∑
i=1

P(Y1 = i, Y2 = j) =
j−1∑
i=1

4
25

(3
5

)j−2
= (j − 1)× 4

25

(3
5

)j−2

car les termes sommés ne dépendent pas de i.
Ainsi, la loi de Y2 est donnée par :

∀j ∈ N \ {0 ; 1} P(Y2 = j) = 4(j − 1)
25

(3
5

)j−2
.
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6. Comme Y1(Ω) = N∗ et Y2(Ω) = N \ {0 ; 1}, Z(Ω) = N∗. De plus, comme ({Y1 = i})i∈N∗

est un système complet d’évènements, on déduit de la formule de probabilités totales que,
pour tout k ∈ N∗,

P(Z = k) =
+∞∑
i=1

P(Z = k, Y1 = i) =
+∞∑
i=1

P(Y2 − Y1 = k, Y1 = i)

=
+∞∑
i=1

P(Y2 − i = k, Y1 = i) =
+∞∑
i=1

P(Y2 = i+ k, Y1 = i)

=
i+k>i

+∞∑
i=1

4
25

(3
5

)i+k−2
= 4

25

(3
5

)k−2 +∞∑
i=1

(3
5

)i

=
p=i−1

4
25

(3
5

)k−2 +∞∑
p=0

(3
5

)p+1
= 4

25

(3
5

)k−2
× 3

5

+∞∑
p=0

(3
5

)p

=
0⩽ 3

5<1

4
25

(3
5

)k−1
× 1

1− 3
5

= 4
25

(3
5

)k−1
× 5

2

soit finalement P(Z = k) = 2
5

(
1− 2

5

)k−1
i.e. Z ↪→ G

(2
5

)
.

Ainsi, on conclut que Z a la même loi que Y1 .
7. On en déduit que E(Y1) = E(Z) = E(Y2 − Y1) donc, par linéarité de l’espérance,

E(Y1) = E(Y2)− E(Y2) i.e. E(Y2) = 2E(Y1) .

8. On conclut donc que E(Y2) = 2× 5
2 i.e E(Y2) = 5 .
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Sujet 41. Lancers simultanés de n dés (C8)

On lance simultanément n dés bien équilibrés.
À l’étape 1, on note X1 le nombre de dés ayant donné 6, puis on les exclut et on recommence

avec les dés restants, en excluant à chaque étape les dés ayant donné 6.
Pour tout i ∈ N∗, on note :
• Xi le nombre de dés ayant donné 6 à l’étape i ;
• Yi le nombre total de dés ayant donné 6 après l’étape i.

1. Premières propriétés

a. Donner la loi de X1, son espérance et sa variance.
b. Donner une relation entre Y1 et X1.
c. Donner une relation entre Y2, X1 et X2.
d. Pour k ∈ J0, nK, déterminer la loi conditionnelle de X2 sachant X1 = k.
e. Montrer que, pour tous entiers k, i et n tels que 0 ⩽ k ⩽ i ⩽ n,(

n

k

)(
n− k
i− k

)
=
(
n

i

)(
i

k

)

2. Loi de Y2

a. On considère le diagramme suivant, donnant la loi de Y2 pour n = 8.

À l’aide de ce diagramme, estimer E(Y2) et émettre une hypothèse sur la loi de Y2 et
ses paramètres.

b. Montrer que pour tout i ∈ J0, nK,

P(Y2 = i) =
i∑

k=0
P ((Y1 = k) ∩ (X2 = i− k)) .
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c. En déduire que pour tout i ∈ J0, nK,

P(Y2 = i) =
(
n

i

)(11
36

)i (25
36

)n−i
.

d. Donner alors la loi de Y2.
e. Retrouver le résultat conjecturé pour E(Y2) dans le cas où n = 8.

3. Loi de Yj
Démontrer que, pour tout j ∈ N∗, la variable aléatoire Yj suit une loi binomiale de

paramètres n et pj où pj est un réel appartenant à ]0 ; 1[.
On procédera par récurrence, en s’inspirant de la démarche de la question 2). On

précisera une relation de récurrence entre pj et pj+1.
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Solution.
1. a. Le lancer des n dés constitue un schéma de Bernoulli en prenant comme succès

« obtenir un 6 ». Ainsi, la variable aléatoire X1 qui compte le nombre de succès suit
une loi binomiale B(n, 1

6) .

Par propriété, on a donc E(X1) = n
6 et V(X1) = 5n

36 .

b. Par définition, Y1 = X1 .
c. Par définition, Y2 = X1 +X2 .
d. Soit k ∈ J0, nK. Si X1 = k est réalisé alors, à la seconde étape, on lance n − k dés

et, pour la même raison que dans la question, le nombre de 6 obtenu suit une loi
binomiale de paramètre n− k et 1

6 . Ainsi, la loi conditionnelle de X2 sachant X1 = k
est la loi B(n− k, 1

6).
e. Soit k, i et n des entiers tels que 0 ⩽ k ⩽ i ⩽ n. Alors,(

n

k

)(
n− k
i− k

)
= n!
k!(n− k)! ×

(n− k)!
(i− k)!(n− k − (i− k))!

= n!
k! ×

1
(i− k)!(n− i)!

= n!
(n− i)! ×

1
k!(i− k)!

= n!
i!(n− i)! ×

i!
k!(i− k)!

i.e.
(
n

k

)(
n− k
i− k

)
=
(
n

i

)(
i

k

)
.

2. a. On peut conjecture à l’allure du diagramme que E(Y2) ≈ 2,5 et que Y2 suit une loi
binomiale de paramètres 8 et (environ) 2,5

8 = 5
16 .

b. Comme ((Y1 = k))k∈J0,nK forme est un système complet d’évènements, d’après la
formule de probabilités totales, pour tout i ∈ J0, nK,

P(Y2 = i) =
n∑
k=0

P((Y1 = k) ∩ (Y2 = i)) =
n∑
k=0

P((Y1 = k) ∩ (Y1 +X2 = i))

=
n∑
k=0

P((Y1 = k) ∩ (k +X2 = i)) =
n∑
k=0

P((Y1 = k) ∩ (X2 = i− k))

De plus, si k > i alors i− k < 0 donc (X2 = i− k) = ∅ et, dans ce cas, on a donc
P((Y1 = k) ∩ (X2 = i− k)) = 0. Dès lors,

P(Y2 = i) =
i∑

k=0
P((Y1 = k) ∩ (X2 = i− k)) .
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c. On en déduit que, pour tout i ∈ J0, nK,

P(Y2 = i) =
i∑

k=0
P(Y1 = k)P(X2 = i−k | Y1 = k) =

i∑
k=0

P(X1 = k)P(X2 = i−k | X1 = k).

Or, on a vu que la loi conditionnelle de X2 sachant l’évènement X1 = k est la loi
B(n− k, 1

6) donc

P(Y2 = i) =
i∑

k=0

(
n

k

)(1
6

)k (5
6

)n−k
×
(
n− k
i− k

)(1
6

)i−k (5
6

)n−k−(i−k)

=
i∑

k=0

(
n

k

)(
n− k
i− k

)(1
6

)i (5
6

)2n−i−k

=
i∑

k=0

(
n

i

)(
i

k

)(1
6

)i (5
6

)2n−i−k
d’après 1.e.

=
(
n

i

)(1
6

)i (5
6

)2n−2i i∑
k=0

(
i

k

)
1k
(5

6

)i−k

=
(
n

i

)(1
6

)i (5
6

)2n−2i (
1 + 5

6

)i
par la formule du binôme de Newton

=
(
n

i

)(11
36

)i [(5
6

)2]n−i

soit finalement,

P(Y2 = i) =
(
n

i

)(11
36

)i (25
36

)n−i
.

d. Ainsi, pour tout i ∈ J0, nK,

P(Y2) =
(
n

i

)(11
36

)i (
1− 11

36

)n−i

donc Y2 suit une loi binomiale de paramètres n et 11
36 .

e. Ainsi, si n = 8, E(Y2) = 11×8
36 = 22

9 ce qui est assez proche de la valeur conjecturée
puisque 22

9 ≈ 2,4.

3. Considérons, pour tout j ∈ N∗, la proposition H(j) « il existe pj ∈ ]0 ; 1[ tel que Yj suive
une loi binomiale de paramètre n et pj ».
• Initialisation. Comme Y1 = X1 suit une loi binomiale de paramètre n et p1 = 1

6 ,
H(1) est vraie.
• Hérédité. Soit j ∈ N∗. Supposons que H(j) est vraie.
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En utilisant le formule de probabilités totales avec le système complet d’évènements
((Yj = k))k∈J0,nK, on obtient, pour tout i ∈ J0, nK,

P(Yj+1 = i) =
n∑
k=0

P((Yj = k) ∩ (Yj+1 = i)) =
n∑
k=0

P((Yj = k) ∩ (Yj +Xj+1 = i))

=
n∑
k=0

P((Yj = k) ∩ (k +Xj+1 = i)) =
n∑
k=0

P((Yj = k) ∩ (Xj+1 = i− k))

De plus, si k > i alors i − k < 0 donc (Xj+1 = i − k) = ∅ et, dans ce cas, on a donc
P((Yj = k) ∩ (Xj+1 = i− k)) = 0. Dès lors,

P(Yj+1 = i) =
i∑

k=0
P((Yj = k) ∩ (Xj+1 = i− k))

=
i∑

k=0
P((Yj = k)P(Xj+1 = i− k | Yj = k).

Or, comme précédemment, la loi conditionnelle de Xj+1 sachant (Yj = k) est la loi
binomiale de paramètre n− k et 1

6 donc

P(Yj+1 = i) =
i∑

k=0

(
n

k

)
pkj (1− pj)n−k ×

(
n− k
i− k

)(1
6

)i−k (5
6

)n−k−(i−k)

=
i∑

k=0

(
n

k

)(
n− k
i− k

)
pkj (1− pj)n−k

(1
6

)i−k (5
6

)n−i

=
(1

6

)i (5
6

)n−i i∑
k=0

(
n

i

)(
i

k

)
pkj (1− pj)n−k6k

=
(
n

i

)(1
6

)i (5
6

)n−i
(1− pj)n

i∑
k=0

(
i

k

)(
6pj

1− pj

)k
1i−k

=
(
n

i

)(1
6

)i (5
6

)n−i
(1− pj)n

(
6pj

1− pj
+ 1

)i

=
(
n

i

)(1
6

)i (5
6

)n−i
(1− pj)n

(
5pj + 1
1− pj

)i

=
(
n

i

)(5pj + 1
6

)i (5(1− pj)
6

)n−i

=
(
n

i

)(5pj + 1
6

)i (
1− 5pj + 1

6

)n−i

Ainsi, Yj+1 suit une loi binomiale de paramètres n et pj+1 = 5pj+1
6 (qui appartient à ]0 ; 1[

car pj ∈ ]0 ; 1[) donc H(j + 1) est vraie.
• Conclusion. Par le principe de récurrence, on conclut que, pour tout j ∈ N∗, il

existe pj ∈ ]0 ; 1[, tel que Yj ↪→ B(n, pj). De plus, (pj) est définie par p1 = 1
6 et, pour

tout j ∈ N∗, pj+1 = 5pj+1
6 .
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Sujet 42. Tirages avec ajout d’une boule blanche (O2)

Une urne contient initialement une boule blanche et une boule noire.
On effectue des tirages successifs de la manière suivante :
1. si on tire une boule blanche, on la replace dans l’urne et on rajoute une boule blanche,
2. si on tire une boule noire, on la replace dans l’urne mais on ne rajoute rien.
Pour tout n ∈ N, on note Xn la variable aléatoire égale au nombre de boules blanches tirées

au cours des n premiers tirages.
1. a. Donner la loi de X1.

b. Déterminer la loi du couple (X1, X2) et en déduire la loi de X2.
c. Déterminer la loi du couple (X2, X3) et en déduire la loi de X3.

2. Soit n ∈ N.
a. Donner l’univers image de Xn.
b. Conjecturer la valeur de P(Xn = n).
c. Montrer que (Xn+1 = 0) = (Xn+1 = 0) ∩ (Xn = 0).
d. Après n tirages n’ayant amené que des boules noires, donner le nombre de boules

blanches et le nombre de boules noires de l’urne.
En déduire P(Xn=0)(Xn+1 = 0).

e. Calculer P(Xn+1 = 0) en fonction de P(Xn = 0). En déduire une expression de
P(Xn = 0) en fonction de n.

f. Après n tirages ayant amené k boules blanches, où 1 ⩽ k ⩽ n, donner le nombre de
boules et le nombre de boules blanches de l’urne.

g. En déduire, pour tout k ∈ J0, nK, P(Xn=k)(Xn+1 = k + 1).
h. Pour tout k ∈ J0, nK, exprimer P(Xn+1 = k + 1) en fonction de P(Xn = k + 1) et

P(Xn = k).
Démontrer ensuite la conjecture de la question 2.b..
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Solution.

1. a. Au premier tirage, on tire soit une boule blanche soit une boule de façon équiprobable

donc X1 suit une loi de Bernoulli de paramètre 1
2 .

b. Au bout de 2 tirages, on a tiré 0, 1 ou 2 boules blanches donc X2(Ω) = {0 ; 1 ; 2}.

• P(X1 = 0, X2 = 0) = P(X1 = 0)P(X1=0)(X2 = 0) = 1
2 ×

1
2 = 1

4 ;

• P(X1 = 1, X2 = 0) = 0 car X2 ⩾ X1 ;

• P(X1 = 0, X2 = 1) = P(X1 = 0)P(X1=0)(X2 = 1) = 1
2 ×

1
2 = 1

4 ;

• P(X1 = 1, X2 = 1) = P(X1 = 1)P(X1=1)(X2 = 1) = 1
2 ×

1
3 = 1

6 ;

• P(X1 = 0, X2 = 2) = 0 car X2 ⩽ X1 + 1 ;

• P(X1 = 1, X2 = 2) = P(X1 = 1)P(X1=1)(X2 = 2) = 1
2 ×

2
3 = 1

3 ;

On en déduit le tableau suivant donnant la loi conjointe de (X1, X2) et celle de X2 :

X2

X1 0 1 Loi de
X2

0 1
4 0 1

4
1 1

4
1
6

5
12

2 0 1
3

1
3

Loi de X1
1
2

1
2 1

c. De même, X3(Ω) = {0 ; 1 ; 2 ; 3} et si j /∈ {i, i+ 1}, P(X2 = i,X3 = j) = 0. De plus,

• P(X2 = 0, X3 = 0) = P(X2 = 0)P(X2=0)(X3 = 0) = 1
4 ×

1
2 = 1

8 ;

• P(X2 = 0, X3 = 1) = P(X2 = 0)P(X2=0)(X3 = 1) = 1
4 ×

1
2 = 1

8 ;

• P(X2 = 1, X3 = 1) = P(X2 = 1)P(X2=1)(X3 = 1) = 5
12 ×

1
3 = 5

36 ;

• P(X2 = 1, X3 = 2) = P(X2 = 1)P(X2=1)(X3 = 2) = 5
12 ×

2
3 = 5

18 ;

• P(X2 = 2, X3 = 2) = P(X2 = 2)P(X2=2)(X3 = 2) = 1
3 ×

1
4 = 1

12 ;

• P(X2 = 2, X3 = 3) = P(X2 = 2)P(X2=2)(X3 = 3) = 1
3 ×

3
4 = 1

4 ;

On en déduit le tableau suivant donnant la loi conjointe de (X2, X3) et celle de X3 :
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X3

X2 0 1 2 Loi de
X3

0 1
8 0 0 1

8
1 1

8
5
36 0 19

72
2 0 5

18
1
12

13
36

3 0 0 1
4

1
4

Loi de X2
1
4

5
12

1
3 1

2. Soit n ∈ N.

a. Au bout de n tirages, on a tiré entre 0 et n boules blanches donc Xn(Ω) = J0, nK .

b. On a vu que P(X1 = 1) = 1
2, P(X2 = 2) = 1

3 et P(X3 = 3) = 1
4.

On peut conjecturer que P(Xn = n) = 1
n+ 1 .

c. Étant donné que Xn+1 ⩾ Xn ⩾ 0, si Xn+1 = 0 alors Xn = 0. Autrement dit, on a
l’inclusion (Xn+1 = 0) ⊂ (Xn = 0) donc (Xn+1 = 0) = (Xn+1 = 0) ∩ (Xn = 0) .

d. Si les n premiers tirages n’ont amené que des boules noires, la composition de l’urne
n’a pas changé donc il a toujours 1 boule blanche et 1 boule noire .

On en déduit que P(Xn=0)(Xn+1 = 0) = 1
2 .

e. Comme (Xn+1 = 0) = (Xn+1 = 0) ∩ (Xn = 0),

P(Xn+1 = 0) = P(Xn = 0)P(Xn=0)(Xn+1 = 0) = 1
2P(Xn = 0).

Ainsi, la suite (P(Xk = 0))k∈N est une suite géométrique de raison 1
2. De plus,

P(X0 = 0) = 1 donc P(Xn = 0) =
(1

2

)n
.

f. Soit k ∈ J1, nK. Si on a tiré k boules blanches au cours des n premiers tirages, alors
on a ajouté k boules blanches : il y a donc k + 2 boules dont k + 1 sont blanches .

g. Soit k ∈ J1, nK. On déduit de la question précédente que P(Xn=k)(Xn+1 = k + 1) = k + 1
k + 2 .

h. Soit k ∈ J0, nK. L’évènement (Xn+1 = k + 1) est réalisé si Xn = k + 1 et on tire
une boule noire au (n+ 1)-ème tirage ou si Xn = k et on tire une boule blanche au
(n+ 1)-ème tirage. On en déduit que

(Xn+1 = k + 1) = [(Xn = k + 1) ∩ (Xn+1 = k + 1)] ∪ [(Xn = k) ∩ (Xn+1 = k + 1)]
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donc, comme cette union est disjointe,

P(Xn+1 = k + 1) = P((Xn = k + 1) ∩ (Xn+1 = k + 1)) + P((Xn = k) ∩ (Xn+1 = k + 1))
= P(Xn = k + 1)P(Xn=k+1)(Xn+1 = k + 1)

+ P(Xn = k)P(Xn=k)(Xn+1 = k + 1)

= P(Xn = k + 1)× 1
k + 3 + P(Xn = k)× k + 1

k + 2

Ainsi,

P(Xn+1 = k + 1) = 1
k + 3P(Xn = k + 1) + k + 1

k + 2P(Xn = k) .

Considérons, pour tout n ∈ N, la proposition P(n) ; « P(Xn = n) = 1
n+ 1 ».

Initialisation. Comme P(X0 = 0) = 1, P(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, d’après le résultat

précédent

P(Xn+1 = n+ 1) = 1
n+ 3P(Xn = n+ 1) + n+ 1

n+ 2P(Xn = n).

Or, Xn ≤ n donc (Xn = n+ 1) = ∅ donc

P(Xn+1 = n+ 1) = 1
n+ 3 × 0 + n+ 1

n+ 2 ×
1

n+ 1 = 1
n+ 2 .

Ainsi, P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

∀n ∈ N P(Xn = n) = 1
n+ 1 .
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Sujet 43. Probabilité que X + Y = Z (O2)

Une urne contient quatre boules indiscernables au toucher, numérotées de 0 à 3.
On effectue trois tirages successifs avec remise.
On note X, Y et Z les variables aléatoires égales au résultat de chacun de ces tirages.
On note p la probabilité de l’évènement (X + Y = Z).
1. Donner les lois de X, Y et Z ainsi que leur espérance et leur variance.
2. Déterminer la loi conjointe du couple (X, Y ). Préciser sa covariance.
3. En déduire la loi de la variable aléatoire X + Y . Préciser son espérance et sa variance.
4. En déduire la valeur de p.
5. Application

Un forain propose un jeu de loterie avec trois roues identiques, chacune divisée équitable-
ment en quatre cadrans numérotés de 0 à 3.
Le joueur mise 1 euro et fait tourner deux roues, le forain fait tourner la troisième roue.
Le joueur gagne si la somme de ses deux numéros est égale au numéro obtenu par le
forain. Il remporte alors la somme de a euros.
a. Exprimer en fonction de a l’espérance de gain du joueur.
b. Pour quelle valeur de a le jeu est-il équitable ? On rappelle que le jeu est équitable

lorsque l’espérance du gain est égale à 0.
En déduire pour quelles valeurs de a le jeu est rentable pour le forain.

c. Le joueur décide de rejouer jusqu’à ce qu’il gagne une partie.
En moyenne, combien de parties devra-t-il faire ?
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Solution.

1. Comme il y a remise, X, Y et Z suivent toutes une loi uniforme sur J0, 3K.

Leur espérance est donc
3∑

k=0
k × 1

4 = 1
4

3∑
k=0

k = 1
4 ×

3× 4
2 = 3

2.

Pour la variance, calculons d’abord l’espérance de X2 :

E(X2) =
3∑

k=0
k2 × 1

4 = 1
4

3∑
k=0

k2 = 1
4 ×

3× 4× 7
6 = 7

2

donc, par la formule de König-Huygens,

V(X) = E(X2)− E(X)2 = 7
2 −

(3
2

)2
= 5

4 .

2. Comme il y a remise, les deux variables aléatoires X et Y sont indépendantes donc,

pour tout (i, j) ∈ J0, 3K2, P(X = i, Y = j) = P(X = i)P(Y = j) = 1
16 .

De plus, comme X et Y sont indépendantes, Cov(X, Y ) = 0 .

3. Commençons par remarquer que (X + Y )(Ω) = J0, 6K.
Soit k ∈ J0, 6K. Alors, comme ((X = i))i∈J0,3K est un système complet d’évènements, par
la formule des probabilités totales

P(X + Y = k) =
3∑
i=0

P(X = i,X + Y = k) =
3∑
i=0

P(X = i, Y = k − i).

Remarquons que si k − i < 0 ou si k − i > 3, (Y = k − i) = ∅ et, dans ce cas,
P(X = i, Y = k − i) = 0 donc

P(X + Y = k) =
3∑
i=0

P(X = i,X + Y = k) =
3∑
i=0

P(X = i, Y = k − i).
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Ainsi,

P(X + Y = 0) = P(X = 0, Y = 0) = 1
16

P(X + Y = 1) = P(X = 1, Y = 0) + P(X = 0, Y = 1) = 2
16 = 1

8
P(X + Y = 2) = P(X = 2, Y = 0) + P(X = 1, Y = 1) + P(X = 0, Y = 2) = 3

16
P(X + Y = 3) = P(X = 3, Y = 0) + P(X = 2, Y = 1) + P(X = 1, Y = 2) + P(X = 0, Y = 3)

= 4
16 = 1

4
P(X + Y = 4) = P(X = 3, Y = 1) + P(X = 2, Y = 2) + P(X = 1, Y = 3) = 3

16
P(X + Y = 5) = P(X = 2, Y = 3) + P(X = 3, Y = 2) = 2

16 = 1
8

P(X + Y = 6) = P(X = 3, Y = 3) = 1
16

Ainsi, on peut résumer la loi de X + Y dans le tableau suivant :

k 0 1 2 3 4 5 6

P(X = k) 1
16

1
8

3
16

1
4

3
16

1
8

1
16

.

Par linéarité de l’espérance, E(X + Y ) = E(X) + E(Y ) donc E(X + Y ) = 3 et,
comme X et Y sont indépendantes, V(X + Y ) = V(X) + V(Y ) donc V(X + Y ) = 5

2 .

4. Comme ((Z = k))k∈J0,3K est un système complet d’évènements, par la formule de probabi-
lités totales,

P(X + Y = Z) =
3∑

k=0
P(X + Y = Z,Z = k) =

3∑
k=0

P(X + Y = k, Z = k).

Comme il y a remise, les tirages sont indépendants donc les variables aléatoires X + Y et
Z sont indépendantes et ainsi

P(X+Y = Z) =
3∑

k=0
P(X+Y = k)P(Z = k) =

3∑
k=0

P(X+Y = k)×1
4 = 1

4

( 1
16 + 1

8 + 3
16 + 1

4

)

soit p = 5
32 .

5. a. Notons X le numéro obtenu sur la première roue, Y celui obtenu sur la seconde
roue et Z celui obtenue sur la troisième roue. Alors, X, Y et Z sont des variables
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aléatoires indépendantes suivant la même loi uniforme sur J0, 3K. Par la question
précédente, la probabilité que le joueur gagne est p = 5

32 et, par conséquent, la

probabilité que le joueur perde est 1− p = 27
32. Ainsi, la variable aléatoire G égale au

gain du joueur prend les valeurs −1 et a− 1 avec les probabilités P(G = −1) = 27
32 et

P(G = a− 1) = 5
32. Ainsi, l’espérance de gain du joueur est

E(G) = −1× 27
32 + (a− 1)× 5

32

soit E(G) = 5a
32 − 1 .

b. Sachant que
E(G) = 0⇐⇒ 5a

32 = 1⇐⇒ a = 32
5 ,

le jeu est équitable si et seulement si a = 6,4 .
Il s’ensuit que le jeu est rentable pour le forain si a < 6,4 .

c. Notons T le nombre de parties jouées pour gagner une partie. Alors, T est le rang du
premier succès dans un schéma de Bernoulli en prenant comme succès « gagner une
partie ». Ainsi, T suit une loi géométrique de paramètre p et donc le nombre moyen

de parties faites par le joueur est E(T ) = 1
p

= 32
5 .
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Sujet 44. Loi conjointe du min et du max I (O2)
Une urne contient cinq boules numérotées de 1 à 5.
On tire deux boules successivement sans remise.
On note X1 la variable aléatoire égale au premier numéro obtenu et X2 la variable aléatoire

égale au deuxième numéro obtenu.
On définit de plus les variables aléatoires Y = min(X1, X2) et Z = max(X1, X2).
1. Donner la loi de X1 et son espérance.
2. Soit i ∈ J1, 5K. Donner la loi conditionnelle de X2 sachant que X1 = i.
3. Déterminer la loi conjointe du couple (Y, Z).
4. Donner la loi de Y et la loi de Z.
5. Les variables aléatoires Y et Z sont-elles indépendantes ?
6. Déterminer E(Y ) et E(Z).
7. Déterminer Cov(Y, Z).
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Solution.

1. Par équiprobabilité des tirages, X1 suit une loi uniforme sur J1, 5K . L’espérance de X1

est donc E(X1) = 1+5
2 = 3 .

2. Si l’évènement (X = i) est réalisé, il reste dans l’urne les 4 boules autre que i et par
équiprobabilité des tirages, chacune à une probabilité 1

4 d’être tirée.

Ainsi, pour tout j ∈ J1, 5K, P(X2 = j | X1 = i) =


1
4 si j ̸= i

0 sinon
.

3. Notons que Y (Ω) = J1, 4K et Z(Ω) = J2, 5K. Soit (i, j) ∈ J1, 4K× J2, 45K.
• Comme Y < Z, si i ⩾ j, P(Y = i, Z = j) = 0.
• Supposons i < j. Alors, (Y = i, Z = j) = (X1 = i,X2 = j) ∪ (X1 = j,X2 = j) donc,
comme ces deux évènements sont incompatibles,

P(Y = i, Z = j) = P(X1 = i,X2 = j) + P(X1 = j,X2 = j)
P(X1 = i)P(X2 = j | X1 = i) + P(X1 = j)P(X2 = i | X1 = j)

= 1
5 ×

1
4 + 1

5 ×
1
4

= 1
10 .

Ainsi, pour tout (i, j) ∈ J1, 4K× J2, 5K, P(Y = i, Z = j) =


1
10 si i < j

0 si i ⩾ j
.

4. Comme ((Z = j))j∈J2,5K est un système complet d’évènements, d’après la formule de
probabilités totales, pour tout i ∈ J1, 4K,

P(Y = i) =
5∑
j=2

P(Y = i, Z = j) =
5∑

j=i+1

1
10 = 5− (i+ 1) + 1

10

donc, pour tout i ∈ J1, 4K, P(Y = i) = 5−i
10 .

De même, ((Y = i))i∈J1,4K est un système complet d’évènements donc, d’après la
formule de probabilités totales, pour tout j ∈ J2, 5K,

P(Z = j) =
4∑
i=1

P(Y = i, Z = j) =
j−1∑
i=1

1
10 = j − 1− 1 + 1

10

donc, pour tout j ∈ J2, 5K, P(Z = j) = j−1
10 .

5. Étant donné que P(Y = 2, Z = 2) = 0 et P(Y = 2)P(Z = 2) = 3
10 ×

1
10 = 3

100 ̸= 0,
les variables aléatoires Y et Z ne sont pas indépendantes .
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6. Par définition,

E(Y ) =
4∑
i=1

i× 5− i
10 = 4

10 + 6
10 + 6

10 + 4
10 = 20

10

donc E(Y ) = 2 .
De même,

E(Z) =
5∑
j=2

j × j − 1
10 = 2

10 + 6
10 + 12

10 + 20
10 = 40

10

donc E(Z) = 4 .
7. Par le théorème de transfert pour le produit,

E(XY ) =
4∑
i=1

5∑
j=2

ijP(X = i, Y = j) =
4∑
i=1

i
5∑

j=i+1

j

10 =
4∑
i=1

i

10

5∑
j=i+1

j

=
4∑
i=1

i

10

 5∑
j=1

j −
i∑

j=1
j

 =
4∑
i=1

i

10 ×
(

5× 6
2 − i(i+ 1)

2

)

=
4∑
i=1

i(30− i(i+ 1))
20 = 14

10 + 24
10 + 27

10 + 20
10 = 85

10 = 17
2

donc, par la formule de König-Huygens

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 17
2 − 2× 4

soit Cov(X, Y ) = 1
2 .
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Sujet 45. Loi conjointe du min et du max II (O2)

Une urne contient cinq boules numérotées de 1 à 5.
On tire deux boules simultanément.
On note X la variable aléatoire égale au plus petit numéro obtenu et Y la variable aléatoire

égale au plus grand numéro obtenu.
1. a. Donner X(Ω) et Y (Ω).

b. Donner la loi conjointe de X et de Y .
c. Donner la loi de X et la loi de Y .
d. Les variables aléatoires X et Y sont-elles indépendantes ?
e. Déterminer E(X) et E(Y ).
f. Déterminer Cov(X, Y ).

2. Reprendre les questions précédentes en supposant cette fois qu’on tire deux boules
successivement et avec remise.
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Solution.

1. a. Comme les deux boules sont distinctes, X(Ω) = J1, 4K et Y (Ω) = J2, 5K .

b. Le nombre de tirages possibles est
(

5
2

)
= 5×4

2 = 10. Soit (i, j) ∈ J1, 4K× J2, 5K.

Si i ⩾ j alors P(X = i, Y = j) = 0 car X < Y .
Si i < j alors (X = i, Y = j) est réalisé si et seulement si on a tiré la boule i et la
boule j donc, par équiprobabilité des tirages, P(X = i, Y = j) = 1

10 .

Ainsi, pour tout (i, j) ∈ J1, 4K× J2, 5K, P(X = i, Y = j) =


1
10 si i < j

0 sinon
.

c. Comme ((Y = j))j∈J2,5K est un système complet d’évènements, par la formule de
probabilités totales, pour tout i ∈ J1, 4K,

P(X = i) =
5∑
j=2

P(X = i, Y = j) =
5∑

j=i+1

1
10 = 5− (i+ 1) + 1

10 i.e. P(X = i) = 5− i
10 .

De même, ((X = i))i∈J1,4K est un système complet d’évènements, par la formule de
probabilités totales, pour tout j ∈ J2, 5K,

P(Y = j) =
4∑
i=1

P(X = i, Y = j) =
j−1∑
i=1

1
10 = j − 1− 1 + 1

10 i.e. P(Y = j) = j − 1
10 .

d. Étant donné que P(X = 2, Y = 2) = 0 et P(X = 2)P(Y = 2) = 3
10 ×

1
10 = 3

100 ̸= 0,
les variables aléatoires X et Y ne sont pas indépendantes .

e. Par définition,

E(X) =
4∑
i=1

iP(X = i) =
4∑
i=1

i× 5− i
10 = 4 + 6 + 6 + 4

10 i.e. E(X) = 2

et

E(Y ) =
5∑
j=2

jP(Y = j) =
5∑
j=2

j × j − 1
10 = 2 + 6 + 12 + 20

10 i.e. E(X) = 4 .
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f. Par le théorème de transfert pour le produit,

E(XY ) =
4∑
i=1

5∑
j=2

ijP(X = i, Y = j) =
4∑
i=1

5∑
j=i+1

ij

10

= 1
10

4∑
i=1

i
5∑

j=i+1
j = 1

10

4∑
i=1

i

 5∑
j=1

j −
i∑

j=1
j


= 1

10

4∑
i=1

i

(
5× 6

2 − i(i+ 1)
2

)

= 1
10

4∑
i=1

(
15i− i2(i+ 1)

2

)

= 1
10(14 + 24 + 27 + 20) = 85

10 = 17
2

donc, par la formule de König-Huygens,

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 17
2 − 2× 4

soit Cov(X, Y ) = 1
2 .

2. a. Comme il y a remise, X(Ω) = Y (Ω) = J1, 5K .
b. Le nombre de tirages possibles est 52 = 25. Soit (i, j) ∈ J1, 5K2.

Si i > j alors P(X = i, Y = j) = 0 car X ⩽ Y .
Si i = j alors (X = i, Y = j) est réalisé si et seulement si on a tiré la boule i puis à
nouveau la boule i donc, par équiprobabilité des tirages, P(X = i, Y = i) = 1

25 .
Si i < j alors (X = i, Y = j) est réalisé si et seulement si on a tiré la boule i
puis la boule j ou la boule j puis la boule i donc, par équiprobabilité des tirages,
P(X = i, Y = j) = 2

25 .

Ainsi, pour tout (i, j) ∈ J1, 5K2, P(X = i, Y = j) =


2
25 si i < j
1
25 si i = j

0 si i > j

.

c. Comme ((Y = j))j∈J1,5K est un système complet d’évènements, par la formule de
probabilités totales, pour tout i ∈ J1, 5K,

P(X = i) =
5∑
j=1

P(X = i, Y = j) = 1
25 +

5∑
j=i+1

2
25 = 1

25 + 2(5− (i+ 1) + 1)
25

i.e. P(X = i) = 11−2i
25 .

De même, ((X = i))i∈J1,5K est un système complet d’évènements, par la formule de
probabilités totales, pour tout j ∈ J1, 5K,

P(Y = j) =
5∑
i=1

P(X = i, Y = j) = 1
25 +

j−1∑
i=1

2
25 = 1

25 + 2(j − 1− 1 + 1)
25
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i.e. P(Y = j) = 2j−1
25 .

d. Étant donné que P(X = 2, Y = 1) = 0 et P(X = 2)P(Y = 1) = 7
25 ×

1
25 = 7

625 ̸= 0,
les variables aléatoires X et Y ne sont pas indépendantes .

e. Par définition,

E(X) =
5∑
i=1

iP(X = i) =
5∑
i=1

i× 11− 2i
25 = 9 + 14 + 15 + 12 + 5

25 i.e. E(X) = 11
5

et

E(Y ) =
5∑
j=1

jP(Y = j) =
5∑
j=1

j × 2j − 1
25 = 1 + 6 + 15 + 28 + 45

25 i.e. E(X) = 19
5 .

f. Par le théorème de transfert pour le produit,

E(XY ) =
5∑
i=1

5∑
j=1

ijP(X = i, Y = j) =
5∑
i=1

 i2
25 +

5∑
j=i+1

2ij
25


= 1

25

 5∑
i=1

i2 + 2
5∑
i=1

i
5∑

j=i+1
j

 = 1
25

5× 6× 11
6 + 2

5∑
i=1

i

 5∑
j=1

j −
i∑

j=1
j


= 1

25

(
55 + 2

5∑
i=1

i

(
5× 6

2 − i(i+ 1)
2

))

= 1
25

(
55 + 2

5∑
i=1

(
15i− i2(i+ 1)

2

))

= 1
25(55 + 28 + 48 + 54 + 40) = 225

25 = 9

donc, par la formule de König-Huygens,

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 9− 11
5 ×

19
5

soit Cov(X, Y ) = 16
25 .
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Sujets mixtes algèbre/analyse
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Sujet 46. Résolution d’un système différentiel I (C5)

On considère la matrice A =
(
−10 18
−6 11

)
.

1. Déterminer les valeurs propres de A.
2. Justifier que A est diagonalisable et expliciter une matrice P telle que P−1AP soit une

matrice diagonale. On veillera à ce que les coefficients de P soient des entiers.
3. Calculer P−1.
4. Soit x et y deux fonctions dérivables sur R et vérifiant x(0) = 11, y(0) = 7 et, pour tout

t ∈ R, x′(t) = −10x(t) + 18y(t)
y′(t) = −6x(t) + 11y(t)

.

On pose, pour tout t ∈ R,
(
a(t)
b(t)

)
= P−1

(
x(t)
y(t)

)
.

a. Déterminer une équation différentielle vérifiée par a et une équation différentielle
vérifiée par b.

b. Déterminer, pour tout réel t, a(t) et b(t).
c. En déduire, pour tout réel t, x(t) et y(t).

5. On pose, pour tout t ∈ R, f(t) = 2e−t + 9e2t.
a. Écrire en Python une fonction qui calcule f(t) où t est un réel passé en argument de

la fonction.
b. Calculer f(0,5) et f(1).

c. Montrer que l’équation f(t) = 30 admet une unique solution α dans
[1
2 ; 1

]
.

d. En utilisant l’outil informatique, déterminer une valeur approchée de α à 10−3 près.
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Solution.
1. Méthode 1 : par le calcul

Soit λ ∈ R. Alors,

det(A− λI2) =
∣∣∣∣∣−10− λ 18
−6 11− λ

∣∣∣∣∣ = (−10− λ)(11− λ)− (−6)× 18

= −110 + 10λ− 11λ+ λ2 + 108
= λ2 − λ− 2

Le discriminant du trinôme X2 −X − 2 est ∆ = (−1)2 − 4× 1× (−2) = 9 > 0 donc ce
trinôme possède deux racines réelles :

x1 = −(−1)−
√

9
2× 1 = −1 et x2 = −(−1) +

√
9

2× 1 = 2

On en déduit que Sp(A) = {−1 ; 2} .

Méthode 2 : à l’aide de Python
Grâce au code suivant,

import numpy as np

A = np.matrix ([[ -10 , 18], [-6, 11]])
print(np.linalg.eig(A))

qui affiche

(array ([-1., 2.]) ,
matrix ([[ -0.89442719 , -0.83205029] ,
[ -0.4472136 , -0.5547002 ]]))

on obtient que Sp(A) = {−1 ; 2} .
2. La matrice A est une matrice carrée d’ordre 2 qui admet 2 valeurs propres distinctes

donc A est diagonalisable.
Pour déterminer P , on cherche une base de vecteurs propres de A.

Soit (x, y) ∈ R2 et V =
(
x
y

)
.

AV = −V ⇐⇒

−10x+ 18y = −x
−6x+ 11y = −y

⇐⇒

18y = 9x
12y = 6x

⇐⇒ x = 2y

Ainsi, V1 =
(

2
1

)
est un vecteur propre de A associé à la valeur propre −1.
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AV = 2V ⇐⇒

−10x+ 18y = 2x
−6x+ 11y = 2y

⇐⇒

18y = 12x
9y = 6x

⇐⇒ y = 2
3x

. Ainsi, V2 =
(

3
2

)
est un vecteur propre de A associé à la valeur propre 2.

On en déduit que si D =
(
−1 0
0 2

)
et P =

(
2 3
1 2

)
alors A = PDP−1 .

3. Comme det(P ) = 2× 2− 1× 3 = 1, P−1 =
(

2 −3
−1 2

)
.

4. a. Pour tout réel t, (
a(t)
b(t)

)
=
(

2 −3
−1 2

)(
x(t)
y(t)

)
=
(

2x(t)− 3y(t)
−x(t) + 2y(t)

)

donc a(t) = 2x(t) − 3y(t) et b(t) = −x(t) + 2y(t). On en déduit que a et b sont
dérivables sur R comme combinaisons linéaires de fonctions dérivables et, pour tout
réel t,

a′(t) = 2x′(t)− 3y′(t) = 2(−10x(t) + 18y(t))− 3(−6x(t) + 11y(t))
= −2x′(t) + 3y′(t) = −a′(t)

et

b′(t) = −x′(t) + 2y′(t) = −(−10x(t) + 18y(t)) + 2(−6x(t) + 11y(t))
= −2x′(t) + 4y′(t) = 2b′(t).

Ainsi, a est solution de (E1) : z′ + z = 0 et b est solution de (E2) : z′ − 2z = 0 .
b. On en déduit qu’il existe une constante réelle C1 telle que, pour tout réel t, a(t) = C1e−t.

Or, a(0) = 2x(0)−3y(0) = 1 donc 1 = C1e0 = C1 et ainsi, pour tout réel t, a(t) = e−t .
De même, il existe une constante réelle C2 telle que, pour tout réel t, b(t) = C2e2t.

Or, b(0) = −x(0)+2y(0) = 3 donc 3 = C2e0 = C2 et ainsi, pour tout réel t, b(t) = 3e2t .

c. Pour tout réel t,
(
a(t)
b(t)

)
= P−1

(
x(t)
y(t)

)
donc

(
x(t)
y(t)

)
= P

(
a(t)
b(t)

)
=
(

2a(t) + 3b(t)
a(t) + 2b(t)

)
.

Ainsi, pour tout réel t, x(t) = 2e−t + 9e2t et y(t) = e−t + 6e2t .
5. a. La fonction suivante convient :

from math import exp

def fonction_f (t):
return 2* exp(-t) + 9* exp (2*t)
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b. Par définition, f(0,5) = 2e−0,5 + 9e et f(1) = 2e−1 + 9e2 . À l’aide de la fonction
précédente, on trouve f(0,5) ≈ 25,68 et f(1) ≈ 67,24 .

c. La fonction f est dérivable sur R comme composées et combinaisons linéaires de
fonctions dérivables et, pour tout réel t, f ′(t) = −2e−t+18e2t. De plus, pour tout t ⩾ 0,
−t ⩽ 0 donc, par croissance de la fonction exp sur R, e−t ⩽ 1 et ainsi −2e−t ⩾ −2.
De même, pour tout t ⩾ 0, 2t ⩽ 0 donc, par croissance de la fonction exp sur R,
e2t ⩾ 1 et ainsi 18e2t ⩾ 18. Dès lors, pour tout t ⩾ 0, f ′(t) ⩾ −2 + 18 = 16 donc
f ′(t) > 0. Ainsi, f est strictement croissante sur R+ et en particulier f est strictement
croissante sur

[1
2 ; 1

]
.

On en déduit que f est continue (car dérivable) et strictement croissante sur
[1
2 ; 1

]
donc, par le théorème de la bijection continue, f réalise une bijection de

[1
2 ; 1

]
sur

f
([1

2 ; 1
])

.

De plus, d’après la question précédente, 30 ∈ f
([1

2 ; 1
])

car f(0,5) < 30 et

f(1) > 30 donc il existe un unique α ∈
[1
2 ; 1

]
tel que f(α) = 30 .

d. En programmant l’algorithme de dichotomie suivant :

u = 0.5
v = 1
while (v-u > 0.001):

m=(u+v)/2
if fonction_f (m) > 30:

v = m
else:

u = m
print(m)

on obtient α ≈ 0,583 .
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Sujet 47. Équation différentielle et dérivée n-ième (O3)

1. On considère l’équation différentielle suivante

(E) : y′′ = 5y′ − 25
4 y.

Résoudre l’équation différentielle (E) sur R.
2. Soit (a, b) ∈ R2. Notons f : t 7−→ (at + b)e 5

2 t. On considère, pour tout n ∈ N, f (n), la
dérivée n-ème de f .
a. Démontrer par récurrence que, pour tout n ∈ N, il existe des réels an et bn tels que,

pour tout réel t,
f (n)(t) = (ant+ bn)e 5

2 t.

Dans l’hérédité, on mettra en évidence les relations de récurrence suivantes :
an+1 = 5

2an

bn+1 = an + 5
2bn

.

b. Déterminer, pour tout n ∈ N, une expression de an en fonction de n et de a.

3. On pose, pour tout n ∈ N, un =
(2

5

)n
bn.

a. Exprimer, pour tout n ∈ N, un+1 en fonction de un.
b. Calculer, pour tout n ∈ N, la somme

n−1∑
k=0

(uk+1 − uk)

de deux manières différentes et en déduire une expression de un.
c. En déduire, pour tout n ∈ N, une expression de bn en fonction de n, a et b.

4. On propose de retrouver le résultat précédent par une méthode matricielle.
a. Démontrer que, pour tout n ∈ N,

bn+2 = 5bn+1 −
25
4 bn.

On pose, pour tout n ∈ N, Xn =
(
bn
bn+1

)
.

b. Déterminer une matrice B telle que, pour tout n ∈ N, Xn+1 = 1
4BXn.

c. En déduire, pour tout n ∈ N, une expression de Xn en fonction de B, n et X0.

d. Montrer que B = PTP−1 avec T =
(

10 2
0 10

)
et P =

(
2 0
5 1

)
.

e. Exprimer T en fonction de I2 et de la matrice N =
(

0 1
0 0

)
.

f. Calculer N2 et en déduire, pour tout entier n ∈ N, T n en fonction de n.
g. Déterminer, pour tout n ∈ N, bn en fonction de n.
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Solution.

1. L’équation (E) est équivalente à y′′ − 5y′ + 25
4 y = 0 qui est une équation homogène du

second ordre.

L’équation caractéristique associée est (C) : x2 − 5x + 25
4 = 0. Le discriminant du

trinôme X2 − 5X + 25
4 est ∆ = (−5)2 − 4× 1× 25

4 = 0 donc (C) possède une unique

solution réelle x0 = − −5
2× 1 = 5

2.

Par théorème, on en déduit que l’ensemble des solutions de (E) sur R est

{
t 7−→ (At+B)e 5

2 t
∣∣∣ (A,B) ∈ R2

}
.

2. a. Considérons, pour tout n ∈ N, la proposition P(n) : « il existe des réels an et bn tels
que, pour tout réel t, f (n)(t) = (ant+ bn)e 5

2 t ».
Initialisation. Par définition, f (0) = f donc, en posant a0 = a et b0 = b, pour

tout réel t, f (0)(t) = (a0t+ b0)e
5
2 t. Ainsi, P(0) est vraie.

Hérédité. Soit n ∈ N. On suppose que P(n) est vraie. Alors, il existe des réels
an et bn tels que, pour tout réel t, f (n)(t) = (ant+ bn)e

5
2 t. La fonction f (n) est donc

dérivable comme produit et composée de fonctions dérivables et, pour tout réel t,

f (n+1)(t) = ane 5
2 t + (ant+ bn)× 5

2e 5
2 t =

(5
2an + an + 5

2bn
)

e 5
2 t.

Ainsi, en posant an+1 = 5
2an et bn+1 = an + 5

2bn, pour tout réel t, f (n+1)(t) =
(an+1t+ bn+1)e

5
2 t donc P(n+ 1) est vraie.

Conclusion. Par le principe de récurrence, pour tout n ∈ N, il existe deux réels
an et bn tels que, pour tout réel t, f (n)(t) = (ant+ bn)e 5

2 t.
De plus, on a montré que a0 = a, b0 = b et, pour tout n ∈ N,


an+1 = 5

2an

bn+1 = an + 5
2bn

.

b. Ainsi, la suite (an) est une suite géométrique de premier terme a et de raison 5
2 donc,

pour tout n ∈ N, an = a
(5

2

)n
.
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3. a. Soit n ∈ N. Alors,

un+1 =
(2

5

)n+1
bn+1 =

(2
5

)n+1 (
an + 5

2bn
)

=
(2

5

)n+1
× a

(5
2

)n
+
(2

5

)n+1
× 5

2bn

= 2
5 ×

(2
5 ×

5
2

)n
× a+ 2

5 ×
5
2 ×

(2
5

)n
bn

= 2
5 × 1n × a+ 1×

(2
5

)n
bn

= 2
5a+ un

Ainsi, pour tout n ∈ N, un+1 = un + 2
5a .

b. Soit n ∈ N. D’une part, en reconnaissant une somme téléscopique,
n−1∑
k=0

(uk+1 − uk) = un − u0 = un − b0 = un − b.

D’autre part, d’après la question précédente, pour tout k ∈ N, ak+1 − ak = 2
5a donc

n−1∑
k=0

(uk+1 − uk) =
n−1∑
k=0

2
5a = n× 2

5a = 2
5an.

Ainsi, on en déduit que un − b = 2
5an donc un = 2

5an + b.

On a donc montré que, pour tout n ∈ N, un = 2
5an+ b .

c. Pour tout n ∈ N, un =
(2

5

)n
bn donc bn =

(5
2

)n
un et ainsi, d’après la question

précédente, pour tout n ∈ N, bn =
(5

2

)n (2
5an+ b

)
=
(5

2

)n−1
× 5

2

(2
5an+ b

)
i.e.

∀n ∈ N bn =
(5

2

)n−1 (
an+ 5

2b
)
.

4. a. Soit n ∈ N. Alors,
bn+2 = an+1 + 5

2bn+1 = 5
2an + 5

2bn+1.

Or, bn+1 = an + 5
2bn donc an = bn+1 −

5
2bn. Ainsi,

bn+2 = 5
2

(
bn+1 −

5
2bn

)
+ 5

2bn = 5
2bn+1 −

25
4 bn + 5

2bn+1 = 5bn+1 −
25
4 bn.

On a donc montré que, pour tout n ∈ N, bn+2 = 5bn+1 −
25
4 bn .
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b. Soit n ∈ N. Alors,

Xn+1 =
(
bn+1
bn+2

)
=
 bn+1

5bn+1 −
25
4 bn

 =
 0 1
−25

4 5

( bn
bn+1

)
= 1

4

(
0 4
−25 20

)
Xn.

Ainsi, la matrice B =
(

0 4
−25 20

)
est telle que, pour tout n ∈ N, Xn+1 = 1

4BXn .

c. La suite (Xn) est une suite géométrique de matrices colonnes de raison 1
4B donc,

pour tout n ∈ N, Xn =
(1

4B
)n
X0 .

d. Comme det(P ) = 2× 1− 5× 0 = 2 ̸= 0, P est bien inversible et P−1 = 1
2

(
1 0
−5 2

)
.

Ainsi,

PTP−1 =
(

2 0
5 1

)(
10 2
0 10

)
1
2

(
1 0
−5 2

)
= 1

2

(
2 0
5 1

)(
0 4
−50 20

)
= 1

2

(
0 8
−50 40

)

donc PTP−1 = B .

e. On observe que T =
(

10 0
0 10

)
+
(

0 2
0 0

)
donc T = 10I2 + 2N .

f. On vérifie que

N2 =
(

0 1
0 0

)(
0 1
0 0

)
=
(

0 0
0 0

)

donc N2 = 02 .
On en déduit que

T 2 = (10I2 + 2N)(10I2 + 2N) = 102I2
2 + 20I2N + 20NI2 + 4N2 = 102I2 + 40N

et

T 3 = T 2T = (102I2 + 40N)(10I2 + 2N) = 103I2
2 + 200I2N + 400NI2 + 80N2 = 103I2 + 600N

Considérons, pour tout n ∈ N, la proposition P(n) : « T n = 10nI2 + 2n10n−1N ».
Initialisation. D’une part, T 0 = I2 et, d’autre part, 100I2 + 2× 0× 10−1N = I2

donc P(0) est vraie.
Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors,

T n+1 = T nT = (10nI2 + 2n10n−1N)(10I2 + 2N)
= 10n+1I2

2 + 2× 10nI2N + 2n10nNI2 + 4n10n−1N2

= 10n+1I2 + 2(n+ 1)10nN
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donc P(n+ 1) est vraie.
Conclusion. On a montré par récurrence que, pour tout n ∈ N, T n = 10nI2 +

2n10n−1N .
Remarque. On peut aussi obtenir les résultats en utilisant la formule du binôme de

Newton pour les matrices. ATTENTION, cependant, on ne peut développer (A+B)n
à l’aide du binôme de Newton que si les matrices A et B commutent. Ici, c’est le cas
puisque I2N = NI2 = N donc, pour tout n ∈ N,

T n = (10I2 + 2N)n =
n∑
k=0

(
n

k

)
(10I2)k(2N)n−k =

n∑
k=0

(
n

k

)
10kIk2 × 2n−kNn−k

=
n∑
k=0

(
n

k

)
10k2n−kNn−k.

Or, si n− k ⩾ 2 i.e. si k ⩽ n− 2, Nn−k = 02 donc

T n =
n∑

k=n−1

(
n

k

)
10k2n−kNn−k =

(
n

n− 1

)
10n−121N1+

(
n

n

)
10n20N0 = n10n−1×2N+1×10nI2.

Ainsi, pour tout n ∈ N, T n = 10nI2 + 2n10n−1N .

On conclut que, pour tout n ∈ N, T n =
(

10n 2n10n−1

0 10n
)

= 10n−1
(

10 2n
0 10

)
.

g. Comme B = PTP−1, par propriété, pour tout n ∈ N, Bn = PT nP−1 donc

Bn = 10n−1

2

(
2 0
5 1

)(
10 2n
0 10

)(
1 0
−5 2

)
= 10n−1

2

(
2 0
5 1

)(
10− 10n 4n
−50 20

)

= 10n−1

2

(
20− 20n 8n
−50n 20n− 20

)
= 10n−1

(
10− 10n 4n
−25n 10n− 10

)

Ainsi, pour tout n ∈ N,

Xn =
(1

4B
)n
X0 = 1

4nB
nX0 = 1

4n × 10n−1
(

10− 10n 4n
−25n 10n− 10

)(
b1
b0

)
.

Or, b0 = b et b1 = a0 + 5
2b0 = a+ 5

2b donc, pour tout n ∈ N,

Xn = 1
4n × 10n−1

(
10− 10n 4n
−25n 10n− 10

) b

a+ 5
2b



= 1
4n × 10n−1

 (10− 10n)b+ 4n
(
a+ 5

2b
)

−25nb+ (10n− 10)
(
a+ 5

2b
)
 .
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En particulier, on déduit de la première ligne que, pour tout n ∈ N,

bn = 1
4n × 10n−1

[
(10− 10n)b+ 4n

(
a+ 5

2b
)]

=
(1

4 × 10
)n−1

× 1
4(10b− 10nb+ 4na+ 10nb)

=
(5

2

)n−1 (5
2b+ na

)

Ainsi, on retrouve bien que, pour tout n ∈ N, bn =
(5

2

)n−1 (
an+ 5

2b
)

.
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Sujet 48. Étude d’une réaction chimique (O3)

Le sujet traite d’une réaction chimique avec plusieurs réactifs.
Initialement, la concentration en benzène est de 0,2 mol.L−1, la concentration en produit 1

est 0 mol.L−1 et la concentration en produit 2 est 0 mol.L−1.
On note C la concentration en benzène.
• Si ln(C) est une fonction affine du temps t alors on dit que la réaction est d’ordre 1.

• Si 1
C

est une fonction affine du temps t alors on dit que la réaction est d’ordre 2.

1. On observe les valeurs suivantes de C en fonction de t.
t 0 10 20 50 100 200 300
C 0,2 0,179 0,161 0,115 0,0666 0,0222 0,007

Déterminer l’ordre de cette réaction chimique.
2. On appelle maintenant x la concentration en benzène, y la concentration en produit 1 et

z celle en produit 2, fonctions du temps t.
Ces fonctions vérifient, pour tout réel t ⩾ 0, le système

(S)


x′(t) = −K1x(t) (E1)
y′(t) = −K2y(t) +K1x(t) (E2)
z′(t) = −K2z(t) (E3)

.

où K1 et K2 sont des constantes réelles distinctes et strictement positives.
Déterminer les solutions de (E1).

3. Proposer une valeur de K1 en accord avec les valeurs expérimentales.

Une première version (analyse)

4. a. Montrer que y vérifie une équation différentielle notée (E4).
b. Résoudre (E4). On cherchera une solution particulière sous la forme t 7−→ ae−K1t où

a ∈ R.

5. Soit f et g les fonctions définies sur R+ par f(t) = e−K1t − e−K2t et g(t) = 0,2K1

K2 −K1
f(t).

À quoi correspond la fonction g ?
6. Déterminer les variations de f sur R+.

Une seconde version (algèbre linéaire)

7. a. Pour tout réel t ⩾ 0, on pose X(t) =

x(t)
y(t)
z(t)

 et X ′(t) =

x
′(t)
y′(t)
z′(t)

.

Écrire le système (S) sous la forme matricielle X ′(t) = AX(t) (E).
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b. Donner ensuite une matrice D diagonale et une matrice P inversible telles que
A = PDP−1.

c. On pose, pour tout réel t ⩾ 0, X1(t) = P−1X(t) =

x1(t)
y1(t)
z1(t)

 et X ′
1(t) =

x
′
1(t)
y′

1(t)
z′

1(t)

.

On admet que, pour tout réel t ⩾ 0, X ′
1(t) = P−1X ′(t).

Déterminer, pour tout t ⩾ 0, la forme générale de X1(t).
d. En déduire, pour tout réel t ⩾ 0, X(t).
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Solution.
1.

t 0 10 20 50 100 200 300
C 0,2 0,179 0,161 0,115 0,0666 0,0222 0,007

ln(C) −1,61 −1,72 −1,83 −2,16 −2,71 −3,81 −4,96
1
C

5 5,59 6,21 8,70 15,02 45,05 142,86
On constate que, lorsque t augmente de 10k, les valeurs de ln(C) diminue de 0,11k donc
ln(C) est une fonction linéaire de t (et ce n’est pas le cas pour 1

C
).

Ainsi, la réaction est d’ordre 1 .
2. L’équation (E1) est équivalente à x′(t) +K1x(t) = 0 donc, par théorème, l’ensemble des

solutions de (E1) sur [0 ; +∞[ est {t 7−→ Ae−K1t | A ∈ R} .

3. Ainsi, il existe A ∈ R tel que, pour tout réel t ⩾ 0, x(t) = Ae−K1t. De plus, x(0) = 0,2 donc
A = 0,2. Ainsi, pour tout réel t ⩾ 0, ln(x(t)) = ln(0,2)−K1t donc −K1 est le coefficient
de directeur de la fonction de la fonction affine t 7−→ ln(x(t)). Or, d’après la question 1.,
ce coefficient directeur est environ égale à −0,11

10 = −0,011. Ainsi, K1 ≈ 0,011 .

4. a. La fonction y vérifie, pour tout réel t ⩾ 0, (E4) : y′(t) +K2y(t) = 0,2K1e−K1t.
b. L’équation homogène associée à (E4) est (H) : y′ +K2y = 0 et l’ensemble des solutions

de (H) sur [0 ; +∞[ est {t 7−→ Be−K2t | B ∈ R}.
Soit a ∈ R et h : t 7−→ ae−K1t. Alors, pour tout réel t ⩾ 0,

h′(t) +K2h(t) = −aK1e−K1t + aK2e−K1t = a(K2 −K1)e−K1t

donc, pour que h soit solution de (E4), il suffit que a(K2 − K1) = 0,2K1 i.e. a =
0,2K1

K2 −K1
.

Ainsi, h : t 7−→ 0,2K1

K2 −K1
e−K1t est une solution particulière de (E4).

On conclut que l’ensemble de solutions des (E4) sur [0 ; +∞[ est
{
t 7−→ 0,2K1

K2 −K1
e−K1t +Be−K2t

∣∣∣∣ B ∈ R
}
.

5. Ainsi, il existe B ∈ R tel que, pour tout réel t, y(t) = 0,2K1

K2 −K1
e−K1t + Be−K2t. De

plus, y(0) = 0 donc 0,2K1

K2 −K1
+ B = 0 i.e. B = − 0,2K1

K2 −K1
. Ainsi, pour tout réel t ⩾ 0,

y(t) = 0,2K1

K2 −K1

(
e−K1t − e−K2t

)
donc g = y .

6. La fonction f est dérivable sur R+ comme somme et composées de fonctions dérivables
et, pour tout réel t ⩾ 0,

f ′(t) = −K1e−K1t +K2e−K2t = e−K2t
(
K2 −K1e(K2−K1)t

)
.
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Pour tout réel t ⩾ 0, e−K1t > 0 donc, comme K1 > 0 et K2 > 0,

f ′(t) ⩾ 0⇐⇒ K2 −K1e(K2−K1)t ⩾ 0⇐⇒ e(K2−K1)t ⩽
K2

K1
⇐⇒ (K2 −K1)t ⩽ ln

(
K2

K1

)
.

On en déduit que si K1 < K2 alors

f ′(t) ⩾ 0⇐⇒ t ⩽
1

K2 −K1
ln
(
K2

K1

)
et, si K1 > K2 alors

f ′(t) ⩾ 0⇐⇒ t ⩾
1

K2 −K1
ln
(
K2

K1

)
.

Posons t0 = 1
K2 −K1

ln
(
K2

K1

)
. Notons que, si K1 < K2, K2 −K1 > 0 et ln

(
K2

K1

)
> 0

donc t0 > 0 et, si K1 < K2, K2 −K1 < 0 et ln
(
K2

K1

)
< 0 donc t0 > 0. Ainsi, dans tous

les cas t0 > 0.
On conclut donc que, si K1 < K2, f est croissante sur [0 ; t0] et décroissante sur [t0 ; +∞[
et, si K1 > K2, f est décroissante sur [0 ; t0] et croissante sur [t0 ; +∞[ .

7. a. L’écriture matricielle du système (S) est, pour tout réel t ⩾ 0, X ′(t) = AX(t) où

A =

−K1 0 0
K1 −K2 0
0 0 −K2

 .

b. Comme A est triangulaire, ses valeurs propres sont ses termes diagonaux donc Sp(A) =
{−K1 ;−K2}.

Déterminons les sous-espaces propres. Soit (a, b, c) ∈ R3 et X =

ab
c

. Alors, comme

K1 ̸= K2,

AX = −K1X ⇐⇒


−K1a = −K1a

K1a−K2b = −K1b

−K2c = −K1c

⇐⇒

K1a = (K2 −K1)b
(K1 −K2)c = 0

⇐⇒

b = K1

K2 −K1
a

c = 0
.

Ainsi, le sous-espace propre associé à la valeur propre −K1 est engendré par le vecteurK2 −K1
K1
0

.
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De même,

AX = −K2X ⇐⇒


−K1a = −K2a

K1a−K2b = −K2b

−K2c = −K2c

⇐⇒

(K2 −K1)a = 0
K1a = 0

⇐⇒ a = 0.

Ainsi, le sous-espace propre associé à la valeur propre −K2 est engendré par les

vecteurs

0
1
0

 et

0
0
1

.

La somme des dimensions des sous-espaces propres est 1 + 2 = 3 donc A est
diagonalisable et A = PDP−1 en posant

D =

−K1 0 0
0 −K2 0
0 0 −K2

 et P =

K2 −K1 0 0
K1 1 0
0 0 1

 .

c. Pour tout réel t, X ′(t) = AX(t) = (PDP−1)X(t) donc, en multipliant à gauche par
P−1, P−1X ′(t) = D(P−1X(t)) i.e. X ′

1(t) = DX1(t). Ainsi,
x′

1(t) = −K1x1(t)
y′

1(t) = −K2y1(y)
z′

1(t) = −K2z1(t)

donc il existe des constantes α, β et γ telles que, pour tout réel t, x1(t) = αe−K1t,
y1(t) = βe−K2t et z1(t) = γe−K2t. Ainsi, pour tout réel t ⩾ 0,

X1(t) =

αe−K1t

βe−K2t

γe−K2t

 .

d. Dès lors, pour tout réel t ⩾ 0,

X(t) = PX1(t) =

K2 −K1 0 0
K1 1 0
0 0 1


αe−K1t

βe−K2t

γe−K2t

 =

 α(K2 −K1)e−K1t

αK1e−K1t + βe−K2t

γe−K2t



De plus, X(0) =

0,2
0
0

 donc


α(K2 −K1) = 0,2
αK1 + β = 0
γ = 0

donc


α = 0,2

K2−K1

β = − 0,2K1
K2−K1

γ = 0
.
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Ainsi, on conclut que, pour tout t ⩾ 0,

X(t) =


0,2e−K1t

0,2K1

K2 −K1

(
e−K1t − e−K2t

)
0


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Sujet 49. Élevage de lapins et suite de Fibonacci (O3)
On s’intéresse au nombre de couples de lapins dans un élevage.
En janvier (mois 0), un couple de lapereaux est réuni.
En février, ce couple devient mature. Le mois suivant, il donne naissance à un couple de

lapereaux.
La suite du développement suit les règles suivantes :
• un couple mature donne naissance à un couple de lapereaux tous les mois ;
• en revanche, un couple de lapereaux doit attendre un mois avant d’atteindre sa maturité

et, adulte, se mettre à procréer tous les mois.
Pour tout n ∈ N, on note fn le nombre de couples de lapins le n-ème mois.
1. Montrer que f0 = 1, f1 = 1 et f2 = 2 (mois de mars) et que, pour tout n ∈ N,

fn+2 = fn+1 + fn.
2. a. À l’aide du logiciel de votre choix (Python, Excel ou la calculatrice), écrire une

fonction permettant de calculer fn, n étant passé en argument.
b. Donner les 8 premiers termes de la suite (fn).

3. Soit A =
(

1 1
1 0

)
∈M2(R).

a. À l’aide du logiciel de votre choix, donner une conjecture sur le lien existant, pour
tout entier n ⩾ 2, entre An, fn, fn−1 et fn−2.
Démontrer cette conjecture.

b. Sachant que, pour toutes matrices A et B de M2(R), det(AB) = det(A) det(B),
montrer que, pour tout entier n ⩾ 1, fn+1fn−1 − f 2

n = (−1)n+1.

4. Pour tout n ∈ N, on pose Xn =
(
fn+1
fn

)
.

Établir, pour tout n ∈ N, un lien entre A, Xn+1 et Xn.
5. Calculer, pour tout n ∈ N, An avec la méthode de votre choix. On pourra introduire

ψ = 1−
√

5
2 et φ = 1 +

√
5

2 .

6. Déterminer, pour tout n ∈ N, une relation entre Xn, A, n et X0. En déduire, pour tout
n ∈ N, le nombre de couples de lapins le n-ème mois en fonction de n.

7. Donner un équivalent de fn. En déduire la limite du rapport fn+1

fn
.
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Solution.
1. En janvier, il y a un seul couple de lapereaux donc f0 = 1 . En février, ce couple devient

mature mais ne s’est pas encore reproduit donc f1 = 0 . En mars, il se reproduit en
donnant naissance à un couple de lapereaux donc il y a 2 couples en mars soit f2 = 2 .

Soit n ∈ N. Au mois n + 2, le nombre de couples de lapins est égal au nombre
de couples de lapins présents au mois n + 1 auxquels s’ajoutent autant de couples de
lapereaux que de couples de lapins matures. Or, le nombre de couples présents au mois
n+ 1 est fn+1 et le nombre de couples matures est le nombre de couples présents deux
mois avant i.e. fn. Ainsi, fn+2 = fn+1 + fn .

2. a. En Python, on écrit la fonction suivante :

def lapin(n):
f = 1
g = 1

for i in range(n):
f, g = g, f+g

return f

b. En utilisant l’instruction

for n in range (8):
print(lapin(n))

On obtient f0 = 1, f1 = 1, f2 = 2, f3 = 3, f4 = 5, f5 = 8, f6 = 13 et f7 = 21 .
3. a. En utilisant le script suivant :

import numpy as np

A=np.matrix ([[1 ,1] ,[1 ,0]])
B=A
for k in range (1 ,6):

B=B*A
print(B)

On obtient A2 =
(

2 1
1 1

)
=
(
f2 f1
f1 f0

)
, A3 =

(
3 2
2 1

)
=
(
f3 f2
f2 f1

)
, A4 =

(
5 3
3 2

)
=(

f4 f3
f3 f2

)
, A5 =

(
8 5
5 3

)
=
(
f5 f4
f4 f3

)
et A6 =

(
13 8
8 5

)
=
(
f6 f5
f5 f4

)
.

On peut donc conjecturer que, pour tout entier n ⩾ 2, An =
(
fn fn−1
fn−1 fn−2

)
.

Considérons, pour tout entier n ⩾ 2, la proposition P(n) : « An =
(
fn fn−1
fn−1 fn−2

)
».

Initialisation. On a vu que A2 =
(

2 1
1 1

)
=
(
f2 f1
f1 f0

)
donc P(2) est vraie.
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Hérédité. Soit un entier n ⩾ 2. Supposons que P(n) est vraie. Alors,

An+1 = AnA =
(
fn fn−1
fn−1 fn−2

)(
1 1
1 0

)
=
(
fn + fn−1 fn
fn−1 + fn−2 fn−1

)
.

Or, d’après la question 1., fn + fn−1 = fn+1 et fn−1 + fn−2 = fn donc An+1 =(
fn+1 fn
fn fn−1

)
i.e. P(n+ 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que

∀n ⩾ 2 An =
(
fn fn−1
fn−1 fn−2

)
.

b. Soit n ∈ N. Alors,

det(An+1) = det(AAn) = det(A) det(An) = (1× 0− 1× 1) det(An) = − det(An).

Ainsi, la suite (det(An))n∈N est une suite géométrique de raison −1 donc, pour
tout n ∈ N, det(An) = det(A0)(−1)n. Or, det(A0) = det(I2) = 1 donc, pour tout
n ∈ N, det(An) = (−1)n. En particulier, pour tout n ⩾ 1, det(An+1) = (−1)n+1

et, comme n ⩾ 1, n + 1 ⩾ 2 donc An+1 =
(
fn+1 fn
fn fn−1

)
. Ainsi, pour tout n ∈ N∗,

det(An+1) = fn+1fn−1 − f 2
n et on conclut donc que

∀n ∈ N∗ fn+1fn−1 − f 2
n = (−1)n+1 .

4. Soit n ∈ N. Alors,

Xn+1 =
(
fn+2
fn+1

)
=
(
fn+1 + fn
fn+1

)
=
(

1 1
1 0

)(
fn+1
fn

)
.

Ainsi, pour tout n ∈ N, Xn+1 = AXn .
5. La matrice A est une matrice symétrique à coefficients réels donc elle est diagonalisable.

Soit λ ∈ R. Alors,

det(A− λI2) =
∣∣∣∣∣1− λ 1

1 −λ

∣∣∣∣∣ = (1− λ)(−λ)− 1 = λ2 − λ− 1.

Le discriminant du trinôme X2 − X − 1 est ∆ = (−1)2 − 4 × 1 × (−1) = 5 > 0 donc
celui-ci possède 2 racines réelles :

λ1 = −(−1)−
√

5
2 = 1−

√
5

2 et λ2 = −(−1) +
√

5
2 = 1 +

√
5

2 .

Ainsi, les valeurs propres de A sont ψ = 1−
√

5
2 et φ = 1 +

√
5

2 .
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Déterminer des vecteurs propres associés. Soit (x, y) ∈ R2 et X =
(
x
y

)
.

AX = ψX ⇐⇒


x+ y = 1−

√
5

2 x

x = 1−
√

5
2 y

⇐⇒


x+ y = 1−

√
5

2 x

x = 1−
√

5
2 y

⇐⇒


y = 1−

√
5

2 x− x
2

1−
√

5
x = y

⇐⇒


y = −1−

√
5

2 x

y = 2(1 +
√

5)
12 −

√
52 x

⇐⇒ y = −1−
√

5
2 x = −φx

Ainsi,
(

1
−φ

)
est un vecteur propre associé à la valeur propre ψ.

AX = φX ⇐⇒


x+ y = 1 +

√
5

2 x

x = 1 +
√

5
2 y

⇐⇒


x+ y = 1 +

√
5

2 x

x = 1 +
√

5
2 y

⇐⇒


y = 1 +

√
5

2 x− x
2

1 +
√

5
x = y

⇐⇒


y = −1 +

√
5

2 x

y = 2(1−
√

5)
12 −

√
52 x

⇐⇒ y = −1 +
√

5
2 x = −ψx

Ainsi,
(

1
−ψ

)
est un vecteur propre associé à la valeur propre φ.

En posant P =
(

1 1
−φ −ψ

)
et D =

(
ψ 0
0 φ

)
, on a donc A = PDP−1.

Dès lors, par propriété, pour tout n ∈ N, An = PDnP−1. Or, D est diagonale donc, pour

tout n ∈ N, Dn =
(
ψn 0
0 φn

)
. De plus,

det(P ) = −ψ + φ = −1 +
√

5
2 + 1 +

√
5

2 =
√

5

donc P−1 = 1√
5

(
−ψ −1
φ 1

)
.
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Ainsi, pour tout n ∈ N,

An =
(

1 1
−φ −ψ

)(
ψn 0
0 φn

)
1√
5

(
−ψ −1
φ 1

)

= 1√
5

(
1 1
−φ −ψ

)(
−ψn+1 −ψn
φn+1 φn

)

= 1√
5

(
φn+1 − ψn+1 φn − ψn

φψn+1 − ψφn+1 ψφn − ψφn
)

En remarquant que ψφ = 1−
√

5
2 × 1 +

√
5

2 = 12 −
√

52

4 = −1, on en déduit que

An = 1√
5

(
φn+1 − ψn+1 φn − ψn

(φψ)ψn − (φψ)φn (φψ)ψn−1 − (φψ)φn−1

)
= 1√

5

(
φn+1 − ψn+1 φn − ψn
φn − ψn φn−1 − ψn−1

)
Ainsi,

∀n ∈ N An = 1√
5

(
φn+1 − ψn+1 φn − ψn
φn − ψn φn−1 − ψn−1

)

6. On a vu que, pour tout n ∈ N, Xn+1 = AXn donc (Xn) est une suite géométrique de
matrices de raison A donc, pour tout n ∈ N, Xn = AnX0 .

Comme X0 =
(

1
1

)
, on en déduit que, pour tout n ∈ N,

Xn = 1√
5

(
φn+1 − ψn+1 φn − ψn
φn − ψn φn−1 − ψn−1

)(
1
1

)
= 1√

5

(
φn+1 − ψn+1 + φn − ψn
φn − ψn + φn−1 − ψn−1

)
.

Il s’ensuit que, pour tout n ∈ N,

fn = φn − ψn + φn−1 − ψn−1
√

5
= φn−1(φ+ 1)− ψn−1(ψ + 1)√

5
.

Or, comme ψ et φ sont racines du polynôme X2 −X − 1 = 0, on a ψ2 − ψ − 1 = 0 et
φ2 − φ− 1 = 0 donc ψ2 = ψ + 1 et φ2 = φ+ 1. Dès lors, on conclut que,

∀n ∈ N fn = φn+1 − ψn+1
√

5
.

Remarque. On a suivi l’énoncé mais en fait on pouvait faire bien plus court en remarquant
que, pour tout n ⩾ 2,

An =
(
fn fn−1
fn−1 fn−2

)
= 1√

5

(
φn+1 − ψn+1 φn − ψn
φn − ψn φn−1 − ψn−1

)
donc, en égalant les termes d’indices 1 et 1 des deux matrices, on vient que, pour tout
n ⩾ 2, fn = 1√

5(φn+1 − ψn+1). De plus, cette égalité est encore vraie, pour n = 0, car
1√
5(φ1−ψ1) =

√
5√
5 = 1 = f0 et, pour n = 1, car 1√

5(φ2−ψ2) = 1√
5(φ+1−(ψ+1)) = f0 = f1.

Ainsi, pour tout n ∈ N, fn = φn+1−ψn+1
√

5 .
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7. Comme φ ≈ 1,6, φ > 1 et, comme ψ ≈ −0,6, ψ ∈ [−1 ; 1], φn+1 −−−−→
n→+∞

+∞ et

ψn+1 −−−−→
n→+∞

0 donc fn
φn+1
√

5

= 1− ψn+1

φn+1 −−−−→n→+∞
1. On conclut que

fn ∼
φn+1
√

5
.

Dès lors, fn+1

fn
∼

φn+2
√

5
φn+1
√

5

∼ φ donc lim
n→+∞

fn+1

fn
= φ .
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Sujet 50. Étude d’une population d’individus hermaphro-
dites (O3)

On considère une population d’individus hermaphrodites.
On note a0 la proportion de mâles dans la population de départ et b0 la proportion de

femelles. Chaque individu a une probabilité 1
4 de changer de sexe une fois par an. Pour tout

n ∈ N, on note an la proportion de mâles dans la population à la fin de l’année n et bn la
proportion de femelles dans la population à la fin de l’année n .

Partie 1

1. Exprimer, pour tout n ∈ N, an+1 et bn+1 en fonction de an et bn.
2. Que peut-on dire de la suite (an + bn) ?

3. On pose, pour tout n ∈ N, tn = an −
a0 + b0

2 . Montrer que la suite (tn) est géométrique.

4. En déduire, pour tout n ∈ N, des expressions explicites de an et bn en fonction de n.
5. Quelles sont les limites des deux suites (an) et (bn) ?

Partie 2
Soit M =

(3
4

1
4

1
4

3
4

)

On pose, de plus, pour tout n ∈ N, Xn =
(
an
bn

)
.

1. Soit n ∈ N. Donner une relation entre Xn+1, M et Xn.
2. Montrer que 1 est une valeur propre de M et déterminer un vecteur propre de M associé

à cette valeur propre.
3. Trouver une valeur propre x de M telle que 0 < x < 1.
4. Déterminer une matrice inversible P et une matrice diagonale D telle que M = PDP−1.
5. Soit (un)n∈N et (vn)n∈N deux suites définies par leurs premiers termes u0 et v0 et par la

relation de récurrence :
∀n ∈ N

(
un+1
vn+1

)
= D

(
un
vn

)
.

Montrer que, pour tout entier n ∈ N,
(
un
vn

)
= Dn

(
u0
v0

)
.

6. Retrouver les limites des suites (an)n∈N et (bn)n∈N.
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Solution.

Partie 1

1. Chaque année, 3
4 des individus mâles restent mâles et 1

4 des femmes deviennent mâles
donc, pour tout n ∈ N, an+1 = 3

4an + 1
4bn .

De même, chaque année, 3
4 des individus femelles restent femelles et 1

4 des mâles deviennent
femelles donc, pour tout n ∈ N, bn+1 = 1

4an + 3
4bn .

2. Pour tout n ∈ N, an+1 + bn+1 = 3
4an + 1

4bn + 1
4an + 3

4bn = an + bn donc la suite
(an + bn) est constante .

3. Soit n ∈ N. Alors,

tn+1 = an+1 −
a0 + b0

2 = 3
4an + 1

4bn −
a0 + b0

2 .

Or, comme (an + bn) est constante, an + bn = a0 + b0 donc bn = a0 + b0 − an. Ainsi,

tn+1 = 3
4an + 1

4(a0 + b0 − an)− a0 + b0

2 = 3
4an + a0 + b0

4 − 1
4an −

a0 + b0

2

= 1
2an −

a0 + b0

4 = 1
2

(
an −

a0 + b0

2

)
= 1

2tn.

Ainsi, (tn) est une suite géométrique de raison 1
2 .

4. On en déduit que, pour tout n ∈ N, tn = t0 ×
(1

2

)n
. Or, t0 = a0 −

a0 + b0

2 = a0 − b0

2
donc, pour tout n ∈ N, tn = a0 − b0

2 × 1
2n = a0 − b0

2n+1 .

Or, pour tout n ∈ N, an = a0 + b0

2 + tn donc

∀n ∈ N an = a0 + b0

2 + a0 − b0

2n+1 .

De plus, on a vu que, pour tout n ∈ N, bn = a0 + b0 − an donc

∀n ∈ N bn = a0 + b0

2 − a0 − b0

2n+1 .

5. Comme 2 > 1, lim
n→+∞

2n+1 = +∞ donc, par quotient et somme,

lim
n→+∞

an = lim
n→+∞

bn = a0 + b0

2 .
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Partie 2
1. Par définition,

Xn+1 =
(
an+1
bn+1

)
=
(

3
4an + 1

4bn
1
4an + 3

4bn

)
= M

(
an
bn

)
donc Xn+1 = MXn .

2. On peut constater que M
(

1
1

)
=
(

1
1

)
donc, comme le vecteur

(
1
1

)
est non nul, on en

déduit que 1 est une valeur propre de M et que
(

1
1

)
en est un vecteur propre associé .

3. Soit λ ∈ R. Alors,

det(M − λI2) =
∣∣∣∣∣

3
4 − λ

1
4

1
4

3
4 − λ

∣∣∣∣∣ =
(3

4 − λ
)2
− 1

16 = 9
16 −

3
2λ+ λ2 − 1

16 = λ2 − 3
2λ+ 1

2 .

Comme 1 est valeur propre de M , 1 est racine du trinôme X2 − 3
2X + 1

2 donc celui-ci
se factorise par X − 1. On vérifie alors que X2 − 3

2X + 1
2 = (X − 1)

(
X − 1

2

)
donc on

conclut que x = 1
2 est une autre valeur propre de M .

Autre solution. On pouvait également utiliser Python :

import numpy as np

M = np.matrix ([[3/4 ,1/4] , [1/4 ,3/4]])
print(np.linalg.eig(M))

qui affiche

(array ([1. , 0.5]) ,
matrix ([[ 0.70710678 , -0.70710678] ,
[ 0.70710678 , 0.70710678]]) )

on obtient Sp(M) = {1 ; 1
2} .

4. On a vu que
(

1
1

)
est un vecteur propre associé à la valeur propre 1. De plus, le résultat

donné par Python semble indiquer de
(
−1
1

)
est un vecteur propre associé à 1

2 . Vérifions-le :

M

(
−1
1

)
=
(
−1

2
1
2

)
= 1

2

(
−1
1

)

ce qui confirme que
(
−1
1

)
est un vecteur propre associé à la valeur propre 1

2 .

On en déduit que M = PDP−1 avec D =
(

1 0
0 1

2

)
et P =

(
1 −1
1 1

)
.
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5. La suite
((

un
vn

))
est une suite géométrique de matrices de raison D donc

∀n ∈ N
(
un
vn

)
= Dn

(
u0
v0

)
.

6. Pour tout n ∈ N, Xn+1 = MXn = PDP−1Xn donc, en multipliant par P−1 à gauche,

P−1Xn+1 = DP−1Xn. Posons, pour tout n ∈ N,
(
un
vn

)
= P−1Xn. Alors, d’après ce qui

précède, pour tout n ∈ N, (
un
vn

)
= Dn

(
u0
v0

)
.

Or, comme D est diagonale, pour tout n ∈ N, Dn =
(

1 0
0 1

2n

)
donc, pour tout n ∈ N,

(
un
vn

)
=
(

1 0
0 1

2n

)(
u0
v0

)
=
(
u0
v0
2n

)
.

On en déduit que, pour tout n ∈ N, un = u0 et vn = v0
2n donc lim

n→+∞
un = u0 et lim

n→+∞
vn = 0.

Or, par définition,

Xn = P

(
un
vn

)
=
(
un − vn
un + vn

)
donc, pour tout n ∈ N, an = un − vn et bn = un + vn. Ainsi, par sommes de limites, (an)
et (bn) tendent vers u0.

Enfin, det(P ) = 2 donc P−1 = 1
2

(
1 1
−1 1

)
donc

(
u0
v0

)
= 1

2

(
1 1
−1 1

)(
a0
b0

)
= 1

2

(
a0 + b0
a0 − b0

)

et ainsi u0 = a0 + b0

2 . On retrouve donc que

lim
n→+∞

an = lim
n→+∞

bn = a0 + b0

2 .
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Sujet 51. Résolution d’un système différentiel II (O3)

Partie I. Équation différentielle linéaire du premier ordre
Soit a un nombre réel. On considère y une fonction dérivable sur R vérifiant l’équation

différentielle :
y′ = ay

1. On considère la fonction z définie sur R par z(t) = e−aty(t).
Montrer que z est une fonction constante.

2. En déduire, pour tout t ∈ R, l’expression de y(t).

Partie II. Système différentiel linéaire du premier ordre
Soit A la matrice de M2(R) définie par :

A =
(

1 1
−2 4

)
.

On considère u et v deux fonctions dérivables sur R vérifiant le système différentiel :

(S)

u′ = u+ v

v′ = −2u+ 4v
.

1. On note Y =
(
u
v

)
et Y ′ =

(
u′

v′

)
. Écrire le système (S) sous forme matricielle.

2. a. Déterminer une matrice P inversible et une matrice D diagonale telles que A =
PDP−1.

b. En déduire, pour tout n ∈ N, l’expression de An en fonction de n.
3. Pour tout t ∈ R et tout n ∈ N, on note

En(t, A) =
n∑
k=0

tk

k!A
k =

(
an(t) bn(t)
cn(t) dn(t)

)
.

a. Expliciter, pour tout n ∈ N, an(t), bn(t), cn(t) et dn(t) en fonction de t.
b. Soit t ∈ R. Justifier que les suites (an(t))n∈N, (bn(t))n∈N, (cn(t))n∈N et (dn(t))n∈N

convergent et donner leurs limites.
c. Expliciter, pour tout t ∈ R, la matrice E(t, A) définie par

E(t, A) =
 lim
n→+∞

an(t) lim
n→+∞

bn(t)
lim

n→+∞
cn(t) lim

n→+∞
dn(t)

 .
4. Montrer que, pour tout t ∈ R, les matrices E(t, A) et E(−t, A) sont inversibles et inverses

l’une de l’autre.
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5. On note, pour tout t ∈ R, (
u1(t)
v1(t)

)
= E(−t, A)

(
u(t)
v(t)

)
.

a. Expliciter, pour tout t ∈ R, u1(t) et v1(t).
b. Montrer que, pour tout réel t, u′

1(t) = v′
1(t) = 0.

6. Démontrer qu’il existe deux réels α et β tels que, pour tout réel t,(
u(t)
v(t)

)
= E(t, A)

(
α
β

)

et en déduire, pour tout réel t, les expressions de u(t) et v(t).
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Solution.

Partie I. Équation différentielle linéaire du premier ordre
1. La fonction z est dérivable sur R par composition et produit de fonctions dérivables et,

pour tout t ∈ R,
z′(t) = −ae−aty(t) + e−aty′(t) = e−at(y′(t)− ay(t)) = 0

donc, comme R est une intervalle, z est constante sur R .
2. Posons C = z(0). Alors, pour tout t ∈ R, z(t) = C donc e−aty(t) = C et ainsi

y(t) = Ceat .

Partie II. Système différentiel linéaire du premier ordre
1. L’écriture matricielle de (S) est Y ′ = AY .
2. a. Soit λ ∈ R. Alors,

λ ∈ Sp(A)⇐⇒ det
(

1− λ 1
−2 4− λ

)
= 0⇐⇒ (1− λ)(4− λ)− (−2)× 1 = 0

⇐⇒ 4− λ− 4λ+ λ2 + 2 = 0
⇐⇒ λ2 − 5λ+ 6 = 0

Le discriminant du trinôme X2 − 5X + 6 est ∆ = (−5)2 − 4× 1× 6 = 1 > 0 donc
celui-ci possède deux racines réelles :

x1 = −(−5)−
√

1
2× 1 = 2 et x2 = −(−5) +

√
1

2× 1 = 3.

Ainsi, Sp(A) = {2 ; 3} donc, comme A est une matrice carrée d’ordre 2 ayant deux
valeurs propres distinctes, A est diagonalisable.

Soit (x, y) ∈ R2 et X =
(
x
y

)
.

Déterminons E2(A) :

X ∈ E2(A)⇐⇒ AX = 2X ⇐⇒

x+ y = 2x
−2x+ 4y = 2y

⇐⇒ y = x

donc E2(A) =
{(

x
x

) ∣∣∣∣∣ x ∈ R
}

= Vect
((

1
1

))
.

Déterminons E3(A) :

X ∈ E3(A)⇐⇒ AX = 3X ⇐⇒

x+ y = 3x
−2x+ 4y = 3y

⇐⇒ y = 2x

donc E3(A) =
{(

x
2x

) ∣∣∣∣∣ x ∈ R
}

= Vect
((

1
2

))
.

On conclut que A = PDP−1 avec D =
(

2 0
0 3

)
et P =

(
1 1
1 2

)
.
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b. On en déduit que, pour tout n ∈ N, An = (PDP−1)n = PDnP−1. Or, comme

D est diagonale, pour tout n ∈ N, Dn =
(

2n 0
0 3n

)
. De plus, det(P ) = 1 donc

P−1 = 1
1

(
2 −1
−1 1

)
=
(

2 −1
−1 1

)
.

Ainsi, pour tout n ∈ N,

An =
(

1 1
1 2

)(
2n 0
0 3n

)(
2 −1
−1 1

)
=
(

1 1
1 2

)(
2n+1 −2n
−3n 3n

)

i.e.

An =
(

2n+1 − 3n 3n − 2n
2n+1 − 2× 3n 2× 3n − 2n

)
.

3. a. Soit t ∈ R et n ∈ N. Alors,

En(t, A) =
b∑

k=0

tk

k!

(
2k+1 − 3k 3k − 2k

2k+1 − 2× 3k 2× 3k − 2k
)

=


n∑
k=0

tk(2k+1−3k)
k!

n∑
k=0

tk(3k−2k)
k!

n∑
k=0

tk(2k+1−2×3k)
k!

n∑
k=0

tk(2×3k−2k)
k!



=


n∑
k=0

2(2t)k−(3t)k

k!

n∑
k=0

(3t)k−(2t)k

k!
n∑
k=0

2(2t)k−2×(3t)k

k!

n∑
k=0

2(3t)k−(2t)k)
k!


donc

an(t) = 2
n∑
k=0

(2t)k
k! −

n∑
k=0

(3t)k
k! bn(t) =

n∑
k=0

(3t)k
k! −

n∑
k=0

(2t)k
k!

cn(t) = 2
n∑
k=0

(2t)k
k! − 2

n∑
k=0

(3t)k
k! dn(t) = 2

n∑
k=0

(3t)k
k! −

n∑
k=0

(2t)k
k!

.

b. Toutes les sommes qui apparaissent sont des sommes partielles de séries exponentielles
donc les suites (an(t))n∈N, (bn(t))n∈N, (cn(t))n∈N et (dn(t))n∈N convergent et

lim
n→+∞

an(t) = 2e2t − e3t lim
n→+∞

bn(t) = e3t − e2t

lim
n→+∞

cn(t) = 2e2t − 2e3t lim
n→+∞

dn(t) = 2e3t − e2t .

c. Ainsi, pour tout t ∈ R,

E(t, A) =
(

2e2t − e3t e3t − e2t

2e2t − 2e3t 2e3t − e2t

)
.
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4. Soit t ∈ R. Alors,

E(t, A)E(−t, A) =
(

2e2t − e3t e3t − e2t

2e2t − 2e3t 2e3t − e2t

)(
2e−2t − e−3t e−3t − e−2t

2e−2t − 2e−3t 2e−3t − e−2t

)

=
(

4− 2e−t − 2et + 1 + 2et − 2− 2 + 2e−t 2e−t − 2− 1 + et + 2− et − 2e−t + 1
4− 2e−t − 4et + 2 + 4et − 4− 2 + 2e−t 2e−t − 2− 2 + 2et + 4− 2et − 2e−t + 1

)

=
(

1 0
0 1

)

donc E(t, A)E(−t, A) = I2.
Ainsi, E(t, A) est inversible et E(t, A)−1 = E(−t, A) .

5. a. Pour tout t ∈ R,(
u1(t)
v1(t)

)
=
(

2e−2t − e−3t e−3t − e−2t

2e−2t − 2e−3t 2e−3t − e−2t

)(
u(t)
v(t)

)

=
(

(2e−2t − e−3t)u(t) + (e−3t − e−2t)v(t)
(2e−2t − 2e−3t)u(t) + (2e−3t − e−2t)v(t)

)

donc, pour tout réel t,

u1(t) = (2e−2t − e−3t)u(t) + (e−3t − e−2t)v(t)

et
v1(t) = (2e−2t − 2e−3t)u(t) + (2e−3t − e−2t)v(t) .

b. Les fonctions u1 et v1 sont dérivables sur R comme composée et produits de fonctions
dérivables et, pour tout réel t,

u′
1(t) = (−4e−2t + 3e−3t)u(t) + (2e−2t − e−3t)u′(t) + (−3e−3t + 2e−2t)v(t) + (e−3t − e−2t)v′(t)

= (−4e−2t + 3e−3t)u(t) + (2e−2t − e−3t)(u(t) + v(t)) + (−3e−3t + 2e−2t)v(t)
+ (e−3t − e−2t)(−2u(t) + 4v(t))

= (−4e−2t + 3e3t + 2e−2t − e−3t − 2e−3t + 2e−2t)u(t)+
(2e−2t − e−3t − 3e−3t + 2e−2t + 4e−3t − 4e−2t)v(t)

= 0

et

v′
1(t) = (−4e−2t + 6e−3t)u(t) + (2e−2t − 2e−3t)u′(t) + (−6e−3t + 2e−2t)v(t) + (2e−3t − e−2t)v′(t)

= (−4e−2t + 6e−3t)u(t) + (2e−2t − 2e−3t)(u(t) + v(t)) + (−6e−3t + 2e−2t)v(t)
+ (2e−3t − e−2t)(−2u(t) + 4v(t))

= (−4e−2t + 6e3t + 2e−2t − 2e−3t − 4e−3t + 2e−2t)u(t)+
(2e−2t − 2e−3t − 6e−3t + 2e−2t + 8e−3t − 4e−2t)v(t)

= 0.

Ainsi, pour tout t ∈ R, u′
1(t) = v′

1(t) = 0.
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6. Comme R est un intervalle, on en déduit que u1 et v1 sont constantes sur R. Notons
α = u1(0) et β = v1(0). Alors, pour tout réel t, u1(t) = α et v1(t) = β donc(

α
β

)
= E(−t, A)

(
u(t)
v(t)

)
.

Or, pour tout réel t, E(−t, A) est inversible et son inverse est E(t, A) donc on en déduit
que, pour tout réel t, (

u(t)
v(t)

)
= E(t, A)

(
α
β

)
.

Ainsi, pour tout réel t,(
u(t)
v(t)

)
=
(

2e2t − e3t e3t − e2t

2e2t − 2e3t 2e3t − e2t

)(
α
β

)
=
(
α(2e2t − e3t) + β(e3t − e2t)
α(2e2t − 2e3t) + β(2e3t − e2t)

)

i.e. pour tout réel t,

u(t) = (2α− β)e2t + (β − α)e3t et v(t) = (2α− β)e2t + (2β − 2α)e3t .
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Sujets mixtes algèbre/probabilités
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Sujet 52. Évolution d’un génotype (C7)

Certaines plantes, par exemple le lupin, se reproduisent par auto-fécondation (ou autogamie).
Tout se passe pour la descendance comme si on fécondait deux plantes de même génotype,

chaque chromosome d’une paire étant sélectionné au hasard et de façon indépendante.
On s’intéresse à l’évolution du génotype de la descendance d’une plante mère, concernant un

gène qui possède deux allèles A et a.
1. Expliquer ce qui se passe pour la descendance si la plante est de génotype AA ou aa.

On suppose désormais que la plante mère est de génotype Aa.
2. Déterminer les probabilités que la descendance de la première génération soit une plante

de génotype AA, Aa ou aa.
3. On définit, pour tout n ∈ N, les évènements suivants :
• En : « la plante de la n-ième génération est de génotype AA » et on note yn = P(En) ;
• Fn : « la plante de la n-ième génération est de génotype Aa » et on note zn = P(Fn) ;
• Gn : « la plante de la n-ième génération est de génotype aa » et on note xn = P(Gn).

a. Montrer que, pour tout n ∈ N,

xn+1 = xn + 1
4zn, yn+1 = yn + 1

4zn et zn+1 = 1
2zn.

b. Exprimer, pour tout n ∈ N, zn en fonction de n.

c. Soit n ∈ N. Calculer de deux façons
n−1∑
k=0

xk+1 − xk et en déduire xn et yn en fonction

de n.

4. Pour tout n ∈ N, on pose Xn =

xnyn
zn

.

a. Déterminer une matrice M ∈M3(R) telle que, pour tout n ∈ N, Xn+1 = MXn.
b. En déduire, pour tout n ∈ N, Xn en fonction de X0, M et n.

5. Retrouver, pour tout n ∈ N, les expressions explicites de xn, yn et zn en fonction de n.
6. Étudier le comportement à l’infini de ces suites et l’analyser en fonction des propriétés

de l’information génétique.
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Solution.
1. Si la plante mère est de génotype AA, elle ne peut transmettre que l’allèle A donc toute

sa descendance est de génotype AA.
De même, si la plante mère est de génotype aa, toute sa descendance est de génotype aa.

2. Notons A1 : « le premier allèle est A » et A2 : « le second allèle est A. Alors, on identifie
le choix des allèles à des choix aléatoires, P(A1) = P(A2) = 1

2 .
• la probabilité que la descendance de la première génération soit de génotype AA est

P(A1 ∩ A2) donc, par indépendance, cette probabilité est 1
2 ×

1
2 = 1

4 ;
• la probabilité que la descendance de la première génération soit de génotype Aa est

P((A1 ∩A2) ∪ (A1 ∩A2)) donc, incompatibilité et indépendance, cette probabilité est
1
2 ×

1
2 + 1

2 ×
1
2 = 1

2 ;
• la probabilité que la descendance de la première génération soit de génotype aa est

P(A1 ∩ A2) donc, par indépendance, cette probabilité est 1
2 ×

1
2 = 1

4 .
3. a. Soit n ∈ N. Comme (En, Fn, Gn) est un système complet d’évènements donc, par la

formule des probabilités totales,

xn+1 = P(Gn+1) = P(En)P(Gn+1 | En) + P(Fn)P(Gn+1 | Fn) + P(Gn)P(Gn+1 | Gn)

= yn × 0 + zn ×
1
4 + xn × 1 = xn + 1

4zn

yn+1 = P(En+1) = P(En)P(En+1 | En) + P(Fn)P(En+1 | Fn) + P(Gn)P(En+1 | Gn)

= yn × 1 + zn ×
1
4 + xn × 0 = yn + 1

4zn

zn+1 = P(Fn+1) = P(En)P(Fn+1 | En) + P(Fn)P(Fn+1 | Fn) + P(Gn)P(Fn+1 | Gn)

= yn × 0 + zn ×
1
2 + xn × 0 = 1

2zn.

Ainsi, pour tout n ∈ N, xn+1 = xn + 1
4zn, yn+1 = yn + 1

4zn et zn+1 = 1
2zn .

b. La suite (zn) est une suite géométrique de premier terme z0 = 1 (car le génotype de
la plante mère est Aa) et de raison 1

2 donc, pour tout n ∈ N, zn =
(

1
2

)n
.

c. D’une part, en reconnaissant une somme téléscopique,

n−1∑
k=0

xk+1 − xk = xn − x0 = xn

car x0 = 0. D’autre part, en utilisant le résultat de la question a.,

n−1∑
k=0

xk+1 − xk =
n−1∑
k=0

1
4zk = 1

4

n−1∑
k=0

(1
2

)k
= 1

4 ×
1−

(
1
2

)n
1− 1

2
= 1

2

[
1−

(1
2

)n]
.
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On en déduit que, pour tout n ∈ N, xn = 1
2

[
1−

(
1
2

)n]
.

De plus, pour tout n ∈ N, xn + yn + zn = 1 donc, pour tout n ∈ N,

yn = 1− xn − zn = 1− 1
2

[
1−

(1
2

)n]
−
(1

2

)n
= 1

2 + 1
2

(1
2

)n
−
(1

2

)n

soit, pour tout n ∈ N, yn = 1
2

[
1−

(
1
2

)n]
.

4. a. Pour tout n ∈ N,

Xn+1 =

xn+1
yn+1
zn+1

 =

xn + 1
4zn

yn + 1
4zn

1
2zn

 =

1 1
4 0

0 1 1
4

0 0 1
2


xnyn
zn



Ainsi, posant M =

1 0 1
4

0 1 1
4

0 0 1
2

 , on a, pour tout n ∈ N, Xn+1 = MXn.

b. Ainsi, (Xn) est une suite géométrique de matrices colonnes de raison M donc,
pour tout n ∈ N, Xn = MnX0 .

5. Montrons que M est diagonalisable. Comme M est triangulaire, son spectre est constitué
de ces termes diagonaux i.e. Sp(M) = {1 ; 1

2}.

Soit (x, y, z) ∈ R3 et X =

xy
z

.

Déterminons E1(M) :

MX = X ⇐⇒


x+ 1

4z = x

y + 1
4z = y

1
2z = z

⇐⇒ z = 0.

Ainsi, E1(M) =


xy

0


∣∣∣∣∣∣∣ (x, y) ∈ R2

 = Vect


1

0
0

 ,
0

1
0


.

Déterminons E 1
2
(M) :

MX = 1
2X ⇐⇒


x+ 1

4z = 1
2x

y + 1
4z = 1

2y
1
2z = 1

2z

⇐⇒

x = −1
2z

y = −1
2z

.

Ainsi, E 1
2
(M) =


−

1
2z
−1

2z
z


∣∣∣∣∣∣∣ z ∈ R

 = Vect


 1

1
−2


.

Comme dim(E1(M)) + dim(E 1
2
(M)) = 3, M est diagonalisable et M = PDP−1 avec
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D =

1 0 0
0 1 0
0 0 1

2

 et P =

1 0 1
0 1 1
0 0 −2

. Ainsi, pour tout n ∈ N, Mn = (PDP−1)n =

PDnP−1. Comme D est diagonale, pour tout n ∈ N, Dn =

1 0 0
0 1 0
0 0 (1

2)n

. De plus, on

vérifie (par exemple à l’aide de Python ou de Geogebra ou en résolvant un système) que

P−1 =

1 0 1
2

0 1 1
2

0 0 −1
2

.

Ainsi, pour tout n ∈ N,

Xn = MnX0 = PDnP−1X0 =

1 0 1
0 1 1
0 0 −2


1 0 0

0 1 0
0 0 (1

2)n


1 0 1

2
0 1 1

2
0 0 −1

2


0

0
1



=

1 0 1
0 1 1
0 0 −2


1 0 0

0 1 0
0 0 (1

2)n




1
2
1
2
−1

2



=

1 0 1
0 1 1
0 0 −2




1
2
1
2

−
(

1
2

)n+1



=


1
2 −

(
1
2

)n+1

1
2 −

(
1
2

)n+1(
1
2

)n


Ainsi, on retrouve bien que, pour tout n ∈ N, xn = yn = 1
2

[
1−

(
1
2

)n]
et zn =

(
1
2

)n
.

6. Comme −1 < 1
2 < 1,

(
1
2

)n
−−−−→
n→+∞

0 donc xn −−−−→
n→+∞

1
2 , yn −−−−→

n→+∞
1
2 et zn −−−−→

n→+∞
0 .

Ainsi, au bout d’un grand nombre de générations, les génotypes AA et aa tendent à
s’imposer de façon équiprobable.
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Sujet 53. Matrices aléatoires dont les coefficients suivent
des lois géométriques (C8)

Soit X et Y deux variables aléatoires réelles indépendantes définies sur un univers noté Ω.
On suppose que X suit une loi de Poisson de paramètre α et que Y +1 suit une loi géométrique

de paramètre p ∈ ]0 ; 1[.

I. Probabilités
1. a. Donner la loi de X, son espérance et sa variance.

b. Donner la loi de Y son espérance et sa variance.
2. Calculer P ((X = 0) ∪ (Y = 0)).

3. Montrer que (X = Y ) =
+∞⋃
k=0

((X = k) ∩ (Y = k)).

Calculer P(X = Y ).

II. Matrices

1. Soit deux réels positifs ou nuls a et b et M =

−a a 0
2a 0 0
0 0 b

.

a. Déterminer les valeurs propres de M en fonction de a et b.
b. Donner une condition nécessaire et suffisante pour que M soit inversible.
c. Donner une condition nécessaire et suffisante pour que M possède 3 valeurs propres

distinctes.

2. Pour tout ω ∈ Ω, on note M(ω) =

−X(ω) X(ω) 0
2X(ω) 0 0

0 0 Y (ω)

 où X et Y sont les variables

aléatoires de la partie I.
a. Donner la probabilité que la matrice M(ω) soit nulle.
b. Donner la probabilité que la matrice M(ω) soit inversible.
c. Donner la probabilité que la matrice M(ω) possède trois valeurs propres distinctes.
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Solution.

I. Probabilités

1. a. Par définition, X(Ω) = N et, pour tout k ∈ N, P(X = k) = αk

k! e−α .

De plus, par théorème, E(X) = V(X) = α .
b. Par définition, (Y + 1)(Ω) = N∗ donc Y (Ω) = N et, pour tout entier naturel k,

P(Y = k) = P(Y + 1 = k + 1) i.e. pour tout k ∈ N, P(Y = k) = p(1− p)k .

De plus, par théorème, E(Y + 1) = 1
p

et V(Y + 1) = 1− p
p2 donc, par linéarité de

l’espérance, E(Y ) = E(Y + 1 − 1) = E(Y + 1) − 1 soit E(Y ) = 1
p
− 1 = 1− p

p
et,

par propriété de la variance, V(Y ) = V(Y + 1− 1) = V(Y + 1) soit V(Y ) = 1− p
p2 .

2. Par propriété, P ((X = 0) ∪ (Y = 0)) = P(X = 0) + P(Y = 0)−P ((X = 0) ∩ (Y = 0)).

Or, P(X = 0) = α0

0! e−α = e−α, P(Y = 0) = p(1 − p)0 = p et, comme X et Y sont
indépendantes,

P ((X = 0) ∩ (Y = 0)) = P(X = 0)P(Y = 0) = e−α × p

donc P ((X = 0) ∪ (Y = 0)) = e−α + p− pe−α .
3. La famille ((X = k))k∈N est un système complet d’évènements donc

(X = Y ) = (X = Y ) ∩ Ω = (X = Y ) ∩
(+∞⋃
k=0

(X = k)
)

=
+∞⋃
k=0

((X = Y ) ∩ (X = k)) =
+∞⋃
k=0

((k = Y ) ∩ (X = k))

et ainsi (X = Y ) =
+∞⋃
k=0

((X = k) ∩ (Y = k)) .

Comme il s’agit d’une union d’évènements incompatibles (puisque les évènements
(X = k) sont incompatibles pour k ∈ N), il s’ensuit que

P(X = Y ) = P
(+∞⋃
k=0

((X = k) ∩ (Y = k))
)

=
+∞∑
k=0

P ((X = k) ∩ (Y = k)) .

Or, Xet Y sont indépendantes donc

P(X = Y ) =
+∞∑
k=0

P(X = k)P(Y = k) =
+∞∑
k=0

αk

k! e−α × p(1− p)k = pe−α
+∞∑
k=0

((1− p)α)k

k! .

donc, en reconnaissant la somme d’une série géométrique, P(X = Y ) = pe−αe(1−p)α i.e.

P(X = Y ) = pe−pα .
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II. Matrices

a. i. Soit λ ∈ R et (x, y, z) ∈ R3. Alors,

M

xy
z

 = λ

xy
z

⇐⇒

−ax+ ay = λx

2ax = λy

bz = λz

⇐⇒


−(a+ λ)x+ ay = 0
2ax− λy = 0
(b− λ)z = 0

1re cas. Supposons que a = 0. Alors, le système s’écrit
−λx = 0
−λy = 0
(b− λ)z = 0

donc il n’est pas de rang 3 si et seulement si λ = 0 ou λ = b.
2e cas. Supposons que a ̸= 0. Alors,
−(a+ λ)x+ ay = 0 L1

2ax− λy = 0 L2

(b− λ)z = 0 L3

⇐⇒


2ax− λy = 0 L1 ↔ L2

−(a+ λ)x+ ay = 0 L2 ↔ L1

(b− λ)z = 0 L3

⇐⇒


2ax− λy = 0 L1(
a− λ(a+ λ)

2a

)
y = 0 L2 ← L2 + a+λ

2a L1

(b− λ)z = 0 L3

Comme a ̸= 0, le système n’est pas de rang 3 si et seulement si a− λ(a+ λ)
2a = 0

ou b− λ = 0 i.e. λ = b. Or,

a− λ(a+ λ)
2a = 0⇐⇒ 2a2 − λ(a+ λ) = 0⇐⇒ λ2 + aλ− 2a2 = 0.

Le discriminant du trinôme X2 + aX − 2a2 est ∆ = a2 − 4 × 1 × (−2a) = 9a2 > 0
(car a ̸= 0) donc ce trinôme possède deux racines réelles :

x1 = −a−
√

9a2

2 = −a− |3a|2 = −2a et x2 = −a+
√

9a2

2 = −a+ |3a|
2 = a

car a > 0.
Dans ce cas, les valeurs propres de M sont donc −2a, a et b.
On conclut que Sp(M) = {0 ; b} si a = 0 et Sp(M) = {−2a ; a ; b} si a > 0 .

b. La matrice M est inversible si et seulement si 0 n’est pas valeur propre de M i.e. si et
seulement si a ̸= 0 et b ̸= 0.

On conclut que M est inversible si et seulement si a ̸= 0 et b ̸= 0 .

232



c. Si a = 0, M possède au plus 2 valeurs propres. Si a > 0 alors −2a ≠ 0 donc M
possède 3 valeurs propres distincts si et seulement si b ̸= −2a et b ̸= a. Or, dans ce
cas, −2a < 0 et b ⩾ 0 donc −2a ̸= b. Ainsi, M possède 3 valeurs propres distinctes si
et seulement si a ̸= b.

On conclut donc que M possède 3 valeurs propres distinctes si et seulement si a /∈ {0 ; b} .

4. a. La matrice M(ω) est nulle si et seulement si X(ω) = 0 et Y (ω) = 0. Or, on a vu dans
la question I.2. que P((X = 0 ∩ (Y = 0)) = pe−α.

Ainsi, la probabilité que la matrice M(ω) soit nulle est pe−α .
b. D’après les résultats de la question 1., M(ω) est inversible si et seulement si X(ω) ̸= 0

et Y (ω) ̸= 0. Or, (X ̸= 0)∩(Y ̸= 0) = (X = 0) ∪ (Y = 0) donc, d’après les résultats de
la première partie, la probabilité que M(ω) soit inversible est 1− e−α − p+ pe−α .

c. D’après les résultats de la question 1., M(ω) possède 3 valeurs propres distinctes si et
seulement si X(ω) ̸= 0 et X(ω) ̸= Y (ω). Or, (X ̸= 0)∩(X ≠ Y ) = (X = 0) ∪ (X = Y )
et

P ((X = 0) ∪ (X = Y )) = P(X = 0) + P(X = Y )−P ((X = 0) ∩ (X = Y ))
= P(X = 0) + P(X = Y )−P ((X = 0) ∩ (Y = 0).)

donc, d’après les résultats de la première partie,

P ((X = 0) ∪ (X = Y )) = e−α + pe−pα − pe−α

on conclut donc que la probabilité que M(ω) possède 3 valeurs propres distinctes est

1− e−α − pe−pα + pe−α .
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Sujet 54. Tirages successivement dans k urnes (C10)

Soit k ∈ N∗.
On considère k urnes disposées les unes à la suite des autres.
La première contient b boules blanches et n boules noires, avec (b, n) ∈ (N)2 et b+ n > 0.

Toutes les autres contiennent une boule blanche et une boule noire.
On pioche une boule dans la première urne pour la placer dans la deuxième, puis une boule

dans la deuxième que l’on place dans la troisième, et ainsi de suite.
On note, pour tout k ∈ N∗, Xk la variable aléatoire égale à 1 si la boule piochée dans l’urne

k est blanche et à 0 sinon.
1. Donner les lois de X1 et X2, leurs espérances et variances respectives.
2. À quelle condition les variables aléatoires X1 et X2 suivent-elles la même loi ?
3. À quelle condition sur n les variables aléatoires X1 et X2 sont-elles indépendantes ?
4. On note, pour tout k ∈ N∗, pk = P(Xk = 1) et qk = P(Xk = 0).

Exprimer, pour tout k ∈ N∗, pk+1 et qk+1 en fonction de pk et qk et en déduire une matrice
M telle que :

∀k ∈ N∗
(
pk+1
qk+1

)
= M

(
pk
qk

)
.

Exprimer ensuite, pour tout k ∈ N∗, pk et qk en fonction de M , k, p1 et q1.

5. Soit A =
(

1 1
1 1

)
. Calculer les puissances de la matrice A.

6. On admet que la formule du binôme de Newton est vraie pour deux matrices M et N
qui commutent.
Exprimer M en fonction de A et de I2 et en déduire, pour tout k ∈ N∗, Mk.

7. Exprimer, pour tout k ∈ N∗, pk et qk en fonction de k.
Étudier et interpréter leur comportement asymptotique.
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Solution.
1. Par définition, X1 suit une loi de Bernoulli de paramètre b

b+n donc E(X1) = b
b+n et

V(X1) = b
b+n

(
1− b

b+n

)
soit V(X1) = bn

(b+n)2 .
De même, X2 suit une loi de Bernoulli dont le succès est « Tirer une boule blanche dans
la seconde urne ». Comme ((X1 = 0), (X1 = 1)) est un système complet d’évènements,
d’après la formule de probabilités totales,

P(X2 = 1) = P(X1 = 0)P(X2 = 1 | X1 = 0) + P(X1 = 1)P(X2 = 1 | X1 = 1)

= n

b+ n
× 1

3 + b

b+ n
× 2

3 = 2b+ n

3(b+ n) .

Ainsi, X2 ↪→ B( 2b+n
3(b+n)) donc E(X2) = 2b+n

3(b+n) et V(X2) = 2b+n
3(b+n)

(
1− 2b+n

3(b+n)

)
c’est-à-dire

V(X2) = (2b+n)(b+2n)
9(b+n)2 .

2. Les variables aléatoires X1 et X2 suivent la même loi si et seulement si b
b+n = 2b+n

3(b+n) . Or,

b

b+ n
= 2b+ n

3(b+ n) ⇐⇒ 3b = 2b+ n⇐⇒ b = n.

Ainsi, X1 et X2 suivent la même loi si et seulement b = n .
3. On a vu dans la question 1. que P(X2 = 1 | X1 = 1) = 2

3 donc une condition nécessaire
pour que X1 et X2 soient indépendantes est que

2
3 = P(X2 = 1) = 2b+ n

3(b+ n) .

Or,
2
3 = 2b+ n

3(b+ n) ⇐⇒ 2(b+ n) = 2b+ n⇐⇒ n = 0.

Réciproquement, si n = 0 alors X1 est une variable aléatoire certaine égale à 1 donc,
pour tout k ∈ {0 ; 1}, P(X1 = 0, X2 = k) = 0 = P(X1 = 0)P(X2 = k) car (X1 = 0) = ∅
et P(X1 = 1, X2 = k) = P(X2 = k) = P(X1 = 0)P(X2 = k) car (X1 = 1) = Ω.
Ainsi, on conclut que X1 et X2 sont indépendantes si et seulement si n = 0 .

4. Soit k ∈ N∗.
Comme ((Xk = 0), (Xk = 1)) est un système complet d’évènements, d’après la formule
de probabilités totales,

pk+1 = P(Xk+1 = 1) = P(Xk = 0)P(Xk+1 = 1 | Xk = 0) + P(Xk = 1)P(Xk+1 = 1 | Xk = 1)

= qk ×
1
3 + pk ×

2
3 = 2

3pk + 1
3qk

et

qk+1 = P(Xk+1 = 0) = P(Xk = 0)P(Xk+1 = 0 | Xk = 0) + P(Xk = 1)P(Xk+1 = 0 | Xk = 1)

= qk ×
2
3 + pk ×

1
3 = 1

3pk + 2
3qk.
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Ainsi, pour tout k ∈ N∗,

pk+1 = 2
3pk + 1

3qk

qk+1 = 1
3pk + 2

3qk
.

Dès lors, pour tout k ∈ N∗,(
pk+1
qk+1

)
=
(

2
3pk + 1

3qk
1
3pk + 2

3qk

)
=
(

2
3

1
3

1
3

2
3

)(
pk
qk

)

donc M =
(

2
3

1
3

1
3

2
3

)
.

5. Posons, pour tout k ∈ N∗, Xk =
(
pk
qk

)
. Alors, pour tout k ∈ N∗, Xk+1 = MXk donc (Xk)

est une suite géométrique de matrices colonnes de raison M donc, pour tout k ∈ N∗,
Xk = Mk−1X1 i.e. (

pk
qk

)
= Mk−1

(
p1
q1

)
.

6. On vérifie que A2 =
(

2 2
2 2

)
= 2A donc A3 = A2A = (2A)A = 2A2 = 2(2A) = 4A et

A4 = A3A = (4A)A = 4A2 = 4(2A) = 8A.
Considérons, pour tout n ∈ N∗, la proposition P(n) : « An = 2n−1A.
Initialisation. Comme 21−1A = 20A = A = A1, P(1) est vraie.
Hérédité. Soit n ∈ N∗. Supposons que P(n) est vraie. Alors,

An+1 = AnA = (2n−1A)A = 2n−1A2 = 2n−1(2A) = 2n−12A = 2nA

donc P(n) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

∀n ∈ N∗ An = 2n−1A .

7. On remarque que M =
(

1
3 0
0 1

3

)
+
(

1
3

1
3

1
3

1
3

)
donc M = 1

3I2 + 1
3A .

Soit k ∈ N∗. Comme M = 1
3(A + I2), Mk =

[
1
3(A+ I2)

]k
=
(

1
3

)k
(A + I2)k. Or, les

matrices A et I2 commutent donc, par le formule du binôme de Newton,

(A+ I2)k =
k∑
j=0

(
k

j

)
AjIn−j

2 =
(
k

0

)
A0 +

k∑
j=1

(
k

j

)
2j−1A = I2 +

 k∑
j=1

(
k

j

)
2j−1

A.
Or,

k∑
j=1

(
k

j

)
2j−1 = 1

2

k∑
j=1

(
k

j

)
2j = 1

2

 k∑
j=0

(
k

j

)
2j − 1

 = 1
2

 k∑
j=0

(
k

j

)
2j1k−j − 1


= 1

2
[
(2 + 1)k − 1

]
= 3k − 1

2
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donc on conclut que

Mk =
(1

3

)k [
I2 + 3k − 1

2 A

]
.

On remarque, de plus, que cette égalité est encore vraie pour k = 0.
8. On en déduit que, pour tout entier k ∈ N∗,(

pk
qk

)
= Mk−1

(
p1
q1

)
=
(1

3

)k−1 [
I2 + 3k−1 − 1

2 A

](
p1
q1

)
=
(1

3

)k−1 [(p1
q1

)
+ 3k−1 − 1

2

(
p1 + q1
p1 + q1

)]
.

Or, p1 = b
b+n et q1 = n

b+n donc p1 + q1 = 1 et ainsi, pour tout k ∈ N∗,

(
pk
qk

)
=
(1

3

)k−1
 b
b+n + 3k−1−1

2
n
b+n + 3k−1−1

2

 .
On conclut donc que

∀k ∈ N∗ pk = 1
3k−1

[
b

b+ n
+ 3k−1 − 1

2

]
et qk = 1

3k−1

[
n

b+ n
+ 3k−1 − 1

2

]
.

Il s’ensuit que, pour tout k ∈ N∗,

pk = b

(b+ n)3k−1 + 1
2 −

1
2× 3k−1

et, comme 3 > 1, 3k−1 −−−−→
k→+∞

+∞ donc, par quotients et somme, pk −−−−→
k→+∞

1
2 .

De même, pour tout k ∈ N∗,

qk = n

(b+ n)3k−1 + 1
2 −

1
2× 3k−1

et, comme 3 > 1, 3k−1 −−−−→
k→+∞

+∞ donc, par quotients et somme, qk −−−−→
k→+∞

1
2 .

Ainsi, après un grand nombre de tirages, on se rapproche de l’équiprobabilité ente les
boules noires et blanches, et ce, quelle que soit la composition de l’urne de départ.
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Sujet 55. Mouvement d’une particule (O3)

Une particule se déplace entre trois points A, B et C. On ne connaît pas sa position initiale.
Lorsque la particule est située en :
• A, elle va en B avec une probabilité de 3

4 et en C avec une probabilité de 1
4 ;

• B, elle va en A avec une probabilité 3
4 et en C avec une proba 1

4 ;
• C, elle va en B.

Pour tout n ∈ N, on note an, bn et cn les probabilités respectives que la particule soit en A,
en B et en C après n déplacements.

1. Démontrer que, pour tout entier naturel n,
an+1 = 3

4bn

bn+1 = 3
4an + cn

cn+1 = 1
4an + 1

4bn

.

2. Déterminer une matrice M telle que, pour tout n ∈ N,an+1
bn+1
cn+1

 = M ×

anbn
cn

 .

3. Soit A =

0 3 0
3 0 4
1 1 0

. Exprimer M en fonction de A.

4. Montrer que, pour tout entier naturel n,anbn
cn

 = Mn ×

a0
b0
c0

 .
5. Déterminer les valeurs propres de la matrice A.
6. En déduire les valeurs propres de M , en utilisant la relation de la question 3..
7. Justifier qu’il existe une matrice inversible P et une matrice diagonale D telles que

M = PDP−1.
8. On note, pour tout entier naturel n,unvn

wn

 = P−1 ×

anbn
cn

 .
Montrer que, pour tout n ∈ N, unvn

wn

 = Dn ×

u0
v0
w0

 .
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Solution.
1. Notons, pour tout n ∈ N, An : « la particulier se trouve en A après n déplacements »,

Bn : « la particulier se trouve en B après n déplacements » et Cn : « la particulier se
trouve en C après n déplacements ».

Soit n ∈ N. Comme An, Bn et Cn forment un système complet d’évènements, d’après
la formule de probabilités totales

an+1 = P(An+1) = P(An)P(An+1 | An) + P(Bn)P(An+1 | Bn) + P(Cn)P(An+1 | Cn)

= an × 0 + bn ×
3
4 + cn × 0 = 3

4bn.

De la même façon,

bn+1 = P(Bn+1) = P(An)P(Bn+1 | An) + P(Bn)P(Bn+1 | Bn) + P(Cn)P(Bn+1 | Cn)

= an ×
3
4 + bn × 0 + cn × 1 = 3

4an + cn

et

cn+1 = P(Cn+1) = P(An)P(Cn+1 | An) + P(Bn)P(AC+1 | Bn) + P(Cn)P(Cn+1 | Cn)

= an ×
1
4 + bn ×

1
4 + cn × 0 = 1

4an + 1
4bn.

Ainsi, pour tout n ∈ N, 
an+1 = 3

4bn

bn+1 = 3
4an + cn

cn+1 = 1
4an + 1

4bn

.

2. Pour tout n ∈ N, an+1
bn+1
cn+1

 =


3
4bn

3
4an + cn

1
4an + 1

4bn

 =

0 3
4 0

3
4 0 1
1
4

1
4 0


anbn
cn



donc M =

0 3
4 0

3
4 0 1
1
4

1
4 0

 .

3. M = 1
4

0 3 0
3 0 4
1 1 0

 donc M = 1
4A .

4. Considérons, pour tout n ∈ N, la proposition P(n) : «

anbn
cn

 = Mn

a0
b0
c0

 ».
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Initialisation. Comme M0 = I3, M0

a0
b0
c0

 = I3

a0
b0
c0

 =

a0
b0
c0

 donc P(0) est vraie.

Hérédité. Soit n ∈ N. Supposons que P(n) est vraie. Alors, grâce au résultat de la
question 2., an+1

bn+1
cn+1

 = M

anbn
cn

 = M ×Mn

a0
b0
c0

 = Mn+1

a0
b0
c0


donc P(n+ 1) est vraie.

Conclusion. Par le principe de récurrence, pour tout n ∈ N,

anbn
cn

 = Mn

a0
b0
c0

 .

5. 1re méthode : détermination par le calcul
Soit λ ∈ R. Considérons le système

(S)


3y = λx

3x+ 4z = λy

x+ y = λz

.

Alors,

(S)⇐⇒


−λx+ 3y = 0 L1

3x− λy + 4z = 0 L2

x+ y − λz = 0 L3

⇐⇒


x+ y − λz = 0 L1 ↔ L3

3x− λy + 4z = 0 L2

−λx+ 3y = 0 L3 ↔ L1

⇐⇒


x+ y − λz = 0 L1

−(λ+ 3)y + (4 + 3λ)z = 0 L2 ← L2 − 3L1

(3 + λ)y − λ2z = 0 L3 ← L3 + λL1

⇐⇒


x+ y − λz = 0 L1

−(λ+ 3)y + (4 + 3λ)z = 0 L2

(−λ2 + 3λ+ 4)z = 0 L3 ← L3 + λL2

Ainsi, (S) n’est pas de rang 2 si et seulement si λ+3 = 0 ou −λ2 +3λ+4 = 0. La première
équation équivaut à λ = −3. Pour la seconde, le discriminant est ∆ = 32−4×(−1)×4 = 25
donc celle-ci possède deux solutions réelles :

λ1 = −3−
√

25
2× (−1) = 4 et λ2 = −3 +

√
25

2× (−1) = −1.

Ainsi, on conclut que Sp(A) = {−3 ; 4 ;−1} .

2de méthode : détermination à l’aide de Python
Grâce au code suivant,
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import numpy as np

A = np.array ([[0 ,3 ,0] , [3,0,4], [1 ,1 ,0]])
print(np.linalg.eig(A))

qui affiche

(array ([ 4., -3., -1.]) ,
array ([[ -5.66315014e-01, -7.07106781e-01, -8.01783726e -01] ,
[ -7.55086685e-01, 7.07106781e-01, 2.67261242e -01] ,
[ -3.30350425e-01, 3.43839982e-17, 5.34522484e -01]]))

on conjecture Sp(A) = {4 ;−3 ;−1}. On peut le vérifier en déterminant E4(A), E−3(A)

et E−1(A). Soit (x, y, z) ∈ R3 et X =

xy
z

.

X ∈ E4(A)⇐⇒


3y = 4x
3x+ 4z = 4y
x+ y = 4z

⇐⇒

y = 4
3x

z = 7
12x

Ainsi,

12
16
7

 est un vecteur non nul de E4(A) donc 4 est bien valeur propre de A.

X ∈ E−3(A)⇐⇒


3y = −3x
3x+ 4z = −3y
x+ y = −3z

⇐⇒

y = −x
z = 0

Ainsi,

 1
−1
0

 est un vecteur non nul de E−3(A) donc −3 est bien valeur propre de A.

X ∈ E−1(A)⇐⇒


3y = −x
3x+ 4z = −y
x+ y = −z

⇐⇒

x = −3y
z = 2y

Ainsi,

−3
1
2

 est un vecteur non nul de E−1(A) donc −1 est bien valeur propre de A.

De plus, comme A est une matrice carrée d’ordre 3, elle possède au maximum 3 valeurs
propres donc on conclut que Sp(A) = {4 ;−3 ;−1} .
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6. Soit λ ∈ R. Alors, λ ∈ Sp(M) si et seulement s’il existe une matrice colonne non nulle
X telle que MX = λX si et seulement s’il existe une matrice colonne non nulle X
telle que1

4AX = λX si et seulement s’il existe une matrice colonne non nulle X telle
que AX = (4λ)X. Ainsi, λ ∈ Sp(M) si et seulement si 4λ ∈ Sp(A). On en déduit que
Sp(M) = {1 ;−3

4 ; 1
4} .

7. Comme M est une matrice carrée d’ordre 3 admettant 3 valeurs propres distinctes, par
théorème, M est diagonalisable donc il existe une matrice inversible P et une matrice
diagonale D telles que M = PDP−1 .

8. Par propriété, pour tout n ∈ N, Mn = (PDP−1)n = PDnP−1 donc, grâce à la question
4., pour tout n ∈ N, unvn

wn

 = PDnP−1

u0
v0
w0

 = PDn

u0
v0
w0


donc, en multipliant à gauche par P−1,

P−1

anbn
cn

 = Dn

u0
v0
w0

 i.e.

unvn
wn

 = Dn

u0
v0
w0

 .
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Sujet 56. Sensibilité des grenouilles aux couleurs (O3)

Soit p et q dans ]0 ; 1[ et A =
(

1− p q
p 1− q

)
.

1. Une première méthode pour déterminer les puissances de A
a. Déterminer deux matrices B et C telles que A = B + (1− p− q)C et B + C = I2.
b. Calculer B2 et C2. En déduire BC et CB.
c. On admet que la formule du binôme de Newton est utilisable pour des matrices M et

N d’ordre 2 qui commutent, c’est-à-dire telles que MN = NM .
Écrire cette formule du binôme de Newton.

d. Calculer An pour tout entier n ⩾ 2. On pourra noter α = 1− p− q.
2. Afin de tester la sensibilité aux couleurs bleu et rouge des amphibiens, on place une

grenouille adulte (les têtards voient en noir et blanc) dans une boîte séparée en deux
compartiments, l’un rouge et l’autre bleu. On observe les déplacements de l’animal et, à
chaque minute, on note où il se trouve.

S’il était en « zone bleue » à la n-ième minute, il est passé en « zone rouge » à la
minute n+ 1 avec une probabilité q. De même, s’il était en « zone rouge » à la n-ième
minute, il est passé en « zone bleue » à la minute n+ 1 avec une probabilité p.

Pour tout n ∈ N, on note rn (resp. bn) la probabilité que la grenouille soit en « zone
rouge » (resp. bleue) à la minute n.

a. Exprimer, pour tout n ∈ N, rn+1 et bn+1 en fonction de rn et bn à l’aide d’une relation
matricielle.

b. En déduire, pour tout n ∈ N, rn et bn en fonction de r0 et b0 à l’aide d’une relation
matricielle.

c. À l’instant initial, le grenouille est introduite en « zone bleue ». Déterminer, pour
tout n ∈ N, rn et bn en fonction de n.

d. Application numérique : on prend p = 1
3 et q = 1

6.
Déterminer le comportement à l’infini de rn et bn.

3. Une deuxième méthode pour déterminer les puissances de A
a. Montrer que la matrice A est diagonalisable quelles que soient les valeurs prises par p

et q.
Déterminer ses valeurs propres et des vecteurs propres associés.

b. Exprimer An pour tout n ∈ N.
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Solution.
1. a. Soit B et C deux matrices carrées d’ordre 2. Alors,B + (1− p− q)C = A

B + C = I2
⇐⇒

I2 − C + (1− p− q)C = A

B = I2 − C

⇐⇒

I2 − (p+ q)C = A

B = I2 − C

⇐⇒

C = 1
p+q (I2 − A)

B = I2 − 1
p+q (I2 − A)

Ainsi, on conclut que B = 1
p+ q

(
q q
p p

)
et C = 1

p+ q

(
p −q
−p q

)
vérifient A =

B + (1− p− q)C et B + C = I2.
b. On a

B2 = 1
(p+ q)2

(
q q
p p

)(
q q
p p

)
= 1

(p+ q)2

(
q2 + qp q2 + qp
pq + p2 pq + p2

)

= 1
(p+ q)2

(
(p+ q)q (p+ q)q
(p+ q)p (p+ q)p

)
= 1
p+ q

(
q q
p p

)

donc B2 = B .
De même,

C2 = 1
(p+ q)2

(
p −q
−p q

)(
p −q
−p q

)
= 1

(p+ q)2

(
p2 + qp −pq − q2

−p2 − qp pq + q2

)

= 1
(p+ q)2

(
p(p+ q) −q(p+ q)
−p(p+ q) q(p+ q)

)
= 1
p+ q

(
p −q
−p q

)

donc B2 = C .
Comme B + C = I2, B = C − I2 donc BC = C2 − C = C − C = 02 et

CB = C2 − C = C − C = 02. Ainsi, BC = CB = 02 .
c. La formule du binôme de Newton pour les matrices carrées d’ordre 2 s’écrit de la

manière suivante. Soit n ∈ N et soit M et N deux matrices carrées d’ordre 2 telles
que MN = NM . Alors,

(M +N)n =
n∑
k=0

(
n

k

)
MkNn−k .

d. Posons α = 1 − p − q. Comme B et C commutent, il en est de même de B et αC
donc on peut appliquer la formule du binôme de Newton pour les matrices. Soit un
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entier n ⩾ 2. Alors

An = (B + αC)n =
n∑
k=0

(
n

k

)
Bk(αC)n−k =

n∑
k=0

(
n

k

)
αn−kBkCn−k.

Si k ∈ J1, n− 1K alors k > 0 et n− k > 0 donc

BkCn−k = Bk−1(BC)Cn−k−1 = Bk−102C
n−k−1 = 02.

Ainsi, dans la somme ci-dessus, tous les termes sont nuls sauf le premier et le dernier.
Ainsi,

An =
(
n

0

)
αnCn +

(
n

k

)
Bn = Bn + αnCn.

Or, comme B2 = B et C2 = C, on montre par récurrence que, pour tout n ∈ N∗,
Bn = B et Cn = C donc An = B + αnC i.e.

An = 1
p+ q

(
q + αnp q − αnq
p− αnp p+ αnq

)
.

2. a. Soit n ∈ N. Notons Rn : « la grenouille se trouve dans la zone rouge à la minute n ».
Alors, Rn et Rn forment un système complet d’évènements donc, par la formule de
probabilités totales,

rn+1 = P(Rn+1) = P(Rn)P(Rn+1 | Rn) + P(Rn)P(Rn+1 | Rn)
= rn × (1− p) + bn × q = (1− p)rn + qbn

et

bn+1 = P(Bn+1) = P(Rn)P(Bn+1 | Rn) + P(Rn)P(Bn+1 | Rn)
= rn × p+ bn × (1− q) = prn + (1− q)bn.

Ainsi,
(
rn+1
bn+1

)
=
(

(1− p)rn + qbn
prn + (1− q)bn

)
=
(

1− p q
p 1− q

)(
rn
bn

)
donc

(
rn+1
bn+1

)
= A

(
rn
bn

)
.

b. La suite
((

rn
bn

))
est donc une suite géométrique de matrices de raison A donc,

∀n ∈ N
(
rn
bn

)
= An

(
r0
b0

)
,
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c. Comme la grenouille se trouve initialement dans la zone bleue,
(
r0
b0

)
=
(

0
1

)
donc,

pour tout n ⩾ 2,(
rn
bn

)
= 1
p+ q

(
q + αnp q − αnq
p− αnp p+ αnq

)(
0
1

)
=
(
q − αnq
p+ αnq

)

et ainsi rn = q − αnq
p+ q

et bn = p+ αnq

p+ q
. De plus, on vérifie que ces expressions sont

encore vraie pour n = 0 et n = 1 car q − α
0q

p+ q
= 0 = r0, p+ α0q

p+ q
= 1 = b0, q − α

1q

p+ q
=

q(1− (1− p− q))
p+ q

= q = r1 et p+ α1q

p+ q
= p+ (1− p− q)q

p+ q
= p+ q − (p+ q)q

p+ q
=

1− q = b1.

On conclut donc que, pour tout n ∈ N, rn = q − αnq
p+ q

et bn = p+ αnq

p+ q
.

d. Comme p = 1
3 et q = 1

6, α = 1
2 donc, comme |α| < 1, αn −−−−→

n→+∞
0 donc, par produits

et sommes de limites, lim
n→+∞

rn = q

p+ q
et lim

n→+∞
bn = p

p+ q
.

3. a. Soit λ ∈ R. Alors,

det(A− λI2) =
∣∣∣∣∣1− p− λ q

p 1− q − λ

∣∣∣∣∣ = (1− p− λ)(1− q − λ)− pq

= 1− q − λ− p+ pq + pλ− λ+ qλ+ λ2 − pq
= λ2 − (α + 1)λ+ α

Le discriminant du polynôme P = X2 − (α + 1)X + α est

∆ = (−(α + 1))2 − 4α = α2 + 2α + 1− 4α = α2 − 2α + 1 = (α− 1)2.

Comme p > 0 et q > 0, p + q > 0 donc α = 1 − p − q < 1. Ainsi, ∆ > 0 donc P
possède deux racines distinctes. Ainsi, A possède deux valeurs propres distinctes donc,
comme A est d’ordre 2, A est diagonalisable. . De plus, les valeurs propres de A sont

λ1 =
α + 1−

√
(α− 1)2

2 = α + 1− |α− 1|
2 = α + 1− (1− α)

2 = α

et

λ2 =
α + 1 +

√
(α− 1)2

2 = α + 1 + |α− 1|
2 = α + 1 + (1− α)

2 = 1.

Ainsi, Sp(A) = {1 ;α} .
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Déterminons des vecteurs propres. Soit (x, y) ∈ R2. Alors,

A

(
x
y

)
=
(
x
y

)
⇐⇒

(1− p)x+ qy = x

px+ (1− q)y = y
⇐⇒

−px+ qy = 0
px− qy = 0

⇐⇒ y = p

q
x.

Ainsi,
(
q
p

)
est un vecteur propre associé à la valeur propre 1 .

De même,

A

(
x
y

)
= α

(
x
y

)
⇐⇒

(1− p)x+ qy = αx

px+ (1− q)y = αy
⇐⇒

qx+ qy = 0
px+ py = 0

⇐⇒ y = −x.

Ainsi,
(

1
−1

)
est un vecteur propre associé à la valeur propre α .

4. En posant D =
(

1 0
0 α

)
et P =

(
q 1
p −1

)
, on en déduit que A = PDP−1. Par propriété,

il s’ensuit que, pour tout n ∈ N, An = PDnP−1. Or, comme D est diagonale, pour tout

n ∈ N, Dn =
(

1 0
0 αn

)
. De plus, det(P ) = −(p + q) donc P−1 = − 1

p+ q

(
−1 −1
−p q

)
=

1
p+ q

(
1 1
p −q

)
. Il s’ensuit que, pour tout n ∈ N,

An = 1
p+ q

(
q 1
p −1

)(
1 0
0 αn

)(
1 1
p −q

)
= 1
p+ q

(
q 1
p −1

)(
1 1
αnp −αnq

)

soit

An = 1
p+ q

(
q + αnp q − αnq
p− αnp p+ αnq

)
.
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Sujet 57. Échanges de boules entre deux urnes I (O3)

On dispose de deux urnes A et B ainsi que de deux boules portant respectivement les numéros
0 et 1.

Initialement, l’urne A contient les deux boules et l’urne B est vide.
À chaque tour, on lance un dé équilibré à 6 faces et on effectue un éventuel déplacement

d’une boule entre les urnes selon les règles suivantes :
• si le résultat du dé est 1 ou 2, on change d’urne la boule numérotée 0,
• si le résultat du dé est 3 ou 4, on change d’urne la boule numérotée 1,
• si le résultat du dé est 5 ou 6, on ne modifie pas le contenu des urnes.

Pour n ∈ N, on désigne par :
• pn la probabilité que l’urne A contienne les 2 boules après l’étape n ;
• qn la probabilité que l’urne A ne contienne que la boule numérotée 0 après l’étape n ;
• rn la probabilité que l’urne A ne contienne que la boule numérotée 1 après l’étape n ;
• tn la probabilité que l’urne A ne contienne aucune boule après l’étape n.

Partie I
1. Donner les valeurs de p0, q0, r0 et t0.
2. Déterminer les valeurs de p1, q1, r1 et t1.

3. Montrer qu’il existe une matrice R telle que pour tout n ∈ N,


pn+1
qn+1
rn+1
tn+1

 = M


pn
qn
rn
tn

.

4. Déterminer, pour tout n ∈ N, une relation entre M , pn, qn, rn, tn et p0, q0, r0, t0.

Partie II
On considère les trois matrices suivantes :

R =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 U =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 et V =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
1. Calculer UV et V U .
2. Calculer U2 puis U3 et émettre une conjecture sur l’expression explicite de Un en fonction

de n ∈ N∗.
Démontrer cette conjecture.

3. Calculer V 2 puis V 3 puis V 4 et émettre une conjecture sur l’expression explicite de V n

en fonction de n ∈ N.
Démontrer cette conjecture.
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4. Exprimer R en fonction de U et V puis, en admettant que la formule du binôme de
Newton s’applique, donner, pour tout n ∈ N, une expression explicite de Rn en fonction
de n.

5. En déduire alors, pour tout n ∈ N, une expression explicite de pn, qn, rn, tn en fonction
de n.
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Solution.

Partie I
1. Initialement, l’urne A contient les deux boules donc p0 = 1 et q0 = r0 = t0 = 0 .

2. Les deux boules restent dans l’urne A si on obtient 5 ou 6 avec le dé donc p1 = 1
3 . L’urne

A ne contient plus que la boule numérotée 0 si on obtient 3 ou 4 avec le dé donc q1 = 1
3 .

L’urne A ne contient plus que la boule numérotée 1 si on obtient 1 ou 2 avec le dé donc

r1 = 1
3 . Enfin, il n’est pas possible de déplacer les deux boules en un seul tour donc

t1 = 0 .
3. Notons, pour tout n ∈ N, Pn (resp. Qn, Rn et Tn) : « l’urne A contient les deux boules

(resp. uniquement la boule 0, uniquement la boule 1, aucune boule) après l’étape n ».
Soit n ∈ N. Les évènements En, Fn, Gn et Hn forment un système complet d’évène-

ments donc, d’après la formule de probabilités totales,
pn+1 = P(En+1)

= P(En)PEn(En+1) + P(Fn)PFn(En+1) + P(Gn)PGn(En+1) + P(Hn)PHn(En+1)

= pn ×
1
3 + qn ×

1
3 + rn ×

1
3 + tn × 0

= 1
3pn + 1

3qn + 1
3rn

qn+1 = P(Fn+1)
= P(En)PEn(Fn+1) + P(Fn)PFn(Fn+1) + P(Gn)PGn(Fn+1) + P(Hn)PHn(Fn+1)

= pn ×
1
3 + qn ×

1
3 + rn × 0 + tn ×

1
3

= 1
3pn + 1

3qn + 1
3tn

rn+1 = P(Gn+1)
= P(En)PEn(Gn+1) + P(Fn)PFn(Gn+1) + P(Gn)PGn(Gn+1) + P(Hn)PHn(Gn+1)

= pn ×
1
3 + qn × 0 + rn ×

1
3 + tn ×

1
3

= 1
3pn + 1

3rn + 1
3rn

tn+1 = P(Hn+1)
= P(En)PEn(Hn+1) + P(Fn)PFn(Hn+1) + P(Gn)PGn(Hn+1) + P(Hn)PHn(Hn+1)

= pn × 0 + qn ×
1
3 + rn ×

1
3 + tn ×

1
3

= 1
3qn + 1

3rn + 1
3tn
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Ainsi, on en déduit que

pn+1
qn+1
rn+1
tn+1

 =


1
3pn + 1

3qn + 1
3rn

1
3pn + 1

3qn + 1
3tn

1
3pn + 1

3rn + 1
tn1

3qn + 1
3rn + 1

tn

 =


1
3

1
3

1
3 0

1
3

1
3 0 1

3
1
3 0 1

3
1
3

0 1
3

1
3

1
3



pn
qn
rn
tn



donc M =


1
3

1
3

1
3 0

1
3

1
3 0 1

3
1
3 0 1

3
1
3

0 1
3

1
3

1
3

 convient.

4. Posons, pour tout n ∈ N, Xn =


pn
qn
rn
tn

. Alors, pour tout n ∈ N, Xn+1 = MXn donc (Xn)

est une suite géométrique de matrices colonnes de raison M donc, pour tout n ∈ N,
Xn = MnX0. Ainsi,

∀n ∈ N


pn
qn
rn
tn

 = Mn


p0
q0
r0
t0

 .

Partie II
1. Le calcul donne

UV =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


et

V U =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


donc UV = V U = U .

2. Le calcul donne

U2 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 =


4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4



251



donc U2 = 4U . Dès lors, U3 = U2U = (4U)U = 4U2 = 4(4U) donc U3 = 16U .
On conjecture que, pour tout n ∈ N∗, Un = 4n−1U .
Montrons-le par récurrence.
Considérons, pour tout n ∈ N∗, la proposition P(n) : « Un = 4n−1U ».
Initialisation. 41−1U = 40U = U donc P(1) est vraie.
Hérédité. Soit n ∈ N∗. Supposons que P(n) est vraie. Alors,

Un+1 = UnU = (4n−1U)U = 4n−1U2 = 4n−1(4U) = 4nU

donc P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N∗, Un = 4n−1U .

3. Le calcul donne

V 2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


donc V 2 = I4 . Dès lors, V 3 = V 2V = I4V donc V 3 = V .

On conjecture que, pour tout n ∈ N, V n = I4 si n est pair et V n = V si n est impair.
Montrons-le par récurrence.
Considérons, pour tout n ∈ N∗, la proposition Q(n) : « V n = I4 si n est pair et

V n = V si n est impair ».
Initialisation. V 0 = I4 donc Q(0) est vraie.
Hérédité. Soit n ∈ N∗. Supposons que Q(n) est vraie. Alors, si n est pair, n+ 1 est

impair et V n+1 = V nV = I4V = V . Si n est impair, n + 1 est pair et V n+1 = V nV =
V V = V 2 = I4. Ainsi, V n+1 = V si n+ 1 est impair et V n+1 = I4 si n+ 1 est pair donc
Q(n+ 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N∗, V n = I4
si n est pair et V n = V si n est impair.

4. On remarque que R = U − V . On en déduit en appliquant la formule du binôme de
Newton (ce qui est possible ici car U et V commutent), que, pour tout n ∈ N∗,

Rn = (U − V )n = (U + (−V ))n =
n∑
k=0

(
n

k

)
Uk(−V )n−k =

n∑
k=0

(−1)n−k
(
n

k

)
UkV n−k.

Soit k ∈ J1, nK. Si n− k est pair, alors UkV n−k = UkI4 = Uk et, si n− k est impair, alors
UkV n−k = UkV = Uk−1(UV ) = Uk−1U = Uk donc

Rn = (−1)nV n +
n∑
k=1

(−1)n−k
(
n

k

)
UkV n−k = (−1)nV n +

n∑
k=1

(−1)n−k
(
n

k

)
Uk

= (−1)nV n +
n∑
k=1

(−1)n−k
(
n

k

)
(4k−1U) = (−1)nV n +

(
n∑
k=1

(
n

k

)
4k−1(−1)n−k

)
U.
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Or,
n∑
k=1

(
n

k

)
4k−1(−1)n−k =

n∑
k=1

(
n

k

)
4k4−1(−1)n−k = 1

4

n∑
k=1

(
n

k

)
4k(−1)n−k

= 1
4

(
n∑
k=0

(
n

k

)
4k(−1)n−k − (−1)n

)
= 1

4 ((4− 1)n − (−1)n)

= 3n − (−1)n
4

donc
Rn = (−1)nV n + 3n − (−1)n

4 U.

On conclut donc que, pour tout n ∈ N,

si n est pair, Rn = I4 + 3n − 1
4 U = 1

4


3n + 3 3n − 1 3n − 1 3n − 1
3n − 1 3n + 3 3n − 1 3n − 1
3n − 1 3n − 1 3n + 3 3n − 1
3n − 1 3n − 1 3n − 1 3n + 3


et

si n est impair, Rn = −V + 3n + 1
4 U = 1

4


3n + 1 3n + 1 3n + 1 3n − 3
3n + 1 3n + 1 3n − 3 3n + 1
3n + 1 3n − 3 3n + 1 3n + 1
3n − 3 3n + 1 3n + 1 3n + 1

 .

5. Soit n ∈ N. Si n est pair alors
pn+1
qn+1
rn+1
tn+1

 = Mn


p0
q0
r0
t0

 =
(1

3R
)n

1
0
0
0

 = 1
3nR

n


1
0
0
0



= 1
3n ×

1
4


3n + 3 3n − 1 3n − 1 3n − 1
3n − 1 3n + 3 3n − 1 3n − 1
3n − 1 3n − 1 3n + 3 3n − 1
3n − 1 3n − 1 3n − 1 3n + 3




1
0
0
0



= 1
4× 3n


3n + 3
3n − 1
3n − 1
3n − 1


donc

pn = 3n + 1
4× 3n et qn = rn = tn = 3n − 1

4× 3n .
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Si n est impair alors
pn+1
qn+1
rn+1
tn+1

 = Mn


p0
q0
r0
t0

 =
(1

3R
)n

1
0
0
0

 = 1
3nR

n


1
0
0
0



= 1
3n ×

1
4


3n + 1 3n + 1 3n + 1 3n − 3
3n + 1 3n + 1 3n − 3 3n + 1
3n − 1 3n − 3 3n + 1 3n + 1
3n − 3 3n + 1 3n + 1 3n + 1




1
0
0
0



= 1
4× 3n


3n + 1
3n + 1
3n + 1
3n − 3


donc

pn = qn = rn = 3n + 1
4× 3n et tn = 3n − 3

4× 3n .
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Sujet 58. Échanges de boules entre deux urnes II (O3)

On dispose de deux urnes A et B.
Initialement, l’urne A contient 2 boules noires et l’urne B contient 2 boules blanches.
À chaque tour, on choisit simultanément une boule de l’urne A et une boule de l’urne B, et

on échange ces deux boules.
Pour tout n ∈ N, on note Xn la variable aléatoire qui compte le nombre de boules blanches

dans l’urne A après n échanges.
On a donc X0 = 0 de façon certaine.
1. Déterminer la loi de X1, son espérance et sa variance.
2. Déterminer la loi de X2, son espérance et sa variance.
3. Déterminer une matrice carrée M telle que pour tout n ∈ N :P (Xn+1 = 0)

P (Xn+1 = 1)
P (Xn+1 = 2)

 = M

P (Xn = 0)
P (Xn = 1)
P (Xn = 2)

 .
4. Diagonaliser la matrice M .
5. En déduire la loi de Xn pour tout n ∈ N∗.
6. Calculer l’espérance de Xn pour tout n ∈ N∗.
7. Calculer la variance de Xn pour tout n ∈ N∗.
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Solution.
1. Au premier tirage, on tire nécessairement une boule noire dans l’urne A et une boule

blanche dans l’urne B et on les échange donc X1 = 1 de façon certaine. Ainsi, E(X1) = 1
et V(X1) = 0 .

2. Commençons par remarquer que X2(Ω) = {0 ; 1 ; 2}.
Notons A2 : « tirer une boule blanche dans l’urne A au second tirage » et B2 : « tirer
une boule blanche dans l’urne B au second tirage ». Alors,
• (X2 = 0) = A2 ∩B2 donc, par indépendance, P(X2 = 0) = P(A2)P(B2) = 1

2 ×
1
2 = 1

4 ;
• (X2 = 1) = (A2 ∩ B2) ∪ (A2 ∪ B2) donc, par incompatibilité et indépendance,

P(X2 = 0) = P(A2)P(B2) + P(A2)P(B2) = 1
2 ×

1
2 + 1

2 ×
1
2 = 1

2 ;
• (X2 = 2) = A2 ∩B2 donc, par indépendance, P(X2 = 2) = P(A2 ∩B2) = 1

2 ×
1
2 = 1

4 ;
Ainsi, E(X2) = 0× 1

4 + 1× 1
2 + 2× 1

4 soit E(X2) = 1 .
De plus, le théorème de transfert, E(X2

2 ) = 02× 1
4 +12× 1

2 +22× 1
4 = 3

2 donc V(X2) = 3
2−12

soit V(X2) = 1
2 .

3. Soit n ∈ N. Comme précédemment, Xn(Ω) = {0 ; 1 ; 2}.
Comme ((Xn = 0), (Xn = 1), (Xn = 2)) est un système complet d’évènements,

P(Xn+1 = 0) = P(Xn = 0)P(Xn+1 = 0 | Xn = 0) + P(Xn = 1)P(Xn+1 = 0 | Xn = 1)
+ P(Xn = 2)P(Xn+1 = 0 | Xn = 2)

= P(Xn = 0)× 0 + P(Xn = 1)× 1
4 + P(Xn = 2)× 0

= 1
4P(Xn = 1)

P(Xn+1 = 1) = P(Xn = 0)P(Xn+1 = 1 | Xn = 0) + P(Xn = 1)P(Xn+1 = 1 | Xn = 1)
+ P(Xn = 2)P(Xn+1 = 1 | Xn = 2)

= P(Xn = 0)× 1 + P(Xn = 1)× 1
2 + P(Xn = 2)× 1

= P(Xn = 0) + 1
2P(Xn = 1) + P(Xn = 2)

P(Xn+1 = 2) = P(Xn = 0)P(Xn+1 = 2 | Xn = 0) + P(Xn = 1)P(Xn+1 = 2 | Xn = 1)
+ P(Xn = 2)P(Xn+1 = 2 | Xn = 2)

= P(Xn = 0)× 0 + P(Xn = 1)× 1
4 + P(Xn = 0)× 0

= 1
4P(Xn = 1)

Dès lors,P(Xn+1 = 0)
P(Xn+1 = 1)
P(Xn+1 = 2)

 =


1
4P(Xn = 0)

P(Xn = 0) + 1
2P(Xn = 1) + P(Xn = 2)
1
4P(Xn = 1)

 =

0 1
4 0

1 1
2 1

0 1
4 0


P(Xn = 0)

P(Xn = 1)
P(Xn = 2)

 .
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Ainsi, M =

0 1
4 0

1 1
2 1

0 1
4 0

 .

4. Soit λ ∈ R et X =

xy
z

 ∈M3(R).

Alors,

MX = λX ⇐⇒


1
4y = λx

x+ 1
2y + z = λy

1
4y = λz

⇐⇒


−λx+ 1

4y = 0
x+ (1

2 − λ)y + z = 0
1
4y − λz = 0

⇐⇒


x+ (1

2 − λ)y + z = 0 L1
1
4y − λz = 0 L2

−λx+ 1
4y = 0 L3

⇐⇒


x+ (1

2 − λ)y + z = 0 L1

y − 4λz = 0 L2 ← 4L2

(1
4 + 1

2λ− λ
2)y + λz = 0 L3 ← L3 + λL1

⇐⇒


x+ (1

2 − λ)y + z = 0 L1

y − 4λz = 0 L2 ← 4L2[
λ+ 4λ(1

4 + 1
2λ− λ

2)
]
z = 0 L3 ← L3 − (1

4 + 1
2λ− λ

2)L2

⇐⇒


x+ (1

2 − λ)y + z = 0 L1

y − 4λz = 0 L2 ← 4L2

2λ(1 + λ− 2λ2)z = 0 L3

Ainsi, ce système n’est pas de Cramer si et seulement si λ = 0 ou 1 + λ− 2λ2 = 0. Or,
1 est un racine évidente de 1 + X − 2X2 donc ce polynôme se factorise par (X − 1) :
1 + X − 2X2 = (X − 1)(−1 − 2X). On en déduit que son autre racine est −1

2 donc
Sp(M) = {0 ; 1 ;−1

2}.
De plus,

MX = 0X ⇐⇒

x+ 1
2y + z = 0

y = 0
⇐⇒

z = −x
y = 0

donc E0(M) =


 x

0
−x


∣∣∣∣∣∣∣ x ∈ R

 = Vect


 1

0
−1


.

MX = 1X ⇐⇒

x−
1
2y + z = 0

y − 4z = 0
⇐⇒

x = z

y = 4z
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donc E1(M) =


 z

4z
z


∣∣∣∣∣∣∣ x ∈ R

 = Vect


1

4
1


.

MX = −1
2X ⇐⇒

x+ y + z = 0
y + 2z = 0

⇐⇒

x = z

y = −2z

donc E0(M) =


 z
−2z
z


∣∣∣∣∣∣∣ x ∈ R

 = Vect


 1
−2
1


.

Ainsi, M = PDP−1 avec D =

0 0 0
0 1 0
0 0 −1

2

 et P =

 1 1 1
0 4 −2
−1 1 1

 .

Remarque. Le code Python suivant :

import numpy as np

A = np.matrix ([[0 ,1/4 ,0] , [1 ,1/2 ,1] , [0 ,1/4 ,0]])
print(np.linalg.eig(A))

qui affiche

(array ([ 1.00000000 e+00, 5.61773426e-18, -5.00000000e -01]) ,
matrix ([[ -2.35702260e-01, 7.07106781e-01, 4.08248290e -01] ,
[ -9.42809042e-01, -3.54785098e-16, -8.16496581e -01] ,
[ -2.35702260e-01, -7.07106781e-01, 4.08248290e -01]]))

confirme ces valeurs et aurait permis de les déterminer (au moins de façon conjecturale).

5. Notons, pour tout n ∈ N, Un =

P(Xn = 0)
P(Xn = 1)
P(Xn = 2)

. Alors, d’après la question 3., pour tout

n ∈ N, Un+1 = MUn donc (Un) est une suite géométrique de matrices de raison M et

ainsi, pour tout n ∈ N, Un = MnU0. Or, U0 =

1
0
0

 et, par propriété, pour tout n ∈ N,

Mn = (PDP−1)n = PDnP−1.

Comme D est diagonale, pour tout n ∈ N, Dn =

0n 0 0
0 1n 0
0 0 (−1

2)n

 donc D0 = I3 et,

pour tout n ∈ N, Dn =

0 0 0
0 1 0
0 0 (−1

2)n

.

Le code Python suivant :
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import numpy as np

P=np.matrix ([[1 ,1 ,1] ,[0 ,4 , -2] ,[ -1 ,1 ,1]])
print(np.linalg.inv(P))

qui affiche

[[ 5.00000000e -01 -2.77555756e -17 -5.00000000e -01]
[ 1.66666667e -01 1.66666667e -01 1.66666667e -01]
[ 3.33333333e -01 -1.66666667e -01 3.33333333e -01]]

permet de conjecturer que P−1 =


1
2 0 −1

2
1
6

1
6

1
6

1
3 −

1
6

1
3

 et on vérifie que c’est bien le cas en

multipliant P par ce matrice et en vérifiant qu’on obtient bien I3.
On en déduit que, pour tout n ∈ N∗,

Un =

 1 1 1
0 4 −2
−1 1 1


0 0 0

0 1 0
0 0 (−1

2)n




1
2 0 −1

2
1
6

1
6

1
6

1
3 −

1
6

1
3


1

0
0



=

 1 1 1
0 4 −2
−1 1 1


0 0 0

0 1 0
0 0 (−1

2)n




1
2
1
6
1
3



=

 1 1 1
0 4 −2
−1 1 1




0
1
6

1
3

(
−1

2

)n


=


1
6 + 1

3

(
−1

2

)n
2
3 −

2
3

(
−1

2

)n
1
6 + 1

3

(
−1

2

)n
 .

On conclut que, pour tout n ∈ N∗,

P(Xn = 0) = 1
6 + 1

3

(
−1

2

)n
, P(Xn = 1) = 2

3 −
2
3

(
−1

2

)n
et P(Xn = 2) = 1

6 + 1
3

(
−1

2

)n
.

6. Soit n ∈ N∗. On a alors

E(Xn) = 0×
(1

6 + 1
3

(
−1

2

)n)
+ 1×

(2
3 −

2
3

(
−1

2

)n)
+ 2×

(1
6 + 1

3

(
−1

2

)n)
i.e. E(Xn) = 1 .

7. Par le théorème de transfert,

E(X2
n) = 02×

(1
6 + 1

3

(
−1

2

)n)
+12×

(2
3 −

2
3

(
−1

2

)n)
+22×

(1
6 + 1

3

(
−1

2

)n)
= 4

3+2
3

(
−1

2

)n
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donc, par le formule de König-Huygens,

V(Xn) = E(X2
n)− E(Xn)2 = 4

3 + 2
3

(
−1

2

)n
− 12

soit V(Xn) = 1
3 + 2

3

(
−1

2

)n
.
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Sujet 59. Tirages avec remplacement (O3)

Une urne contient 2 boules blanches.
À chaque étape, on enlève une boule de l’urne et on la remplace par une nouvelle boule,

celle-ci étant blanche avec probabilité 1
2 ou noire avec probabilité 1

2 .
Pour tout k ∈ N, on définit les évènements :
• Bk « après k étapes, l’urne contient 2 boules blanches » ;
• Gk « après k étapes, l’urne contient 1 boule noire et 1 boule blanche » ;
• Nk « après k étapes, l’urne contient 2 boules noires »,

ainsi que leurs probabilités :
• bk = P(Bk) ;
• gk = P(Gk) ;
• nk = P(Nk).

On définit enfin, pour tout k ∈ N, la matrice colonne Xk =

bkgk
nk

.

1. Donner les matrices X0 et X1.
2. Déterminer la matrice X2.

3. On donne M =


1
2

1
4 0

1
2

1
2

1
2

0 1
4

1
2

.

Montrer que, pour tout k ∈ N, Xk+1 = MXk.
4. Établir, pour tout k ∈ N, une relation entre Xk, M , X0 et k.

5. On donne A =

2 1 0
2 2 2
0 1 2

. Exprimer A en fonction de M .

6. Déterminer les valeurs propres de A et montrer que A est diagonalisable.

7. Déterminer une matrice inversible P telle que P−1AP =

4 0 0
0 2 0
0 0 0

.

8. Calculer P−1.
9. On note D = P−1AP . Donner Dk pour tout k ∈ N∗.

10. Calculer, pour tout k ∈ N∗, la première colonne de Ak.
11. En déduire enfin, pour tout k ∈ N∗, les probabilités bk, gk et nk.
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Solution.
1. Initialement, l’urne contient 2 boules blanches donc B0 est un évènement certaine et ainsi

X0 =

1
0
0

 .

À la premier étape, on tire nécessairement une boule blanche et on la remplace, de

façon équiprobable par une boule blanche ou une boule noire donc X1 =


1
2
1
2
0

 .

2. Les évènements B1, G1 et N1 forment un système complet d’évènements donc, par la
formule de probabilités totales,

b2 = P(B2) = P(B1)P(B2 | B1) + P(G1)P(B2 | G1) + P(N1)P(B2 | N1)

= 1
2 ×

1
2 + 1

2 ×
1
4 + 0× 0 = 3

8

g2 = P(G2) = P(B1)P(G2 | B1) + P(G1)P(G2 | G1) + P(N1)P(G2 | N1)

= 1
2 ×

1
2 + 1

2 ×
1
2 + 0× 1

2 = 1
2

n2 = P(N2) = P(B1)P(N2 | B1) + P(G1)P(N2 | G1) + P(N1)P(N2 | N1)

= 1
2 × 0 + 1

2 ×
1
4 + 0× 1

2 = 1
8

donc X2 =


3
8
1
2
1
8

 .

3. Soit k ∈ N. De la même façon,

bk+1 = P(Bk+1) = P(Bk)P(Bk+1 | Bk) + P(Gk)P(Bk+1 | Gk) + P(Nk)P(Bk+1 | Nk)

= bk ×
1
2 + gk ×

1
4 + nk × 0

= 1
2bk + 1

4ŋk

gk+1 = P(Gk+1) = P(Bk)P(Gk+1 | Bk) + P(Gk)P(Gk+1 | Gk) + P(Nk)P(Gk+1 | Nk)

= bk ×
1
2 + gk ×

1
2 + nk ×

1
2

= 1
2bk + 1

2gk + 1
2nk
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nk+1 = P(Nk+1) = P(Bk)P(Nk+1 | Bk) + P(Gk)P(Nk+1 | Gk) + P(Nk)P(Nk+1 | Nk)

= bk × 0 + gk ×
1
4 + nk ×

1
2

= 1
4gk + 1

2nk

donc

Xk+1 =

bk+1
gk+1
nk+1

 =


1
2bk + 1

4ŋk
1
2bk + 1

2gk + 1
2nk

1
4gk + 1

2nk

 =


1
4

1
2 0

1
2

1
2

1
2

0 1
4

1
2


bkgk
nk


i.e. Xk+1 = MXk .

4. Ainsi, la suite (Xk) est une suite géométrique de matrices colonnes de raison M donc,
pour tout k ∈ N, Xk = MkX0 .

5. Il est clair que A = 4M .
6. À l’aide du code Python suivant :

import numpy as np

M=np.matrix ([[2 ,1 ,0] ,[2 ,2 ,2] ,[0 ,1 ,2]])
print(M)

print(np.linalg.eig(M))

qui affiche

[[2 1 0]
[2 2 2]
[0 1 2]]
(array ([ 4.00000000 e+00, 2.00000000 e+00, -2.80761164e -16]) ,
matrix ([[ 4.08248290e-01, -7.07106781e-01, 4.08248290e -01] ,
[ 8.16496581e-01, 8.11214661e-16, -8.16496581e -01] ,
[ 4.08248290e-01, 7.07106781e-01, 4.08248290e -01]])
)

on conjecture que Sp(A) = {4 ; 2 ; 0}. Démontrons-le. Soit (x, y, z) ∈ R3 et X =

xy
z

.

Déterminons E4(A) :

X ∈ E4(A)⇐⇒ AX = 4X ⇐⇒


2x+ y = 4x
2x+ 2y + 2z = 4y
y + 2z = 4z

⇐⇒


y = 2x
y = x+ z

y = 2z
⇐⇒

y = 2x
z = x

263



donc E4(A) =


 x

2x
x


∣∣∣∣∣∣∣ x ∈ R

 = Vect


1

2
1


.

Déterminons E2(A) :

X ∈ E2(A)⇐⇒ AX = 2X ⇐⇒


2x+ y = 2x
2x+ 2y + 2z = 2y
y + 2z = 2z

⇐⇒


y = 0
x+ z = 0
y = 0

⇐⇒

y = 0
z = −x

donc E2(A) =


 x

0
−x


∣∣∣∣∣∣∣ x ∈ R

 = Vect


 1

0
−1


.

Déterminons E0(A) :

X ∈ E0(A)⇐⇒ AX = 0X ⇐⇒


2x+ y = 0
2x+ 2y + 2z = 0
y + 2z = 0

⇐⇒


y = −2x
y = −x− z
y = −2z

⇐⇒

y = −2x
z = x

donc E0(A) =


 x
−2x
x


∣∣∣∣∣∣∣ x ∈ R

 = Vect


 1
−2
1


. Ainsi, 4, 2 et 0 sont des va-

leurs propres de A et comme A est d’ordre 3, il ne peut y en avoir d’autres et donc
Sp(A) = {4 ; 2 ; 0} . De plus, comme A est une matrice carrée d’ordre 3 ayant 3 valeurs

propres distinctes, A est diagonalisable .

7. On déduit de la question précédente que A = PDP−1 i.e. P−1AP = D avec D =4 0 0
0 2 0
0 0 0

 et P =

1 1 1
2 0 −2
1 −1 1

.

8. En résolvant un système ou en utilisant un logiciel, on détermine P−1 =


1
4

1
4

1
4

1
2 0 −1

2
1
4 −

1
4

1
4

 .

9. Comme D est diagonale, pour tout k ∈ N∗,

Dk =

4k 0 0
0 2k 0
0 0 0

 .
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10. Soit k ∈ N∗. Alors, comme A = PDP−1, Ak = (PDP−1)k = PDkP−1 donc

Ak =

1 1 1
2 0 −1
1 −1 1


4k 0 0

0 2k 0
0 0 0




1
4

1
4

1
4

1
2 0 −1

2
1
4 −

1
4

1
4



=

1 1 1
2 0 −1
1 −1 1


4k−1 ∗ ∗

2k−1 ∗ ∗
0 ∗ ∗



=

4k−1 + 2k−1 ∗ ∗
2× 4k−1 ∗ ∗

4k−1 − 2k−1 ∗ ∗



donc la première colonne de Ak est

4k−1 + 2k−1

2× 4k−1

4k−1 − 2k−1

 .

11. Comme A = 4M , M = 1
4A donc, pour tout k ∈ N∗, Mk =

(
1
4

)k
Ak. Dès lors, pour tout

k ∈ N∗,

Xk = MkX0 =
(1

4

)k 4k−1 + 2k−1 ∗ ∗
2× 4k−1 ∗ ∗

4k−1 − 2k−1 ∗ ∗


1

0
0

 =


4k−1+2k−1

4k

2×4k−1

4k

4k−1−2k−1

4k

 .
De plus, pour tout k ∈ N∗,

4k−1 + 2k−1

4k = 1
4 ×

4k−1 + 2k−1

4k−1 = 1
4

[
1 +

(1
2

)k−1]
= 1

4 +
(1

2

)2
×
(1

2

)k−1
= 1

4 +
(1

2

)k+1

2× 4k−1

4k = 2× 4k−1

4× 4k−1 = 2
4 = 1

2
4k−1 − 2k−1

4k = 1
4 ×

4k−1 − 2k−1

4k−1 = 1
4

[
1−

(1
2

)k−1]
= 1

4 −
(1

2

)2
×
(1

2

)k−1
= 1

4 −
(1

2

)k+1

donc on conclut que, pour tout k ∈ N∗,

bk = 1
4 +

(1
2

)k+1
gk = 1

2 nk = 1
4 −

(1
2

)k+1
.
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Sujet 60. Marche aléatoire sur un tétraèdre (O3)

On considère un tétraèdre de sommets A, B, C et D.

A

B

C

D

Un petit mobile se déplace sur les arêtes de ce tétraèdre, pour se rendre d’un sommet à un
autre.

À l’instant t = 0, il part du sommet A. Si à un instant donné il se trouve en A, B ou C, alors
à l’instant suivant il se rend de façon équiprobable sur l’un des trois autres sommets. S’il arrive
en D, alors il s’arrête.

On définit les événements An (respectivement Bn, Cn, Dn) : « le mobile se trouve en A
(respectivement B, C, D) à l’instant n », ainsi que les probabilités respectives an, bn, cn, dn de
ces événements.

1. a. Calculer an, bn, cn, dn pour n ∈ {0, 1, 2}.
b. Donner, pour tout n ∈ N, an+1, bn+1 et cn+1 en fonction de an, bn et cn.

c. Pour tout n ∈ N, on note Xn =

anbn
cn

. Trouver une matrice carrée A telle que pour

tout ∈ N, Xn+1 = AXn.
d. Exprimer, pour tout n ∈ N, Xn en fonction de n, A, X0.

2. a. Montrer qu’il existe une matrice inversible P de la forme de la forme

 1 1 1
. . . . . . . . .
. . . . . . . . .


telle que D = P−1AP avec D =

−
1
3 0 0

0 −1
3 0

0 0 2
3

.

b. Montrer que, pour tout n ∈ N,

An = 1
3


(

2
3

)n
+ 2

(
−1

3

)n (
2
3

)n
−
(
−1

3

)n (
2
3

)n
−
(
−1

3

)n(
2
3

)n
−
(
−1

3

)n (
2
3

)n
+ 2

(
−1

3

)n (
2
3

)n
−
(
−1

3

)n(
2
3

)n
−
(
−1

3

)n (
2
3

)n
−
(
−1

3

)n (
2
3

)n
+ 2

(
−1

3

)n
 .

3. Exprimer, pour tout n ∈ N, an, bn, cn puis dn en fonction de n.
4. Déterminer la limite de la suite (dn) et interpréter le résultat obtenu.
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Solution.
1. a. Initialement, le mobile est sur le sommet A donc a0 = 1 et b0 = c0 = d0 = 0 .

Partant du sommet A, le mobile se déplace de façon équiprobable vers B, C ou D
donc a1 = 0 et b1 = c1 = d1 = 1

3 .
Comme (A1, B1, C1, D1) est un système complet d’évènements, d’après la formule
des probabilités totales,

a2 = P(A2) = P(A1)P(A2 | A1) + P(B1)P(A2 | B1) + P(C1)P(A2 | C1) + P(D1)P(A2 | D1)

= 0× 0 + 1
3 ×

1
3 + 1

3 ×
1
3 + 1

3 × 0

= 2
9

b2 = P(B2) = P(A1)P(B2 | A1) + P(B1)P(B2 | B1) + P(C1)P(B2 | C1) + P(D1)P(B2 | D1)

= 0× 1
3 + 1

3 × 0 + 1
3 ×

1
3 + 1

3 × 0

= 1
9

c2 = P(C2) = P(A1)P(C2 | A1) + P(B1)P(C2 | B1) + P(C1)P(C2 | C1) + P(D1)P(C2 | D1)

= 0× 1
3 + 1

3 ×
1
3 + 1

3 × 0 + 1
3 × 0

= 1
9

d2 = P(D2) = P(A1)P(D2 | A1) + P(B1)P(D2 | B1) + P(C1)P(D2 | C1) + P(D1)P(D2 | D1)

= 0× 1
3 + 1

3 ×
1
3 + 1

3 ×
1
3 + 1

3 × 1

= 5
9

donc a2 = 2
9 , b2 = c2 = 1

9 et d2 = 5
9 .

b. Soit n ∈ N. Comme (An, Bn, Cn, Dn) est un système complet d’évènements, d’après
la formule des probabilités totales,

an+1 = P(An+1) = P(An)P(An+1 | An) + P(Bn)P(An+1 | Bn) + P(Cn)P(An+1 | Cn)
+ P(Dn)P(An+1 | Dn)

= an × 0 + bn ×
1
3 + cn ×

1
3 + dn × 0

= 1
3bn + 1

3cn
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bn+1 = P(Bn+1) = P(An)P(Bn+1 | An) + P(Bn)P(Bn+1 | Bn) + P(Cn)P(Bn+1 | Cn)
+ P(Dn)P(Bn+1 | Dn)

= an ×
1
3 + bn × 0 + cn ×

1
3 + dn × 0

= 1
3an + 1

3cn

cn+1 = P(Cn+1) = P(An)P(Cn+1 | An) + P(Bn)P(Cn+1 | Bn) + P(Cn)P(Cn+1 | Cn)
+ P(Dn)P(Cn+1 | Dn)

= an ×
1
3 + bn ×

1
3 + cn × 0 + dn × 0

= 1
3an + 1

3bn

dn+1 = P(Dn+1) = P(An)P(Dn+1 | An) + P(Bn)P(Dn+1 | Bn) + P(Cn)P(Dn+1 | Cn)
+ P(Dn)P(Dn+1 | Dn)

= an ×
1
3 + bn ×

1
3 + cn ×

1
3 + dn × 1

= 1
3an + 1

3bn + 1
3cn + dn

donc
an+1 = 1

3bn + 1
3cn bn+1 = 1

3an + 1
3cn

cn+1 = 1
3an + 1

3bn dn+1 = 1
3an + 1

3bn + 1
3cn + dn

.

c. On en déduit que, pour tout n ∈ N,

Xn+1 =

an+1
bn+1
cn+1

 =


1
3bn + 1

3cn
1
3an + 1

3cn
1
3an + 1

3bn

 =

0 1
3

1
3

1
3 0 1

3
1
3

1
3 0


anbn
cn



donc Xn+1 = AXn avec A =

0 1
3

1
3

1
3 0 1

3
1
3

1
3 0

 .

d. Ainsi, (Xn) est une suite géométrique de matrices colonnes de raison A donc,
pour tout n ∈ N, Xn = AnX0 .

2. La matrice A est symétrique réelle donc elle est diagonalisable.
L’énoncé laisse entendre que Sp(A) = {−1

3 ; 2
3}. Démontrons-le. Soit (x, y) ∈ R2 et

X =
(
x
y

)
.

Déterminons E− 1
3
(A) :

AX = −1
3X ⇐⇒


1
3y + 1

3z = −1
3x

1
3x+ 1

3z = −1
3y

1
3x+ 1

3y = −1
3z

⇐⇒ x = −y − z.
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Ainsi, E− 1
3
(A) =


−y − zy

z


∣∣∣∣∣∣∣ (y, z) ∈ R2

 =

−y
 1
−1
0

− z
 1

0
−1


∣∣∣∣∣∣∣ (y, z) ∈ R2


donc E− 1

3
(A) = Vect


 1

0
−1

 ,
 1
−1
0


.

Déterminons E 2
3
(A) :

AX = 2
3X ⇐⇒


1
3y + 1

3z = 2
3x

1
3x+ 1

3z = 2
3y

1
3x+ 1

3y = 2
3z

⇐⇒


−2x+ y + z = 0 L1

x− 2y + z = 0 L2

x+ y − 2z = 0 L3

⇐⇒


x+ y − 2z = 0 L1 ↔ L3

x− 2y + z = 0 L2

−2x+ y + z = 0 L3 ↔ L1

⇐⇒


x+ y − 2z = 0 L1

−3y + 3z = 0 L2 ← L2 − L1

3y − 3z = 0 L3 ← L3 + 2L1

⇐⇒

x = z

y = z

Ainsi, E 2
3
(A) =


zz
z


∣∣∣∣∣∣∣ z ∈ R

 =

z
1

1
1


∣∣∣∣∣∣∣ z ∈ R

 donc E 2
3
(A) = Vect


1

1
1


.

Comme dim(E− 1
3
(A)) + dim(E 2

3
(A)) = 3, on conclut que A = PDP−1 c’est-à-dire

D = P−1AP avec D =

−
1
3 0 0

0 −1
3 0

0 0 2
3

 et P =

 1 1 1
0 −1 1
−1 0 1

 .

3. On en déduit que, pour tout n ∈ N, An = (PDP−1)n = PDnP−1. Or, comme D est

diagonale, pour tout n ∈ N, Dn =


(
−1

3

)n
0 0

0
(
−1

3

)n
0

0 0
(

2
3

)n
. De plus, on vérifie (à l’aide

d’un logiciel ou en résolvant un système) que P−1 = 1
3

1 1 −2
1 −2 1
1 1 1

 donc, pour tout
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n ∈ N,

An = PDnP−1 = 1
3

 1 1 1
0 −1 1
−1 0 1



(
−1

3

)n
0 0

0
(
−1

3

)n
0

0 0
(

2
3

)n

1 1 −2

1 −2 1
1 1 1



= 1
3

 1 1 1
0 −1 1
−1 0 1



(
−1

3

)n (
−1

3

)n
−2

(
−1

3

)n(
−1

3

)n
−2

(
−1

3

)n (
−1

3

)n(
2
3

)n (
2
3

)n (
2
3

)n


= 1
3


2
(
−1

3

)n
+
(

2
3

)n
−
(
−1

3

)n
+
(

2
3

)n
−
(
−1

3

)n
+
(

2
3

)n
−
(
−1

3

)n
+
(

2
3

)n
2
(
−1

3

)n
+
(

2
3

)n
−
(
−1

3

)n
+
(

2
3

)n
−
(
−1

3

)n
+
(

2
3

)n
−
(
−1

3

)n
+
(

2
3

)n
2
(
−1

3

)n
+
(

2
3

)n


donc, pour tout n ∈ N,

An = 1
3


(

2
3

)n
+ 2

(
−1

3

)n (
2
3

)n
−
(
−1

3

)n (
2
3

)n
−
(
−1

3

)n(
2
3

)n
−
(
−1

3

)n (
2
3

)n
+ 2

(
−1

3

)n (
2
3

)n
−
(
−1

3

)n(
2
3

)n
−
(
−1

3

)n (
2
3

)n
−
(
−1

3

)n (
2
3

)n
+ 2

(
−1

3

)n
 .

4. On en déduit que, pour tout n ∈ N,
anbn
cn

 = An

1
0
0

 = 1
3


(

2
3

)n
+ 2

(
−1

3

)n(
2
3

)n
−
(
−1

3

)n(
2
3

)n
−
(
−1

3

)n


donc an = 1
3

[(
2
3

)n
+ 2

(
−1

3

)n]
, bn = 1

3

[(
2
3

)n
−
(
−1

3

)n]
et cn = 1

3

[(
2
3

)n
−
(
−1

3

)n]
.

De plus, pour tout n ∈ N, an + bn + cn + dn = 1 donc

dn = 1− an − bn − cn

= 1− 1
3

[(2
3

)n
+ 2

(
−1

3

)n]
− 1

3

[(2
3

)n
−
(
−1

3

)n]
− 1

3

[(2
3

)n
−
(
−1

3

)n]
= 1−

(2
3

)n
.

Ainsi, pour tout n ∈ N,

an = 1
3

[(
2
3

)n
+ 2

(
−1

3

)n]
bn = 1

3

[(
2
3

)n
−
(
−1

3

)n]
cn = 1

3

[(
2
3

)n
−
(
−1

3

)n]
dn = 1−

(
2
3

)n .

5. Comme −1 < 2
3 < 1, lim

n→+∞
(2

3)n = 0 donc dn −−−−→
n→+∞

1 .

Ainsi, le mobile finit presque sûrement par atteindre le sommet D.
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