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Sujets d’algebre



Sujet 1. Endomorphisme de Grégory et application (C1)

On considére les polynomes Py(X) = 1 et, pour tout k € N*, P(X) = X*.
Pour tout n € N, on note B,, = (Fo, Py, ..., P,) la base canonique de R, [X].
Pour tout n € N, on note A,, 'application définie sur R,,[X]| par

VP e R,[X] A,(P)=P(X+1)—P(X)

ou P(X + 1) désigne la composée de X + 1 suivie de P.
Par exemple, si P(X) = X? alors P(X +1) = (X + 1),

1. Montrer que, pour tout n € N, A,, est un endomorphisme de R,,[X].

2.

a.

cTr T e T

0 1 1
Montrer que la matrice de Ay dans By est My = |0 0 2.
0 0O

Quelles sont les valeurs propres de Ms ? La matrice M, est-elle diagonalisable ?

Déterminer la matrice M3 de Az dans la base Bs.
La matrice Mj est-elle diagonalisable ? Est-elle inversible 7

Déterminer le noyau et 'image de Ags.
En déduire que, pour tout @ € Ry[X], il existe P € R3[X] tel que

Q(X) = P(X +1) — P(X).

Ce polynome P est-il unique ?
Déterminer un polyndme P € R3[X] tel que P(X + 1) — P(X) = X2
Soit n € N. Déduire de la question précédente une valeur explicite de Z k? en fonction

k=0
de n.



Solution.

1. Rappelons que si P et @ sont deux polynémes alors, pour tous réels A et u, deg(AP+u@Q)) <
max(deg(P),deg(Q)) et, si @ n’est pas constant, alors deg(P o Q) = deg(P) x deg(Q).
Soit n € N. Soit P € R,[X]. Comme deg(X + 1) =1, deg(P(X + 1)) = deg(P) donc
deg(P(X +1) — P(X)) < deg(P) et ainsi P € R,[X].
Soit (P, Q) € R,[X]* et (A, u) € R2. Alors,

AL(AP+ Q) = (AP + pQ)(X + 1) — (AP + uQ)(X)
= AP(X + 1) + uQ(X + 1) — AP(X) — uQ(X)
=APX +1) - P(X)) + p(Q@X +1) — Q(X))
= AL (P) + pAn(Q)

donc | A,, est bien un endomorphisme de R, [X] |

2. a. Pardéﬁnition, Ag(Po):]_—l:O, AQ(P1)2X+1—X:1:P0 et AQ(PQ)Z
(X +1)2—-X?=2X+1= P+ 2P, donc

b. La matrice Ms est triangulaire supérieure donc ses valeurs propres sont ses termes
diagonaux. Ainsi, |['unique valeur propre de M, est 0 ‘ Si M était diagonalisable, il

existerait une matrice inversible P telle que My = PDP~! avec D la matrice diagonale
dont les termes diagonaux sont les valeurs propres de Ms. Dans cas, comme Sp(My) =

{0}, D = 03 donc PDP~! = 03. Or M, # 03 donc ‘MQ n’est pas diagonalisable ‘

3. a. Comme précédemment, Ag(Po) = 0, Ag(Pl) = Po, Ag(PQ) = PO + 2P2 et Ag(Pg) =
(X +10P-X?*=3X*+3X+1= P+ 3P, + 3P, donc

M3:

o O OO

S O O
S O N =
S W W

b. Comme précédemment, Sp(M3) = {0} donc, comme M3 # Oy, ‘ M3 n’est pas diagonalisable ‘

De plus, comme 0 est valeur propre de M3, 0 € ker(M3) donc ‘ M3 n’est pas inversible ‘

4. a. Le systéme homogene associé a Mj est échelonné et possede 3 pivots done rg(Ms) = 3.
Des lors, rg(As) = 3. Ainsi, par le théoreme du rang, dim(ker(A3)) =4 —3 = 1. Or,
on a vu que Py est un vecteur non nul appartenant a ker(As) donc ker(Ag) = Vect(Fp)
ie. |ker(Az) = Ro[X]| De plus, dim(Im(Aj)) = rg(As) = 3 et on a vu que les
images de Fy, Pi, P, et P3 appartiennent a Ry[X]| donc Im(Aj) C Ry[X]. Comme
dim(Ry[X]) = dim(Im(A3)) = 3, on conclut que |Im(A3) = Ry[X] |




b. Soit @ € Ry[X]. Alors, @ € Im(Aj) donc il existe P € R3[X] tel que Az(P) = @

c’est-a-dire |l existe P € R3[X] tel que P(X +1) — P(X) =Q |

Ce polynéme P n’est pas unique car Ag n’est pas injective. Pour tout polynéme
constant R, Az(P+ R) = A3(P) + A3(R) = Q + 0= Q car R € ker(A3).

. a. Déterminer un polynéme P € R3[X] tel que Az(P)

X? revient matriciellement &

a 0
déterminer un vecteur V' = IC) tel que M3V = ? . Cette égalité matricielle se
d 0
traduit par le systeme suivant :
b+c+d=0
2¢4+3d=0
3d=1
0=0
0
1
donc une solution est | 6, | donc|P = 1X? — 1X? + 1 X |est un polynome de R[X]
_15
3

tel que Asz(P) = X2
b. On en déduit que, pour tout réel ¢, > = P(t + 1) — P(t) donc, en reconnaissant une
somme téléscopique,

n

ki K= S [P+ 1) — P(k)]

k=0
= P(n+1)— P(0)
1( +1)° 1( +1)2+1( +1) -0
== —=(n —(n -
3" 2 6
1
:”Jg 200+ 1) = 3(n+ 1) + 1]
1
:7ﬂh6L(2n2—|—4n+2—3n—3+1)
1
:n—g(2n2+n)

soit finalement,

n(n+1)(2n+1) |

» 6




Sujet 2. Etude de deux suites imbriquées (C7)

L’objectif de cet exercice est d’étudier deux suites réelles. On pose ug = 1, vg = 0 et, pour
tout entier naturel n,

Upt1 = Up + Uy
Upt1 = —Up + Uy

On se propose de déterminer, pour tout n € N, u, et v, en fonction de n grace a deux
méthodes différentes.

Méthode 1 : a aide des nombres complexes
On pose, pour tout entier naturel n,

SRl

Zp = Up + 1U,.

. En utilisant le logiciel de votre choix ou une calculatrice, calculer les 6 premiers termes

des suites (u,) et (vy,).

Placer les points M,, d’affixes z, pour n allant de 0 a 5. Expliquer comment évolue |z,
et arg(z,) en fonction de n.

Exprimer, pour tout entier naturel n, 2,1 en fonction de z,.
Déterminer une forme exponentielle de 1 — i.
Donner le terme général de la suite (z,).

En déduire, pour tout entier naturel n, une expression de u,, et v, en fonction de n.

Méthode 2 : a ’aide des matrices

On pose, pour tout n € N, X, =

1.
2.

Unp,
n
Déterminer la matrice A telle que, pour tout n € N, X,, 1 = AX,,.

Déterminer une inversible P et une matrice diagonale D telle que A = PDP™!. Ces
matrices seront a coefficients complexes.

. Exprimer, pour tout n € N; A" en fonction de n.

. En déduire, pour tout n € N, une expression de u,, et v, en fonction de n.



Solution.

Méthode 1 : a ’aide des nombres complexes

1. A l'aide de Python, le script suivant convient :

u =1

v =20

print (u,v)

for n in range (5):
u,v = u+v, -ut+v

print (u,v)

On obtient I'affichage suivant :

10

1 -1
0 -2
-2 -2
-4 0
-4 4

2. On obtient les points suivants :

M5.

Il semble que la suite (|z,|) soit croissante et que les points « tourne » de —7 entre deux
valeurs de n consécutives donc que arg(z,41) = arg(z,) —  [27].

10



3. Pour tout n € N,

Zn41l = Upg1 + 10541
= Up + Uy +1(—up + vy)
=u, + v, —iu, +iv,
= Uy + v, — (U, + ivy,)

=z, — iz,

Ainsi, |pour tout n € N, 2,41 = (1 — 1)z,

4. Le module de 1 —i est |1 —i| = /12 + (—=1)2 = /2. Ainsi,

() @@-Q (e -5) on(-3)

donc |1 —1 = v/2e'% |

5. Pour tout n € N, z,,1 = ¢z, avec ¢ = 1 — i donc la suite (z,) est géométrique de raison
g = 1 —1i. Ainsi, pour tout n € N, z, = z9¢". Or, d’'une part, zy = ug +ivg = 1 et, d’autre
part, pour tout n € N|

= () = (" ) = ()

On en déduit donc que,

VneN, z,=V2" [cos (T) —isin (T)} )

6. Ainsi, pour tout n € N,

Zn = V2" cos (T) — iV 2" sin (nj)

donc, étant donné que, pour tout n € N, u,, = Re(u,,) et v, = Im(u,), on conclut que,

VneN, wu,= 2”cos<n47r> et v, =— 2"sin<TZT).

11



Méthode 2 : a ’aide des matrices

1. Pour tout n € N,
o fupY  fupto, N 11N fu,)
foa= (1) = (5 = (5 1) () - v

1 1
en posant | A = (_1 1) :

2. 1 méthode : par le calcul
Soit A € R. Alors, A est valeur propre de A si et seulement si la matrice A — A\, n’est
pas inversible i.e. si et seulement si det(A — Aly) = 0. Or,

det(A — AI) — |1 A

. 1_)\|:(1—)\)2+1:12—2>\+>\2+1:)\2—2>\+2.

Ainsi, X est valeur propre de A si et seulement si A est racine du trindme X? —2X +2 = 0.
Or, le discriminant de celui-ci est A = (=2)? —4 x 1 x 2 = —4 < 0 donc il posseéde deux
racines complexes conjuguées :

(-9
————=
Ainsi, Sp(A) = {1 —1i;1+i}.

Comme A est une matrice carrée d’ordre 2 qui possede 2 valeurs propres distinctes,
elle est diagonalisable.

Déterminons des vecteurs propres associés a chacune de ses valeurs propres. Soit
(z,y) € C2. Alors,

A@:(1_i)<z>‘:’{ix;(l<:>f>y <:>{Zi:=_iiu s

car i? = —1 donc —x = —iy équivaut a i’x = —iy i.e. —ixz = y.
Ainsi, (_1> est un vecteur propre de A associé a la valeur propre 1 — i.
De méme,
A(x):<1+i)<x><:>{$+y=(1+i):.€ <:>{y:ix‘ =y =ix
Yy y —r4+y=(1+1)y —r =1y
car i? = —1 donc —z = iy équivaut a i2zx =iy i.e. iz = v.

(1 N .
Ainsi, <1> est un vecteur propre de A associé a la valeur propre 1 — i.

Ainsi, on conclut que |A = PDP~! en posant D = =i 0 | et P= 1. 1 !
0 1+i —i i

12



2de méthode : a I’aide Python

Grace au code suivant,

import numpy as np

A = np.matrix([[1,1], [-1,111)
print(np.linalg.eig(A))

qui affiche

(array ([1.+1.35, 1.-1.31),
matrix ([[0.70710678+0.j, 0.70710678-0.3j],
[0.+0.70710678j, 0.-0.7071067831]1))

on obtient peut conjecturer que Sp(A) = {1+1i;1—1i} (Remarque. En Python, le nombre
complexe i est noté j.). On remarque, de plus, que dans la matrice de passage, sur la
premiere colonne, la seconde ligne est égale a i fois la premiere et, sur la seconde colonne,
la seconde ligne est égale a —i fois la premiere donc on peut conjecturer qu'un vecteur

AR . 1 N : 1
propre associé a 1 +1i est <1> et un vecteur propre associé a 1 —1i est (—i)'

—1

11 ne reste alors plus qu’a vérifier que A C) = (1+1) (1) et que A <_11> = (1-1) ( 1.)
et terminer le raisonnement comme dans la premiere méthode.

3. Par propriété, pour tout n € N, A" = (PDP~!)" = PD"P~!. De plus, D est diagonale

W (=1 0
donc, pour tout n € N, D" = ( 0 (1+1))°

1 /1 —
Enfin, det(P) = 2i donc, par propriété, P~ = % C 11).
i
Ainsi, pour tout n € N,

i.e.

A l (1 (L= + (1417 —(1 =i+ (14 i)">
2i

4. Considérons, pour tout n € N, la proposition P(n) : « X™ = A" X,,.
Initialisation. Comme A° = I, A°X, = I, Xy = X donc P(0) est vraie.
Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, grace au résultat de la
question 1.,

Xpp1 = AX, = Ax A"X, = A" X,

13



donc P(n + 1) est vraie.
Conclusion. Par le principe de récurrence, pour tout n € N, X,, = A" X,.

, , 1 P
Etant donné que Xy = <ZO> = <0>, on en déduit que, pour tout n € N,
0

LA =D ) (=it (D)) (1
X"_21<<1—i”—<1+i>“ i[(l—i>”+<1+i)”]><0>
_1 (l (1= + (1 + l)n]>
21 (1—1”—(1+1>n
donc
Vn € N un:<1_i)n;(1+i)" ot Un:(l_i)nz_i(1+i)n

Remarque. On retrouve bien les mémes valeurs que par la premiere méthode. En effet, on a
vuque 1 —i= /27 donc 1 +i=T1—1=+/2e"'7 et ainsi, par les formules d’Euler,

= LR e e ()

et

Up =

(\/geiii)"f (v2e't)" ﬁﬂ — /2sin (—T) = —V2'sin <?ZT) '

14



Sujet 3. Calcul des puissances d’une matrice (O1)

2 1 -1
On considere la matrice A = |1 2 —1]. On pose B = A — 3[ ou [ désigne la matrice
0 0 1

identité d’ordre 3.

1.
2.

. On pose, pour tout n € N, X,, = <Q">.

Démontrer qu’il existe un réel a tel que B? = aB.

a. Conjecturer, pour tout n € N*, une relation entre B" et B.

b. Démontrer cette conjecture par récurrence.

. Montrer par récurrence que, pour tout n € N, il existe des nombres réels a,, et b, tels

que A" = a, A+ b,I.

bn,
Préciser Xj.
Déterminer une matrice M telle que, pour tout n € N, X,,.1 = M X,,.

Déterminer les valeurs propres de M et en déduire que M est diagonalisable.

o Tp

Déterminer une matrice inversible P et une matrice diagonale D telle que M =
PDP,

En déduire, pour tout n € N, une expression explicite de M" en fonction de n.

= O

Exprimer, pour tout n € N, a,, et b, en fonction de n et en déduire une expression de
A™ en fonction de n.

15



Solution.

1. On calcule d’abord

-1 1 -1
B=A-3I=]1 -1 -1
0 0 -2
donc
-1 1 =1\ /-1 1 -1 2 -2 2
B =1 -1 -1 1 -1 -1]l=[-2 2 2
0 0 -2 0 0 -2 0 0 4

c’est-a-dire H
2. a. Comme B? = —2B, on a B3> = B?B = (—2B)B = —2B? = —2(—2B) = 4B puis
B'= B3B = (4B)B = 4B* = 4(—2B) = —8B et on peut conjecturer que, pour tout
n € N*, B" = (=2)""'B.
b. Considérons, pour tout n € N*, la proposition P(n) : « B" = (=2)""'B ».
Initialisation. (—2)'"'B = (=2)°B = 1B = B donc P(1) est vraie.
Hérédité. Soit n € N*. Supposons que P(n) est vraie. Alors,

B"™ = B"B = ((-=2)""'B)B = (=2)" ' B* = (=2)""'(-2B) = (-2)"B

donc P(n + 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que,

pour tout n € N*, B" = (-2)"'B|.

3. Considérons, pour tout n € N, la proposition, Q(n) : « il existe des réels a,, et b, tels que
A" = a, A+ b, 1 ».
Initialisation. A" = = 0A + 17 donc Q(0) est vraie en posant ag = 0 et by = 1.
Hérédité. Soit n € N. Supposons que Q(n) est vraie. Alors,

A = A"A = (anA + b D) A = an A2 + by Al

Or, A= B+ 3I donc A*> = (B+3I)(B+3[)=B?>+3B+3B+9] =B?+ 6B+ 91 et,
comme B? = —2B, A> =4B + 91 = 4(A —3I) + 91 = 4A — 31. D¢s lors,

A" = a,(4A = 31) + b, A = (4a, + b,)A — 3a,1

donc Q(n + 1) est vraie en posant a,41 = 4a, + b, et b,11 = —3a,.

Conclusion. Par le principe de récurrence, on conclut que Q(n) est vraie pour tout
n € N.

Ainsi, ‘pour tout n € N, il existe des réels a, et b, tels que A" = a,, A+ b,[ ‘

4. a. D’apres la démonstration précédente, ag = 0, by = 1 donc | Xg = <(1)> .

16



b. De plus, pour tout n € N,
{an—i-l - 4an + bn

bn+1:_3an
fans1)  [(4an+D,\ (4 1) [a,)
AQH4“’(bn 1) "( —3ay, ) "(—43 0) \p,) =M
+
4 1
A4::<—3 o)’

c. Soit A € R. Alors,

donc

en posant

4—-X 1

mmg%-xg):‘ P

w:@_Ax—m+3:A%ﬂu+3

Le discriminant du trindme X? —4X + 3 est A = (—4)> =4 x 1 x 3 =4 > 0 donc ce
trindome possede deux racines réelles
—(—4)+V1

iZfl—)—fl@-—& et M= JTVE_ 3

Ay = —
! 2% 1 2% 1

Ainsi, |Sp(M) = {1;3}|.
Comme M est une matrice carrée d’ordre 2 admettant 2 valeurs propres distinctes,
par théoreme, ‘M est diagonalisable ‘

d. Déterminons des vecteurs associés a chacune des valeurs propres de M.

Soit (z,y) e R? et V = (g)

4 =

MV—V<:>{x+y . — y=—3r
—3r =y

1 N
donc V; = (_3> est un vecteur propre associé a la valeur propre 1.

4 =3

MV =3V <= Ty v = y=—=
—3xr =3y

1 N
donc V, = (_1> est un vecteur propre associé a la valeur propre 3.

On en déduit qu’en posant | D = (é g) et P = (_13 _11> alors M = PDP~1|

e. Par propriété, pour tout n € N, M" = PD"P~!. Or, comme D est diagonale,

n_ (1 0 _ _ o111
D —<0 3n>.Deplus,det(P)—1><(—1)—(—3)><1—2doncP —2<3 1).
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Deés lors, pour tout n € N,
no (1 1 1 0\1/-1 -1
M _<—3 —1> <0 3”)2(3 1)
_} 1 1 -1 -1
- 2 -3 -1 3n+1 an
B } 3n+1 -1 3n -1
T 2\3-3ft 33

3t —1 3" —1
3—3mtt 33

1
Ainsi, | pour tout n € N, M" = 3 (

f. La suite (X,,) est une suite géométrique de matrices colonne de raison M donc, pour
tout n € N, X,, = M"X,. Ainsi, pour tout n € N,

v L(Emo1 31 (o) 131
"Ta\3-3 3-3)\1) T 2\3-3")

3" —1 3—3"
Il s’ensuit que, | pour tout n € N, a,, = 5 et b, = 5 |
On conclut que, pour tout n € N,
3" —1 3—3"
A" = A I
2 + 2

1 23"—=1) 3"—-1 1-3" 1 3—-3" 0 0

=3 3—1 23*"—1) 1-3" —i—§ 0 3—-3" 0

0 0 3" —1 0 0 3—3"

soit finalement,

1 3+1 3"—-1 1-3"
Vn e N A”:§ -1 3"+1 1-3"
0 0 2
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Sujet 4. Evolution d’une population d’algues marines

(O1)

On étudie une partie de la surface du fond de 'océan sur laquelle poussent uniquement deux
algues : I'algue A et I'algue B. La quantité totale d’algues est supposée constante au cours du
temps, égale a 1000 algues. On sait que, chaque année,

e 5% des algues A et 10% des algues B meurent;

e la moitié des algues qui meurent sont remplacées par des algues A et I'autre moitié par
des algues B.

Pour tout n € N, on note a,, le nombre d’algues A en vie a la fin de 'année n et b, le nombre
d’algues B en vie a la fin de I'année n.

1. Montrer que, pour tout n € N,

ot M — <0,975 0,05>'

0,025 0,95

2. Exprimer, pour tout n € N, (Z") en fonction de M, de n et de <ZO>.
n 0

3. Démontrer que 1 est une valeur propre de M.

4. Montrer que M admet une autre valeur propre A € [0;1].

5. En déduire que M est diagonalisable et déterminer une matrice D diagonale et une
matrice P inversible telles que M = PDP~1.

6. On pose, pour tout n € N, (:}Ln> = P! <Z"> Etablir, pour tout n € N, une relation
n n

u
entre U” , Ug, Vg, N et D.
n

7. En déduire que les suites (a,) et (b,) convergent. On note a., et by leurs limites.
8. Vérifier que (ZOO> est un vecteur propre de M associé a la valeur propre 1.
oo

9. Donner deux méthodes différentes pour calculer as, + bo.

2
10. En déduire que ug = 0??0

2000 1000
11. Montrer que ao, = 5 et bopo = —.
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Solution.

1. Soit n € N. Au cours de 'année n, 0,05a,, algues A et 0,14, algues B meurent. Ainsi,
le nombre total d’algues qui meurent est 0,05a, + 0,1b,,. Le moitié¢ de celles-ci sont
remplacées par des algues A et 'autre moitié par des algues B donc

Apt1 = an — 0,05a, + 0,5(0,05a,, + 0,1b,,) = 0,975a,, + 0,05b,,

et
bp+1 = b, — 0,10, + 0,5(0,05% + 0,1bn) = 0,025a,, + 0,95b,,.

ani1) _ (0.975a, +0,05b,) _ (0,975 005 (a,\ _ (@
busr ) \0,025a, +0,95b, )] — \0,025 0,95) \b,) ~ " \b,

0,975 0,05
en posant | M = (0’025 0’95> .

Ainsi,

2. Considérons, pour tout n € N, la proposition H(n) n ) M" (b )
0

e Initialisation. M° (b > =1 <b > ( ) donc H(0) est vraie.
0 0

e Hérédité. Soit n € N. Supposons que H(n) est vraie. Alors,

An1 _ an n n+1
(it) = (o) = () = ()

donc H(n + 1) est vraie.
e Conclusion. Par le principe de récurrence, on conclut que

a n
Vn € N, (bn> M (b())‘

09752 +0.05y == [-0,025z +0,05y =0
0,025z + 0,95y = y 0,025z — 0,05y = 0

3. Soit (z,y) € R% Alors,

<= 0,05y = 0,025z <= y = 0,bx

Ainsi, X = <Ol5> est une matrice colonne non nulle telle que M X = X donc on conclut

que ‘ 1 est valeur propre de M ‘

4. 1*¢ méthode : par le calcul.
Soit A € R. Alors,

0975 —X 0,05
0,025 0,95 — A\

=A% — 1,925\ + 0,925

det(M — \Ip) = = (0,975 — A)(0,95 — A) — 0,025 x 0,05
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Comme 1 est valeur propre, 1 est racine du trindme X2 — 1,925X + 0,925 et ainsi ce
trindme se factorise par X — 1. On obtient X? — 1,925X + 0,925 = (X — 1)(X — 0,925).

Ainsi, 'autre valeur propre de M est |\ = 0,925 |.

2de méthode : détermination a 1’aide de Python
Grace au code suivant,

import numpy as np

M = np.matrix ([[0.975, 0.05], [0.025, 0.95]])
print (np.linalg.eig(M))

qui affiche

(array ([1., 0.925]),
matrix ([[ 0.89442719, -0.70710678],
[[0.4472136, 0.70710678]])

Ainsi, 'autre valeur propre de M est |\ = 0,925|.

5. Comme M est une matrice carrée d’ordre 2 qui admet 2 valeurs propres distinctes,

‘M est diagonalisable ‘ On a vu dans la question 3. que Ej(M) = vect <<Ol5>>. Déter-

minons Ej go5(M ). Pour cela, on considere le systeme :

0,975z + 0,05y = 0,925z — 0,05z + 0,05y =0
0,025z + 0,95y = 0,925y 0,025z + 0,025y = 0

done Eoeas(M) = vect ((_11>>

1 0 1 1
s Yoo o -1 _ _
On en déduit que | M = PDP~" avec D = <0 07925> et P = <0,5 _1> .

Qo

bo

n

6. Soit n € N. Alors, (Z") = P_IM”< > Or, comme M = PDP~! par propriété,

M™ = PD"P~! donc

()7 o @) ) )
donc (Z”) = D" (Zg) )

7. Comme D est diagonale, pour tout n € N, D" = (

1 0
0 0,925"

u,\ (1 0 Ug) Ug
v, \0 09257 ) \vg)  \0,925",
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10.

11.

donc u,, = ugy et v, = 0,925"vy. Ainsi, (u,) est constante égale a ug et (v,) est une suite
géométrique de raison 0,925 € [0;1[ donc lim v, = 0.
n—-+o0o
.. a U Uy TV
définit tout N "I =P "] = e I | =
Or, par définition, pour tout n € N, (bn> (’Un> (0’5%_’_%) onc a,,
Uy + v, €t b, = 0,5u, + v,. Ainsi, par somme de limites, on en déduit que (a,) converge

et ngrfoo a, = ug| et que (b,) converge et nLHEoo b, = 0,5ug |

o\ [ uo \ 1 Uoso .
. On a vu que <boo> = <0,5u0> = ug (0’5> donc <Uoo> € Ey(M). Ainsi, on conclut que

(uoo> est un vecteur propre de M associé¢ a la valeur propre 1 |.
o0

. D’une part, pour tout n € N, a,, +b,, = 1000 donc, par passage a la limite, a., + b = 1000.

D’autre part, o + boo = ug + 0,5ug = 1,5uq. Ainsi, |as + b = 1000 = 1,51 |.

1000 2000
On en déduit que ug = ie |ug = —|
1,5 3
2000 1000
D’apres ce qui précede, |as = ug = S et by = 0,5up = |
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Sujet 5. Etude d’un endomorphisme de Ry[X] (O1)

On se place dans Ry[ X, espace vectoriel des polynomes a coefficients réels, de degré inférieur
ou égal a 2.
Pour tout polynéme P € Ry[X], on définit

W=

® N oo

o(P)= 02X+ 1P — (X*-1)F

Montrer que, pour tout P € Ry[X], on a ¢(P) € Ry[X].
Montrer que ¢ est linéaire.
Rappeler la base canonique de Ro[X].

Montrer que la matrice de ¢ dans la base canonique de Ry[X] est

10
A= 1 2
11

O N =

Déterminer les valeurs propres de A.
Justifier que ¢ est diagonalisable.
L’application ¢ est-elle injective ? surjective ?

Déterminer les sous-espaces propres de .
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Solution.

1. Soit P € Ry[X]. Alors, il existe des réels a, b et ¢ tels que P = aX? + bX + c. Deés lors,
P’ =2aX + b donc

©(P) = (2X +1)(aX? 4+ bX +¢) — (X? — 1)(2aX +b)
=2aX?+20X% 4+ 2cX + aX?+bX +c— (2aX? + bX? — 2aX —b)
=@+ b)X>+2a+b+200X +b+c

donc ¢(P) € Ry[X].
Ainsi, | pour tout P € Ry[X], ¢(P) € Ry[X] |

2. Soit (P, Q) € Ry[X]? et X € R. Alors,

AP+ Q)= (2X +1) AP+ Q) — (X* = 1)(AP + Q)

=AM2X+ 1P+ (2X +1)Q — (X* —1)(A\P' + Q")

A2X + 1P+ (2X +1)Q — AM(X* - 1)P' — (X* - 1)Q'
MRX+1DP - (XP-1DP)+(2X +1)Q — (X* - 1)Q
Ap(P) + ¢(Q)

donc | ¢ est linéaire ‘

3. | La base canonique de Ry[X] est (1, X, X?)|.

4. On a

e p()=(2X4+1)x1—(X2—-1)x0=1+2X
e p(X)=2X+1)x X - (X?-1)x1=1+X+ X?
o p(X2)=(2X +1) x X2 — (X2 —1) x 2X = 2X + X2

donc la matrice de ¢ dans la base canonique de Ry[X] est

5. 1™ méthode : par le calcul. Soit A € R. Considérons le systeme

rT+y=Az
(S)42x+y+2z= Xy
y+z= Az
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(1-Nz+y=0 Ly 20+ (1= Ny+22=0 Ly« Ly
y+(1=XNz=0 Ly y+(1=X)z=0 Ls
20+ (1 =Ny +22=0 Ly
==y (1= Nz=0 Ly Ly~ 2L
20+ (1 =Ny +22=0 Ly
20+ (1—-Ny+22=0 Ly
< y+(1—)\)Z:O L2<—>L3
a2 a2
~(1=-N(2-958)2=0 Ly Li— (1- 95 L

Ainsi, (S) n’est pas de rang 3 si et seulement si —(1 — \) (2 — %) = 0. Or,

(1-2

(1-N?
2

0

—(1—)\)<2— >:0<:>1—)\:00u2—

= A=1lou(l-)\?=4
<= A A=1loul—-A=2o0ul—-XA=-2
<= A=1lould=—-1loul=3

Ainsi, |Sp(A) = {1;—-1;3}|

24e méthode : a I'aide de Python
Grace au code suivant,

import numpy as np

A = np.matrix([[1,1,0], [2,1,2], [0,1,1]])
print (np.linalg.eig(A))
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qui affiche

(array ([-1., 1., 3.1),

matrix ([[ 4.08248290e-01, 7.07106781e-01,
4.08248290e-01],

[-8.16496581e-01, 3.74983192e-16, 8.16496581e-01],

[ 4.08248290e-01, -7.07106781e-01, 4.08248290e-0111]1)
)

on obtient |Sp(A) = {—1;1;3} |
. La matrice A est une matrice carrée d’ordre 3 qui admet 3 valeurs propres distinctes

donc, par théoreme, A est diagonalisable. Comme A est la matrice de ¢ dans la base
canonique, on en déduit que ‘cp est diagonalisable ‘

. Comme 0 n’est pas pas valeur propre de ¢, ker(¢) = {Og,[x} donc ‘gp est injective|.

Comme ¢ est un endomorphisme de Ry[X] et qui Ro[X] est de dimension finie, on en
déduit que | p est surjective ‘

. Pour déterminer les sous-espaces propres, on reprend le systeme échelonné en remplacant
A par les valeurs propres.

Pour A =1, on obtient

20 + 2z =
= {Z -
y =
=0
0= Y
1
Ainsi, Fy(A) = Vect 0 donc | B (p) = Vect(1 — X?)|.
—1
Pour A = —1, on obtient
20+ 2y+22=0
T =z
y+22=0 S8 {
y=—2z
0=0
1
Ainsi, E_1(A) = Vect | | =2 | | donc | E_1(¢) = Vect(1 — 2X + X?)|
1

Pour A = 3, on obtient

20 =2y +22=0
T=z
y—22=0 — {
Yy =2z
0=0
1
Ainsi, E3(A) = Vect | | 2| | donc | E5(p) = Vect(1 + 2X + X?)|.
1
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Sujet 6. Résolution d’une équation matricielle (O1)

Partie I
On considere les matrices suivantes de .#3(R) :
3 00 3 21
D=10 6 0 et A=12 3 1
0 01 114

1. Déterminer une matrice P € .Z3(R) telle que A = PDP~! de telle sorte que P soit de la

forme P=1] 1 1 1

Déterminer P~
2. a. Soit B € .#3(R) telle que BD = DB.
Montrer que B est une matrice diagonale.
b. Déterminer les matrices B.Z3(R) telles que B? = D.

3. Déterminer les matrices M € .#3(R) telles que M? = A. Combien y a-t-il de solutions ?

Partie II

On considére dans cette partie une matrice C' € .#5(R) qui possede 3 valeurs propres non
nulles, deux a deux distinctes.
On suppose, de plus, qu'il existe une matrice M € .#3(R) vérifiant M? = C.

1. Déterminer la dimension des sous-espaces propres de M?2.

2. Montrer que si X est un vecteur propre de M? alors M X est un vecteur propre de M?
pour la méme valeur propre.

3. Montrer que si X est un vecteur propre de M? alors X et M X sont deux vecteurs
colonnes proportionnels.

4. a. Soit X un vecteur propre de M2,
Démontrer a l'aide de la question 3. que X est aussi un vecteur propre de M.

b. En déduire que M est diagonalisable.

5. a. Justifier qu’il existe une matrice inversible P telle que P~*C'P et P~'M P soient

diagonales.
On notera dans la suite : D = P"'CP et B= P 'MP.

b. Vérifier que I'équation M? = C équivaut a B> = D.

6. En supposant que les 3 valeurs propres distinctes de C' sont strictement positives, expliciter
toutes les matrices M vérifiant M? = C',
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Solution.
Partie 1

1. La question revient a montrer que 3, 6 et 1 sont les valeurs propres de A.

x
Soit (x,y,2) ER¥ et X = |y |.
z
e Déterminons E3(A) :
3r+2y+ 2 =3z 20+ 2=0 B
XeFEA) = 20+3y+2=3y <= {(2x+2=0 <:>{y
x__
T+y+4z =32 r+y+z2=0
—%z 1
donc E5(A) = —32| | z € Ry = Vect 1
z —2
e Déterminons Eg(A) :
3r+2y+ 2z =6 —3r+2y+2=0 L,
X eEbs(A) <= 20 +3y+z2=6y <=2x—-3y+2=0 Ly
T +y+4z =62 r4+y—22=0 Ls

.T+y_2220 LIHLg
—3r+2y+2=0 L3+ L,

<~ —5y+5Z:O Lo <+ Loy —214
5y — bz =10 Ly <+ L3+ 3L,

Tr =z
{

y==z
z 1
donc Eg(A) =< |z| | z€Rp =Vect | |1
z 1

e Déterminons F;(A) :
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3r+2y+z==x 2+ 2y+2=0 L,
XeE(A)<=<S20+3y+z2=y <=<S2x+2y+2=0 Lo
r+y+dz==z r+y+3z2=0 Ls
r+y+32=0 Ly L3

= 2r+2y+2=0 Ly

204+2y+2=0 L3 Iy

{x+y+3z:0 L

—5z2=10 LQ(—L2—2L1
r=—
<~ Y
{z =0
—y -1
donc E;(A) = Y y € R = Vect 1
0 0
Ainsi, on conclut que A est diagonalisable (ce que 'on savait déja car A est une
1 1 -1
matrice symétrique a coefficients réels) et |A = PDP'avec P=| 1 1 1
-2 1 0

r+y—z=a I
Soit (a,b,c) € R3. Considérons le systéme (S):qax+y+2=5b Ly. Alors,
—2x+y=c L3

r+y—z=a L4 r+y—z=a Ly
(S)<:> 22=b—a L2<—L2—L1 <~ 3y-2Z:C—|—2CL L2<—>L1
3y—2Z:C+2CL L3<—L3+2L1 22z=b—a L3<—>L2
t+y—(—3a+3b)=a T+ 3a+3b+3c=1a+3b
= 3y—(b—a)=c+2a > Jy=3a+:b+3c
z:—%a—l—%b z:—%a—I—%b
T =z:a+:b—3c
= qy=3a+3b+ic
z=—-ta+1b
1 1
i | pet S B
Ainsi, P72 = 3 3 3
1 1
2 2
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Remarque. Bien que A soit symétrie réelle, on n’a pas P~! = P car la base de
vecteurs propres que 'on a choisie pour construire P n’est pas orthonormée (elle est bien
orthogonale mais ses vecteurs ne sont pas unitaires).

a b c
2. a. Ecrivons B=|d e f]. Alors,
g h 1
a b c\ (3 00 3a 6b c
BD=1|d e f|]0 6 0|=|3d 6e f
g h 1 0 01 3g 6h 1
30 0\ fa b c 3a 3b 3c
DB=10 6 0||d e f|=|6d 6e 6f
0 0 1) \g h i g h i
donc, comma BD = DB, on a 6b=3b, c=3c¢,3d =6d, f =6f,3g =g et 6h=~h
a 0 0
doncb=c=d=f=g=h=0etainsi| B= |0 e 0] est une matrice diagonale |.
0 0 ¢

b. Soit B une matrice tel que B? = D. Alors, BD = B(B?) = B? = (B?)B = DB donc,
d’apres la question précédente, B est diagonale. Ainsi, il existe des réels a, b et ¢

a 0 0 a> 0 0
tels que B = |0 b 0]. Dés lors, comme B est diagonale, B2 = [ 0 b 0| et
00 c 0 0 ¢
ainsi, comme B> =D, a> =3, > =6 et ¢ =1 donc a = +v/3, b = £6 et ¢ = +1.
/3 0 0
Ainsi, B est I'une des 8 matrices 0 +v6 0 |.Réciproquement, ces 8 matrices
0 0 =1
vérifient bien B> = D donc les matrices B € .#3(R) sont
V3 0 0 V3 0 0 V3 0 0 V3 0 0
0 V6 0], 0 —v6 0], 0 v6 0].,]0 —v6 0
0 0 1 0 1 0o 0 -1 0 0 -1

0

V3 0 0 V3 0 0 —V3

0 V6 0], 0 —v6 0],
0 0 1 0 0 1

3. Soit M € .#5(R). Alors,
M? =A< M*=PDP ' <= P 'M*P =D« (P"'MP)*=D.

Ainsi, d’apres la question précédente, M? = A si et seulement si P~'M P est I'une
des 8 matrices B précédentes donc si et seulement si M est 'une des 8 matrices PBP ™1
(et ces 8 matrices sont bien différentes car leurs spectres sont différents).

On conclut que |I’équation M? = A posseéde 8 solutions |.
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Partie 11

1. Comme C' est une matrice d’ordre 3 qui possede 3 valeurs propres distinctes, elle est
diagonalisation et chacun des ses sous-espaces propres est de dimension 1. Comme

M? = C, on conclut que |les sous-espaces propres de M? sont de dimension 1 |.

2. Soit X un vecteur propre de M?2. Alors, X est non nul et il existe un réel \ tel que
M?*X = AX. Des lors, M>(MX) = M3X = M(M*X) = M(AX) = A(MX). De plus, si
MX = 03 alors M?*X = MO0z ; = 037 donc CX = 03 i.e., comme X est non nul, 0 est
valeur propre de C'. Or, ceci est exclu par I’énoncé donc M X # 03, donc on conclut que

‘M X est un vecteur propre de M associé a la valeur propre A ‘

3. Soit X un vecteur propre de M?. Alors, il existe A € R tel que X € E\(M?). Par la
question précédente, M X € Ey(M?) et, d’apres la question 1., dim(E)(M?) =1 donc
E\(M?)) = Vect(X). Ainsi, M X € Vect(X) donc‘il existe un réel k tel que MX = kX ‘

4. a. D’apres la question précédente, il existe un réel k tel que M X = kX et, de plus,
comme X est un vecteur propre de M?, X # 03.

‘On en déduit que X est un vecteur propre de M ‘

b. Comme M? = C est diagonalisable, il existe une base (X1, X5, X3) de #31(R) formée
de vecteurs propres de M2. Or, d’aprés la question précédente, X;, X et X3 sont
aussi des vecteurs propres de M donc (X7, X, X3) est une base de .#;;(R) formée

de vecteurs propres de M donc ‘M est diagonalisable ‘

5. a. Avec les notations de la question précédente, si on considere la matrice de passage P
de la base canonique de .#5;(R) a la base (X1, Xz, X3) alors il existe des matrices
diagonales D et B telles que M? = PDP~' et M = PBP~!.

b. D’apres la question précédente,

M? =(C <= (PBP ') = PDP ! < PB*P' = PDP!
<= B*=P YPDP )P <= B*>=D.

Ainsi, ‘MZ = C si et seulement si B> = D ‘

6. Par le méme raisonnement que dans la question 2.b. de la Partie I, comme B est
diagonale, B est 'une des 8 matrices dont la diagonale est composée des £v/A ol
A € Sp(C). On en déduit que M est I'une des 8 matrices PBP~! et, réciproquement, une
telle matrice vérifie bien M? = C car

(PBP ') = PB*P' = PDP ' =C.

Notons A1, Ay et A3 les trois valeurs propres de C' associées respectivement aux vecteurs
propres Xq, X5 et X3.

+V/\ 0 0
Alors |les solutions de M? = C sont les 8 matrices M =P | 0 +£V/X 0 P

0 0 £V

31



Sujet 7. Etude de trois suites imbriquées (02)

On considere la matrice :

1. Justifier sans calculs que A est diagonalisable.
2. Déterminer une base de vecteurs propres de A.

3. Donner une matrice P inversible et une matrice D diagonale telles que :
A=PDpP

4. Calculer P71,

5. Démontrer que pour tout n € N :
A" =pprpt

6. Déterminer, pour tout n € N, 'expression de A" en fonction de n.

7. On considere les suites (uy,), (v,) et (w,) définies par :

Upt1 = Up + Uy + Wy
ug = v9 = wy = 1 et pour tout n € N, S v, 1 =20, +w,

Wpt1 = 3wy,

Unp

En utilisant la matrice X,, = | v, |, déterminer, pour tout n € N, u,, v, et w, en

Wy,
fonction de n.

8. Que fait la fonction suivante, écrite en Python ?

def suite(n):

u, v, w =1, 1, 1
for k in range(l, n+1):
u, v, w = u+v+w, 2*xv+w, 3*w

return u, v, w

L’utiliser pour vérifier les résultats de la question 7).
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Solution.

1. La matrice A est triangulaire supérieure donc ses valeurs propres sont des éléments
diagonaux. Ainsi, Sp(A) = {1;2;3} donc A est une matrice carrée d’ordre 3 ayant 3

valeurs propres distinctes donc, par propriété, ‘A est diagonalisable |

X

2. Soit (z,y,2) eR3et X = |y |.
2

e Déterminons E;(A) :

r+yt+tz==x _0
XcB((A) = 2y+z=y <:>{y:

z2=0
3z=2z2
x 1
donc F(A) = O] zeRpy=Vect| |0
0 0

e Déterminons Ey(A) :

r+y+z=2x
xr =
XeEA) <= {2y+2=2y <:>{ _y

0
3z =2z
Y 1
donc Ey(A) =< |y| | yeRp=Vect | |1
0 0

e Déterminons F3(A) :

T+y+z=3x
=2z
X € E3(A) <=2y +2 =3y <:>{
y==2
3z =3z
z 1
donc E5(A) =< |z|| z€Rp=Vect | |1
z 1
1 1 1
On conclut que Of,11],11 est une base de vecteurs propres de A.
0 0 1
3. On déduit des questions précédentes qu’on a ’égalité A = PDP~! en posant les matrices
1 11 100
P=]101 1]leeD=]0 2 0
0 01 0 0 3

33



4. Soit (a,b, c) € R3. Considérons le systeme (S) : Sy + 2 =10 . Alors,

Z==cC

5. Considérons, pour tout n € N, la proposition H(n) : « A" = PD"P~1 ».
Initialisation. PD'P~1 = PP~! = I3 = A° donc H(0) est vraie.
Hérédité. Soit n € N. Supposons que H(n) est vraie. Alors, A" = PD"P~! donc

A" = A"A = (PD"P Y (PDP')= PD"(P'P)DP™' = PD"DP ' = pp""'p!

donc H(n + 1) est vraie.

Conclusion. Par le principe de récurrence, |pour tout n € N, A" = PD"P~1|.

m™m 0 0 1 0 0
6. Soit n € N. Comme D est diagonale, D" = 0 2" 0 [=[0 2 0 | donc
0o 0 3" 0 0 3
11 1 1 0 0 1 -1 0
A"=10 1 1|0 2 0 0 1 -1
00 1/\0o 0 3*/J\0 0 1
11 1 1 -1 0
=0 1 1[0 2» -2
00 1/\0 0 3"
1 2n—-1 3" =27
=(o 2» 32"
0 0 3"

1 2n—1 3"—-2"
Ainsi, |[pour tout n ¢ N, A= (0 2" 3" -2"
0 0 3"

7. Remarquons que, pour tout n € N,

Upt1 Up, + UV, + Wy, 1 11 Up,
Xprm1=|vp | = 2u,, + w, =10 2 1 v, | = AX,
Wyt 3w, 0 0 3/ \w,
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donc (X,,) est une suite géométrique de matrices colonnes de raison A. Dés lors, pour
tout n € N, X,, = A" X, i.e.

1 2n—1 30 —2n\ /1 1427 — 1430 —2n 3n
X,=[0 2o 3r-_2n||1]= on 4 gn _on — | 3n
0 0 3n 1 3n 3n

donc, | pour tout n € N, u,, = v, = w,, = 3"|.

. La fonction suite renvoie les valeurs de u,, v, et w, pour la valeur de n passé en
argument.

Avec linstruction

for n in range (6):
print (suite(n))

on obtient 'affichage suivant :

(1, 1, 1
(3, 3, 3)
9, 9, 9

(27, 27, 27)
(81, 81, 81)
(243, 243, 243)

ce qui est bien cohérent puisque 3° =1, 3' =3, 32 =9, 3% =27, 3* = 81 et 3° = 243.
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Sujets d’analyse
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Sujet 8. Etude d’une fonction et applications (C2)

On considere la fonction f définie par

_Jt*—tln(t) sit>0
f(t)_{ 0 sit=0"

Donner 'ensemble de définition de f.

Montrer que f est continue sur son ensemble de définition.
Calculer f’ et f” sur |0; +o0].

En déduire les variations de f sur |0; 400

Montrer que ’équation f(t) = 1 admet une unique solution sur ]0;+oo[ que 'on
déterminera.

® o TP

2. On considere la fonction F' définie sur U = ]0; +o00[ X ]0; 400 par

F(z,y) = zIn(y) — yIn(z).

F F

a. Calculer, pour tout (x,y) € U, gx(x,y) et é;y(x,y)
OF
%(%Z/) =0

b. Soit (z,y) € U. Montrer que si alors f (1’) =1
8F< )= 0 Yy
—(x —
ay 7y

c. En déduire les points critiques de F.

3. Soit la suite (up)nen définie par

1
Uy = 5
VneN w1 = flu,)
1

Montrer que, pour tout n € N, 3 < u, < 1.

Etudier les variations de (uy,).
En déduire le comportement asymptotique de (u,,).

o T p

Ecrire un programme en Python permettant d’obtenir le rang n & partir duquel
lu, — 1] < 1074
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Solution.

1. a. Par définition, ‘l’ensemble de définition de f est R, ‘

b. La fonction f est continue sur R* comme produit et différence de fonctions continues.
De plus, par croissances comparées, Pr%tln(t) = 0 donc, par différence, %ir% f(t)=0.
— —

Ainsi, %1_1)101 f(t) = f(0) donc f est également continue en 0. Ainsi,

f est continue sur R, ‘

c. La fonction f est deux fois dérivable sur R’ comme produit et différence de fonctions
deux fois dérivables et, pour tout réel ¢ > 0,

f(t) =2t — <1 X In(t) +t x 1) ie. [ff(t)=2t—In(t) —1

et

) =9 L
F)=2-|

2t —1
d. Pour tout réel t > 0, f"(t) =

est du signe de 2t — 1 donc f"(t) < 0sit € }0 ; %]
et f'(t) > 0sit e [% ; —l—oo{. Ainsi, f’ est décroissante sur }O; %} et croissante sur

B ; +oo[. On en déduit que f" atteint son minimum en % et ce minimum vaut

1 1 1

f/<2>:2><2_1n<2>—1:1+ln(2)—1:1n(2)>0

donc f(t) > 0 pour tout réel t > 0.

On conclut que | f est strictement croissante sur R7 |

e. La fonction f est strictement croissante sur R} donc injective sur R7. De plus,
f(1) =1 —1In(1) = 1 donc 1 est I'unique antécédent de 1 sur R¥.

Autrement dit, | 1 est I'unique solution de I'équation f(t) =1 sur R |

2. a. Pour tout (z,y) € U,

or Yy
67(36’ y) =In(y) — =
et
oF x
—(x,y) = — — In(x
o (0) = £l
b. Supposons que g];(m, y) = g(x, y) = 0. Alors, :?j = In(z) et % = In(y) donc
x 2 x 22 22 oz x y] 2 2P
“l==—-—-In|l-|==—-—~"[Inz)—-Inx))=-=-|-—Z| == -—=+1
f(?;) vy <y) y? y[() ) y? yly A

ie. f<x> 1.
y
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c. La question précédente assure que si (z,y) € U est un point critique de F' alors
x

f | =) =1donc, d’apres les résultats de la question 1., o lie y=ux.
Y
L. . oF
Réciproquement, si a € R alors (a,a) € U. De plus, a—(a,a) = In(a) — — =
x

F
In(a) — 1 et aa(a, a) = e In(a) =1 —In(a) donc (a,a) est un point critique de F'
Yy a

si et seulement si In(a) =1 ie. a =e.

On conclut que |'unique point critique de F' est (e, e)|.

1
. a. Considérons, pour tout n € N, la proposition P(n) : « 5 <u, <1,

1
Initialisation. Comme ug = Y P(0) est vraie.

1
Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, 15 S < u, < 1 donc,
1 1 1 1
comme f est croissante sur R, f <2> < fluy) < f(1). Or, f (2) 1—5—51 n(2) ~ 0,6

1 1
doncf<2> >§et on a vu que f(1) = 1. Ainsi, §<f( n) < 1ie.
donc P(n + 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

Vn €N <wu, <1}

b. Considérons, pour tout n € N, la proposition Q(n) : « u, < Upiq ».

1 1
Initialisation. Comme ug = 3 et ug = f (2) ~ 0,6, up < uy donc Q(0) est vraie.

1
Hérédité. Soit n € N. Supposons que Q(n) est vraie. Alors, —u,, < u,4+; < 1 donc,

comme [ est croissante sur R% , f(u,) < f(tng1) i€ Upy1 < Upyo. Ainsi, Q(n+1) est
vraie.

Conclusion. Par le principe de récurrence, on conclut que, pour tout n € N,

Uy < Upy1 done | (u,) est croissante |.

1
c. Ainsi, (u,) est croissante et bornée par 5 et 1 donc, d’apres le théoreme de la limite

1
monotone, (u,) converge vers un réel ¢ € { ; 1}. Ainsi, 1_1}111 Upt1 = ¢ et, comme
f est continue sur R, Erf f(un) = f(0) ie. Erf Unt1 = f(£). Par unicité de la
limite de (u,11), on en déduit que £ = f(¢). Ainsi, £ = ¢* — {In(¢) donc, comme £ # 0,

1 =/¢—1In(l) ie. g(0) —Ooflg r +— x — In(z) — 1. Or, g(1) = 0 et, pour tout
x>0, ¢(x)=1-1 =21 donc g est strictement croissante sur |0; 1] et strictement
croissante sur [1;+o0l. A1n31 pour tout = € ]0;1[, g(z) > g(1) = 0 et, pour tout

€ ]1;+00], g(x) > g(1) = 0 donc 1 est I'unique solution de g(z) = 0. Ainsi, on
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conclut que £ =1 i.e.

lim wu, =1|
n—-+0o0o

d. La fonction suivante répond a la question car, pour tout n € N, u, < 1 donc
|u, — 1| =1 — u,. (Rappel : en Python, la fonction In est disponible dans le module

math sous la nom log.)

from math import *

def seuil ():

n =20

u=1/2

while 1-u > 10%x*x(-4):
n += 1
u = ux*2 - uxlog(u)

return n

On trouve .
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Sujet 9. FEtude d’une suite définie par récurrence (C4)

On consideére la suite (u,) définie par

UO:1
1
VneN Uy =u, +—

n

1. Calculer u; et wus.
2. Démontrer par récurrence que (u,) est bien définie et strictement positive.

3. Que fait la fonction suivante, écrite en Python ?

def mystere(n):
u =1
for i in range(n):
u=u+ 1/u
return u

Utiliser cette fonction pour conjecturer le comportement de la suite (u,) ainsi que

lui de la suit ( Un )
celul de la sulte —— .
V2n neN*

4. Etudier les variations de (uy,).
5. Montrer que (u,) diverge et en déduire la limite de (uy,).

6. Démontrer par récurrence que, pour tout n € N*, u2 > 2(n — 1).
n—2 1
7. On pose, pour tout entier n > 3, S, = Z ﬁ

a. Démontrer que, pour tout entier n > 3,

1
b. En déduire la divergence de la série de terme général —.
NG
c. A l'aide de la courbe de la fonction & — —= (qui peut étre tracée & main levée),

NZ3

démontrer que, pour tout entier n > 3,
S, <2vVn—2—1.

d. Déduire des questions précédentes un encadrement de u,, valable pour tout entier
n > 3 puis donner un équivalent de u,, lorsque n tend vers +oc.
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Solution.

bt

1 1
1. u1:1+Idoncetu2:2+§donC u2:§.

2. Considérons, pour tout n € N, la proposition P(n) : « u, existe et u, > 0 ».

Initialisation. Par définition, u, existe et ug = 1 > 0 donc P(0) est vraie.

Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, u, existe et u, > 0 donc

. - : 1
u, et — existent et ainsi u,; existe. De plus, comme u,, > 0, — > 0 donc, par somme,
Unp,

n
Up+1 > 0. Deés lors, P(n + 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que, pour tout n € N, u,,
existe et u, > 0. Ainsi, | (u,) est bien définie et strictement positive|.

3. L’appel mystere(n) renvoie la valeur de u,, pour un entier naturel n passé en argument.

On peut conjecturer que (u,) est croissante et diverge tres lentement vers +oo (par
exemple, uygg & 14, U000 = 45 et uyge &~ 1414).

On peut modifier la fonction mystere afin qu’elle affiche les valeurs de la suite (;;_)
n

de la maniere suivante :

from math import sqrt

def mystere(n):
u =1
for i in range(n):
u=u+ 1/u
return u/sqrt (2*n)

U
On peut conjecturer que la suite (\/;_) est décroissante et converge vers 1 (par
n

exemnple, ——®  ~ 1,01, ——12%0__ ~ 1,001 et ——2% ~ 1,000002).

V2 x 100 2 % 1000 V2 % 106

1
4. Pour tout n € N, u,, 41 —u,, = — > 0 car u,, > 0 donc la suite | (u,) est croissante|.
U,

5. Supposons que (u, ) converge vers une limite {. Comme (u,) est croissante, elle est minorée

par ug = 1 donc ¢ > 1. En particulier, ¢ # 0. Des lors, — " 7 donc, par somme,
Uy T o0

1 1
Uy, + — —— £+ —. Autrement dit, lim wu,.; = ¢+ -. Or, comme lim w, = ¢,
Uy, N—+00 E n——+00 £ n—-+0oo

1
lim w,.; = ¢ donc, par unicité de la limite de (up11), £ = ¢+ - i.e. — = 0. C’est absurde

n—-+00 f f
donc | (u,,) diverge |.

Comme (u,) est croissante, d’apres le théoréeme de la limite monotone, soit (u,)

converge soit (u,) tend vers +o00. Or, on vient de voir que (u,,) diverge donc lir}rq Uy = +00|.
n—-—+0o0
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6. Considérons, pour tout n € N*, la proposition Q(n) : « u2 > 2(n — 1) ».
Initialisation. Comme uf = 2% =4 et 2(1 — 1) =0, u} > 2(1 — 1) i.e. Q(1) est vraie.
Hérédité. Soit n € N*. Supposons que Q(n) est vraie. Alors, u? > 2(n — 1) donc

, 132 1
un+1:<un—|—un> =u? +2—|—u—2/2(n—1)+2:2n

1
car — > 0. Ainsi, Q(n + 1) est vraie.
n
Conclusion. Par le principe de récurrence, on conclut que

VneN* ul>=2n-1)|

1
7. a. Soit un entier n > 3. On remarque que, pour tout k € [1,n — 1], ugs; — up = —. De

U
plus, pour tout k € [1,n — 1], d’aprés la question précédente, ui > 2(k — 1) donc,

par croissance de la fonction racine carrée sur [0; +o00o[, \/ui = /2(k — 1) i.e., comme

up > 0, ug, > 1/2(k — 1). Par décroissance de la fonction inverse sur |0; +oo[, on en

L 1 1 . 1
déduit que, pour tout k € [2,n — 1], — < ——= 1. Upq1 — U < ———.
Ug 2(k—1) 2(k—1)
Ainsi, en sommant ces inégalités, on obtient
n—1 —
D Uk — U < Z
n—1
Or, par téléscopage, Z Uky1 — Uk = U, — Ug eb, par linéarité et changement d’indice,
k=2
"f "f 1 1= g
=2 \/2(k —1) 25 VE-1i=—1 V253 Vi V2

1
Ainsi, u,, — us < —=5,, donc |S,, > vV2(u,, — us)|.
2 \/E \/—( 2)

b. Comme 1—1>I—P U, = +00 et /2 > 0, 1_1)111 V2(uy, — uy) = +oo donc, par le théoréme

de comparaison lim S, = +o00.
n——+o0o

. - L L.
Par suite, | la série de terme général — diverge vers +o00|.

vn

c. Soit un entier n > 3. Pour tout entier entier k > 2, on peut interpréter le nombre

1
) Vk
comme l'aire du rectangle de hauteur — construit sur le segment [k — 1;k].

Vk
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5 6 7 8 9 107

0 1 2 3

W

1
Comme ces rectangles sont entierement situés en dessous de la courbe de z — 7,
x

on en déduit que

n—2 _
1 n—2 1 n
= Vk /1 x ! [\/ﬂl !
Des lors,
n—2 1 n—2 1
— =1+ —<14+2vn—2-2
soit
n—2 1

. D’une part, on a vu que, pour tout n € N*, w,, > /2(n — 1). D’autre part, on a vu

1
que, pour tout entier n > 3, .5, \/_(un—uQ) donc, comme v/2 > 0, u,, < \/_S '+ Us.

On déduit alors de la question précédente que, pour tout entier n > 3,

5 1 5
un\\/_(Q\/n—2—1>—|—§:\/§\/n— ~5+3< 2n —2) + 2.
5 1
car - — — ~ 1,8 < 2.

2 V2
Ainsi, | pour tout entier n > 3, 1/2(n — 1) < u, < /2(n —2)

On en déduit que, pour tout entier n > 3,

Zn(l— 2n<1—
1 2
Vonyl——<u, <V2ny/l——+2
n n
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i.e. comme v/2n > 0,

/ un 1 2+ 2
n o \2n

Or, lim 1—— = lim 1— — =1 donc, par continuité de la racine carrée en 1,
n—-+0o n—-+00

lim 1/1—— lim 4/1 = /1 = 1. De plus, 11m V2n = 400 donc, par
n—-+00 n——+0o0o

uotient, hm —— = 0. Ainsi, hm 1—-— lim /1—— —|— ——= = 1 dong, par
q n—+00 /9 n—H—oo Qn b

le théoreme d’ encadrement lim

n—-+ OO\/

= 1. Ainsi, par définition, [u, ~ v/2n|.
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Sujet 10. Modeéle de Gompertz (C6)

On peut modéliser la masse corporelle d’'un rat musqué en fonction de son age par le modele
de croissance de Gompertz.

Si on note ¢ I’dge (en jours) du rat et Y (¢) sa masse (en grammes), on suppose que la fonction
Y vérifie I’équation différentielle :

(E) Y'(t) = —rln (?) Y (t)

avec 1 et K des réels strictement positifs tels que 0 < Y(0) < K.
Dans la suite, on note Y une solution de cette équation différentielle et on admet que, pour
tout t € [0;4+00[, 0 < Y (t) < K.

1. a. Justifier que la fonction f :y +— admet une primitive F' sur |0; K.

—rin(%)y
b. Montrer que, pour tout réel ¢ positif, (F oY) (t) = 1.
1
2. Vérifier que F : y — ——1In (— In (?{)) est une primitive de f sur ]0; K.
r

3. a. Déduire des questions précédentes I'existence d’'une constante réelle C' telle que, pour

tout £ > 0,
Y(t
_1n< [(()) — efT(t+C)
. Y(t
b. On pose yo = Y (0). Etablir que, pour tout réel ¢t > 0, In ([(()> =In (ig) e "t

c. En déduire que, pour tout t € Ry, Y (t) = Kexp [ln (ig) e_’"t}.
4. Etudier les variations de la fonction Y sur [0; +oo[. Que représente la constante K ?
K

Démontrer que Z est une fonction affine de coefficient directeur —r. Préciser son ordonnée
a l'origine.

Y(t
5. On considere la fonction Z définie pour tout ¢t > 0 par Z(t) = In (— In <(>>>
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6. Détermination expérimentale de yo, K et r
Le tableau ci-contre contient les valeurs mesurées tous

les 20 jours de la masse du rat, de sa naissance a son Temps (j) | Masse (g)
301¢ jour. On note T; le temps de mesure et M; la masse 0 16,00
mesurée le jour Tj. 20 116,06
40 304,48
a. Proposer des valeurs de yg et K. 60 136,91
b. Indiquer comment on pourrait proposer une valeur S0 611,92
expérimentale de 7. 100 683,91
120 721,96
140 741,24
160 750,81
180 755,51
200 757,81
220 758,93
240 759,48
260 759,75
280 759,88
300 759,94
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Solution.

1. a. Pour tout y € |0; K[, 0 < y < K donc, comme K > 0,0 < % < 1 et ainsi, par

croissance de In sur R%, In (ly() < 0. Comme r > 0, il s’ensuit que, pour tout

y€]0; K[, —rln ([y() y > 0 donc —rln <}y{) y # 0. Ainsi, la fonction f est définie

sur |0; K[. Comme f est une composée de fonctions de référence, elle est continue sur

10; K[ et donc, par théoreme, | f admet une primitive F' sur |0; K[|

b. La fonction F oY est bien définie sur R, car, pour tout t € Ry, Y (t) € ]0; K| et elle
est dérivable sur R, comme composée de fonctions dérivables. De plus, pour tout réel
t>0,

(FoY)(t) = F(Y(#)Y'(t) = F(Y(1)Y'(t) = —rln(yl(t) e <—rln (ﬁ”) y@)) —1

Ainsi, | pour tout t € RY, (FoY)'(t) =1|

2. On a vu précédemment que, pour tout y € |0; K[, —In (i,) > 0 donc F' est bien définie

sur |0; K[. De plus, elle est dérivable sur |0; K| comme composée de fonctions dérivables
et, pour tout y € |0; K|,

Ainsi, | F est une primitive de f sur |0; K[|

3. a. Pour tout t € R}, (F oY) (t) = 1 donc, comme R, est un intervalle, il existe une

1 Y (¢
constante C telle que, pour tout ¢t € R, (FoY)(t) =t+Cie. —In|—In l(() =

T

Y (t Y(t
t+C'. Des lors, pour tout ¢ € R%, In (— In ([(()>> = —r(t+C) donc —In ([(()) -
e—r(t—l—C)'
Y(t

On conclut donc qu’|il existe C' € R telle que, pour tout t € R, , —In (;{)) = e 7(+0) |

Y (0
b. On a donc —In <l(()> =e"%ie —In (ig) = ¢7"% donc, pour tout t € R,

Y (¢t
In ( [(()) _ _e—r(t—i-C') _ _e—rC’e—rt — _ <_ In (i?)) e—rt

donc,




Y(t
c. On en déduit que, pour tout t € R, I((> = exp [ln (ig) _”] donc on conclut que,

pour tout t € Ry, Y(t) = K exp [ln (‘7;3) e_”} :

4. Par hypothese, pour tout ¢t € R,
Y(t
Y'(t) = —rln (}9) Y(t)=—-rln <Z[J3> e " x K exp {ln (gg) e_”]

donc, comme exp est a valeurs positives, Y'(t) est du signe de —rLIn ( K> Or, par
hypothese, r > 0, K > 0 et yo = Y (0) € |0; K[ donc, comme on 'a vu précédemment,
In (i?) < 0. Ainsi, pour tout ¢t € R, Y’(t) > 0 donc ‘Y est croissante sur R ‘

De plus, comme r > 0, hm —rt = —oo donc, comme hm eX = 0, par composition,

lim e " = 0. Par produit, on en déduit que lim In (yo) ~ = () donc, par continuité
t—+o00 t—+o00 K

de Pexponentielle en 0, lim Y (t) = Keie.| lim Y(t) = K|
t—+o0 t—+o00

La valeur K représente donc le poids limite du rat musqué.
5. Remarquons que Z est bien définie pour tout ¢ > 0. On a vu précédemment que, pour tout
Y(t)

teRy, —In ([y() = e+ > 0. De plus, pour tout ¢t € R, In <K> = In (‘7;3) e "t

2=t (i () ) = m () ) ey = ot (m (1)

donc ’ Z est bien une fonction affine de coefficient directeur —r ‘ De plus, il suit de 1’éga-

donc

K
lité précédente que [son ordonnée a l'origine est In (111 ()) .
Yo

6. a. D’apres le tableau, Y(0) = 16 donc et Y semble se stabiliser autour de 760

done | K =760}

b. On en déduit que Z(0) = ln< In (76())) ~ 1,35 et Z(100) = In (—ln (6&;:2,31)) ~

—2,25—-1,35 .
—2,25 donc —r ~ W soit | r ~ 0,036 .

50



Sujet 11. Etude d’une suite définie implicitement I (C5)

Pour tout n € N*, on considére la fonction f, définie sur |0 ;+oo[ par :

fo(z) =2 —nln(x).

1. Soit n € N*. Dresser le tableau de variations de f,,.

2. Montrer qu’il existe deux suites (uy)n>3 €t (vn)n>3 telles que, pour tout n > 3,

0 < u, <
T ()
Jn(vn)

< Up

n
0
0

3. A laide d’une modélisation numérique ou graphique, conjecturer le comportement asymp-
totique de (uy,), (vn), ("

vp )"

4. Démontrer la conjecture faite sur lim wv,.
n—-+00

5. Démontrer la conjecture faite sur lim .

n——+oo Un
6. a. Montrer que pour tout n > 3 :
1l<u, <e.

b. Déterminer le sens de variation de la suite (uy,),>3.

e

Démontrer la conjecture faite sur lim w,,.
n—+oo

d. Montrer que
In(u,) ~ u, —1

et en déduire que
1

Up — 1 ~ —.
n
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Solution.

1. La fonction f,, est dérivable sur |0; +oo[ comme combinaison linéaire de fonctions déri-
vables et, pour tout réel x > 0,

f/(:r;)zl—nxl:x_n.

" T x

Ainsi, pour tout réel z > 0, f, est du signe de x — n donc f/(z) < 0 si x € ]0;n],
fl(n)=0cet f/(z) <0size]n;+oo.

On en déduit que f,, est strictement décroissante sur |0;n| et strictement croissante

sur [n;4o0l.
De plus, lig(l)ln(m) = —o0 et n > 0 donc li_>r% —nln(z) = 400 donc, par somme,
glclg% fn(x) = +00.
In(x) . ,
Enfin, pour tout = > 0, f,(x) = z |1 —n——=|. Or, par croissance comparée,
x
1 1
lim n(z) = 0 donc, par combinaison linéaire, lim 1 —n n(z) = 1 et ainsi, par
z—>+oo‘ €T ) T—r+00 €T
produit, xglfoo fo(z) = 400.
On aboutit donc au tableau suivant :
x 0 n +00
400 400
Variation
de f,
n — nln(n)

2. Supposons n > 3. Alors, n > e donc, par croissance de la fonction In sur |0; 400,
In(n) > In(e) = 1 donc n —nlIn(n) < 0. Sur chacun des deux intervalles ]0;n] et [n; 400,
la fonction f,, est continue (car dérivable) et strictement monotone donc elle réalise une
bijection de cet intervalle sur [n — nln(n); 4+o0o|. Ainsi, il existe un unique wu,, € |0;n] et
un unique v, € [n;4o00[ tels que f(u,) = f(v,) = 0.

On en déduit l'existence des deux suites de 1’énoncé.

3. En tracant les courbes des fonctions f, pour différentes valeurs de n a I'aide de GeoGebra,

on peut conjecturer que lim u, =1, lim v, =4ocoet lim > =0]|
n——+o0 n—+o0 n——+oo Un

4. Par définition, pour tout n > 3, v, > n et liril n = +oo donc, par le théoreme de
n—-+0oo

comparaison, | lim v, = +o00|.
n—+oo
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5. Pour tout entier n ¥ ( n) = 0 donc v, —nln(v,) = 0i.e. v, = nln(v,). On en déduit
=1In

=3
> = =
que, pour tout n > 3, (v,). Or, nl_l)I_iT_loo v, = 400 et wl_lgloo In(z) = 400 donc, par
.- . Un, . . n
composition, lim — = +o0. Par inverse, on conclut que | lim — =0]
n—+oo n, n—+00 Un,

6. a. Soit un entier n > 3. D’une part, f,(1) = 1 —nlIn(1) = 1 > 0 et, d’autre part,
fale) = e —nln(e) = e—n < 0 (car n > 3 > e) donc, comme f,(u,) = 0,
f(1) > fu(u,) > f(e). La fonction f,, étant strictement décroissante sur [0;n] et cet

intervalle contenant les trois nombres 1, u,, et e, on en déduit que .

b. Soit un entier n > 3. Alors,

for1(uy) = uy, — (n+ 1) In(u,) = up, — nln(uy,) — In(u,) = fu(u,) — In(u,)

donc, comme f,(u,,) = 0, fr1(u,) = —In(u,). Or, on a vu a la question précédente que
u, > 1 donc In(u,) > 0 et ainsi, f,+1(u,) < 0. Autrement dit, f,11(un) < frogr1(tnt1).
Or, u, et u,1 appartiennent a |0;n + 1] et f,1 est décroissante sur cet intervalle
donc u, = Upyq-

Ainsi, |la suite (u,) est décroissante |

c. La suite (u,) est décroissante et minorée par 1 donc, d’apres le théoreme de la limite
u

monotone, (u,) est convergente. Pour tout entier n > 3, f,,(u,) = 0 donc In(u,) = —

n

donc, par quotient, hr+n In(u,) = 0. Or, la fonction exp est continue sur R donc

lim e® = e® = 1 et ainsi, par composition, lim ™) =11ie.| lim u, =1|

z—0 n—+o00 n—-+o0
d. Pour tout entier n > 3, In(u,) = In(1+(u,—1)) et, comme u,, —— 1, u,—1 —— 0.
n—-+oo n—-+oo

Des lors, par théoreme, |In(u,) ~ u, — 1|.

Unp,

Par ailleurs, comme on I’a vu précédemment, pour tout entier n > 3, In(u,)

donc, comme wu,, _>—> 1, u, ~ 1 et ainsi, par quotient d’équivalent, In(u,) ~
n OO

:,\H

1

Par transitivité de la relation d’équivalence, on ne déduit que |u,, — 1 ~ —|.
n
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Sujet 12. Arctan itérée (C9)

On consideére la suite (u,) définie sur N par :

ug € R
Vn € N, u,1 = arctan(uy,)

1. Conjecturer le sens de variation de la suite (u,) et sa limite éventuelle. Essayer plusieurs
valeurs de ug.

2. Soit g la fonction définie sur R par g(z) = arctan(x) — z.

a. Etudier le sens de variation de g.

b. En déduire le signe de g.

c. Dresser le tableau de variations de g, en précisant les limites en +o0o et en —oo.
3. On suppose dans cette question que la suite (u,) converge. Que vaut alors sa limite ¢?
4. On suppose dans cette question que ug > 0.

a. Démontrer que, pour tout n € N, u,, > 0.
b. Déterminer le sens de variation de la suite (u,,).

c. En déduire que la suite (u,) converge.

5. Que se passe-t-il si ug <07
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Solution.
1. On peut écrire un programme en Python pour obtenir les premiéres valeurs de (u,,). La
fonction arctan se trouve dans le module math. Pour connaitre la syntaxe en Python, on
peut écrire dans la console

>>> import math
>>> dir (math)

ce qui permet d’afficher la liste de toutes les fonctions contenus dans le module math. En
I'occurence, en Python, la fonction arctan est notée atan.

On peut donc utiliser la fonction suivante :

def suite(x0,n):
u=x0
for k in range(n):
print (u)
u=atan (u)

En testant plusieurs valeur de zy et de m, on peut conjecturer que (u,) est décroissante
sur o < 0 et croissante sinon et que, dans tous les cas, (u,) semble converger vers 0.

2. a. La fonction g est dérivable sur R comme différence de fonctions dérivables et, pour

tout réel x,
1 11— (1+a%) x?

= — 1= = - <
14 22 1+ 22 14+ 22

g'(z)

De plus, ¢’ ne s’annule qu’en 0 donc ‘ g est strictement décroissante sur R ‘

b. On remarque que g(0) = arctan(0) — 0 = 0 donc, comme g est décroissante sur R,
‘g(az) >0six€]—o00;0]et g(z) <O0sixe [0;+oo[‘.

. ™ . .
c. Comme lim arctan(z) = ——, par somme, lim g(z) = 400 et, comme lim arctan(z) =
T——00 2 T——00 z—+00
™ .
—, par somme, lim g(x) = —o0.
2 T—+00

Ainsi, on aboutit au tableau de variation suivant :

T —00 0 +00

+00

Variations T~ 0
de g T~

—0o0

3. Siwu, — (alors, d’une part, u,,,; — ¢ et, d’autre part, comme arctan est continue
n—-+0o00 n——+00

sur R, arctan(u,) — arctan({) i.e. u,.; — arctan(¢). Ainsi, par unicité de la
n—+oo n—+oo

limite de (up41), arctan(f) = ¢ donc g(¢) = 0. Or, comme ¢ est strictement décroissante,
g est injective sur R donec, comme ¢(0) = 0, 0 est I'unique antécédent de 0 par g. On

conclut donc que .

%)



4. a. Considérons, pour tout n € N, la propriété P(n) : « u, = 0 ».
Initialisation. Par hypothese, uo > 0 donc P(0) est vraie.
Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, u, > 0 donc, comme
arctan est strictement croissante sur R, arctan(u,) > arctan(0) i.e. u,41 > 0. Ainsi,
P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que,

pour tout n € N, u,, > O‘.

b. Pour tout n € N, u,, > 0 donc, d’apres la question 2.b., g(u,) < 0 i.e. arctan(u,) —
Uy < 0 s0it Uy — uy, < 0.

Ainsi, |la suite (u,) est décroissante |

c. Comme (u,) est décroissante et minorée par 0, d’apres le théoreme de la limite

monotone, | (u,) converge |.

5. Si ug < 0, on montre comme précédemment par récurrence que, pour tout n € N, u,, <0
et on en déduit, en utilisant la question 2. que (u,,) est croissante. Ainsi, (u,,) est croissante

et majorée par 0 donc, par le théoréme de la limite monotone, | (u,) est convergente|.
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Sujet 13. Une équation différentielle & parameétre (0O2)

Soit n € N*. On considere ’équation différentielle linéaire du second ordre a coefficients
constants suivante :

(E,): VteR, ;y”(t) + y(t) = sin(t).

sin(t) — t cos(t)

5 est solution de (Ej) sur R.

1. a. Montrer que la fonction f; : t —
2

b. Montrer que, si n # 1, la fonction f,, : t — . sin(t) est solution de (E,,) sur R.

2
n JR—
2. Justifier que I'équation (E,) est équivalente a I’équation différentielle :

(F,): VteR, y"(t)+n’y(t) =n’sin(t).

3. a. Résoudre I'équation homogene associée a (F},).
b. Donner la forme générale des solutions de (F},) (et donc de (E,)).

4. Soit n € N*. Donner 'unique solution g,, de (E,) vérifiant g,(0) = 0 et ¢/,(0) = 0.

5. Déterminer, pour tout réel ¢, la limite de g,(t) lorsque n tend vers +oc.
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Solution.

1. a. La fonction f; est deux fois dérivable sur R comme produit et combinaison linéaire
de fonctions qui le sont. De plus, pour tout réel ¢,

~cos(t) — (cos(t) — tsin(t))  tsin(?)

. (1) + teost)
" sin(?) + ¢ cos(t
1 (1) = 9
donc ' .
1)+ () = sin(t) —|—2t cos(t) N sin(t) —2t cos(t) ~ sin()

donc | f; est solution de (Fy) |.

2
n
b. Supposonsn > 2 et f:t+— PO sin(t) définie sur R. La fonction f est deux fois
n J—

dérivable sur R car proportionnelle a la fonction sinus et, pour tout réel ¢,

2 2
(1) = ——sin(t) = ——— sin(#)
n? — n? —
donc, pour tout réel t,
1, 1 n? n* 1 n’ : :
ﬁf t)+f(t) = el sm(t)+n2 7 sin(t) = P + R sin(t) = sin(¢).

Ainsi, | f est bien solution de (F,) sur R|.

2. Pour toute fonction y deux fois dérivable sur R et pour tout réel t,

0" O+y(0) = sin(t) = 0 (S5 (0) +y(0) ) = nsin(e) <= 3 (+n%y(0) = *sin(t)

donc | (E,) est équivalente a (F},) |.

3. a. L’équation homogene associée a (Fy,) est (H,,) : y”+n*y = 0. L’équation caractéristique
associée & (H,) est (C,,) : 2 +n? = 0 qui est équivalente & (x — in)(z +in) = 0
donc, comme n # 0, (C,) posséde deux solutions complexes conjuguées : x; = in et
x9 = —in. Par théoreme, 'ensemble des solutions de (H,,) sur R est

{t — e"(Acos(nt) + Bsin(nt)) | (A, B) € R?*}

i.e.

{t — Acos(nt) + Bsin(nt) | (4, B) € R*}|.
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b. Par théoreme, on en déduit

que l’ensemble des solutions de (E,,) sur R est

sin(t) — t cos(t)
2

+ Acos(nt) + Bsin(nt) ’ (A,B) € RQ} sin=1|

et

{tr—>
2

n
i
n

N sin(t) + A cos(nt) + Bsin(nt) ’ (A,B) € ]RQ} sin>2 |

4. 1°* cas : n = 1. On peut remarquer que la fonction f; vérifie

_ sin(0) — 0 x cos(0)

f1(0) = 5 =0
et 0 (0
o) = 2O

donc .

2nd cas i n > 2. Soit A et B deux réels et

g:t—

n

Alors, pour tout réel t,

2

P sin(t) + A cos(nt) + Bsin(nt).

2

gt) = 2” . cos(t) — nAsin(nt) + nB cos(nt)
n J—
donc
0
{g’(())—o — n? B_ (:){B:— n
g(>— n2_1+n =0 n?—1

2 n

Ainsi, g, : t —> R sin(t) — FCR] sin(nt).

On conclut donc que, pour tout réel g, est la fonction définie sur R par

5. Soit t € R. Pour tout n > 2,

in(t) —1¢ t
sin(t) — t cos(t) dn—l
VieR g,(t) = n2 2
R sin(t) — T sin(nt) sin>2
n? :
gn(t) = RO sin(t) — SO sin(nt).




2 2 2
Or, lorsque n tend vers +o0, o amsiadie Ry 1 donc ngrfoo S sin(t) = sin(t). De plus,
pour tout n = 2,
n . . n
0< 1 sin(nt)| < =1 |sin(nt)| < SCRNEE
n n 1 . n 1
Or, quand n tend vers +o0, ~ — ~ — donc lim = lim — =0. Par
n>—1 n?> n n—toon? —1 notoonm
le théoreme d’encadrement, on en déduit que lim |———sin(nt)| = 0 et donc, par
n——+oo |2 — 1
propriété, nl_i)moo 1 sin(nt) = 0.

Par somme de limite, on en déduit que

lim g,(t) = sin(t) |

n—-+oo
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Sujet 14. FEtude d’une suite définie implicitement IT (02)

On considere 'application

f:r R — R
r — x+ev’

Définition de la suite (u,,)

1. Dresser le tableau de variations de ’application f.

2. Soit n € N. Montrer que 1’équation f(z) = n admet une unique solution.

Dans toute la suite, on notera, pour tout n € N, u, la solution de I’équation f(z) =mn. On
définit ainsi la suite (uy,)nen.

Conjecture sur le comportement de la suite (u,),en

3. Tracer I'allure de la courbe représentative de f et représenter sur le graphique les premiers
termes de la suite (u,). (On pourra s’aider pour le tracé d'un logiciel ou d'une calculatrice
graphique.)

4. Conjecturer la monotonie de la suite (u,) et son éventuelle limite.

ude mathématique de la suite (u,)

. Etudier les variations de la suite (u,).

. Montrer que, pour tout n € N*, w,, < In(n).

Et
5
6. En déduire que la suite (u,) a une limite que I'on déterminera.
7
8. Montrer que e ~ n.

9

. En déduire que u,, ~ In(n).
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Solution.

1. La fonction f est dérivable sur R comme somme de fonctions dérivables et, pour tout
réel x, f'(x) =1+ ¢e” > 0 donc f est strictement croissante sur R.

De plus, lim e =0et lim e* = +oo donc, par somme, lim f = —oo et lim f = +o00.
T——00 r——+00 —00 —+o00
On en déduit le tableau de variation suivant :
x —00 +00
+00
Variations
de f
—00

2. La fonction f est continue (car dérivable) et strictement croissante sur R donc, par le
théoreme de la bijection continue, f réalise une bijection de R sur f(R) = R. Ainsi,

pour tout n € N, 'équation f(z) = n admet une unique solution dans R |.

3. A laide de GeoGebra, on obtient I’allure suivante :

5] /

257

Yo v v v
/—0.5 w05 W]
2

4. On peut conjecturer que (u,) est croissante et tend vers +oo.

5. Soit n € N. Alors, f(u,) =n et f(up41) =n+ 1 donc f(u,) < f(ups1). Comme f est
croissante, on en déduit que que u, < u,,1. Ainsi, | (u,) est croissante |.

6. Comme (u,) est croissante, elle admet une limite (finie ou infinie) d’apres le théoreme
des suites monotones. Supposons que (u,) converge vers une limite finie £. Comme f est
continue sur R, f(u,) — f(0). En particulier, (f(u,)) converge. Or, par définition,

n—-—+0oo

pour tout n € N, f(u,) = n donc la suite (f(u,)) diverge vers +oo. C’est absurde donc

(uy) diverge vers +o00|.
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7. Soit n € N*. Par définition, f(u,) =n et f(In(n)) = In(n) + e = In(n) + n. Or, pour
tout n > 1, In(n) > 0 donc f(In(n)) > nie. f(In(n)) > f(u,). Comme f est croissante
sur R, on en déduit que In(n) > wu,.

Ainsi, | pour tout n € N*, u, < In(n)|.

8. Pour tout n € N, f(u,) = n ie. u, + e" = n donc e"» = n — w,. Ainsi, pour tout
Un U

n € N, — = 1— ", Or, par croissance de (u,) et d’aprés la question précédente,
n n
* .. Unp, 1H(7’L)
pour tout n € N*, 0 = u; < u, < In(n) done, en divisant par n > 0, 0 < — < )
n n

In(n
Or, par croissances comparées, lim (n) = 0 dongc, par le théoréeme d’encadrement,

n—-+oo
Un

Uy, e
lim — = 0. Par différence, on en déduit que lim — =1 donc |e%" ~ n |
Jim = : que lim —

Un

e
9. D’apres la question précédente, lirf — = 1. De plus, par continuité de In en 1,
n—+4+o0o n

lim In(z) = In(1) = 0 done, par composition, lim In (e) = 0. Or, pour tout n € N*,

z—1 n—4o00 n
In <e) = In(e") — In(n) = u,, — In(n). Ainsi, pour tout n € N,
n
Un | — U, — In(n) B ln(e%”)
In(n) ~ In(n)  In(n)
Par quotient de limites, on en déduit que Yn_ 4 > 0 donc —— let
ln(n) n——+00 ln(n) n——+00

ainsi |u, ~ In(n) |
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Sujet 15. Autour de la moyenne d’un nombre et de son
inverse (02)

Partie 1. Etude d’une fonction d’une variable
On considere la fonction f définie sur R* par :

1 1
r)=—-|x+—
/(@) 2 ( ZB)
On note % sa courbe représentative.
1. Démontrer que f est impaire.
Dresser le tableau de variation complet de f.
La fonction f admet-elle des extremums sur R*?

La courbe ¢ admet-elle des asymptotes horizontales ou verticales ?

ROl

On dit que la droite d’équation y = ax + b est asymptote oblique & € en +oo (resp. —oc0)
si:

Jim [f(z) —(ax+b)] =0 (resp. Aim [f(z) = (az +b)] = O) :

Démontrer que % possede en +0o et en —oo une asymptote oblique A dont on précisera
I’équation.

Partie 2. Etude d’une suite
On considere la suite (u,,) définie par :

UO:2

1 1
Vn € N un+1:(un+).
2 Up,

1. Calculer les premieres valeurs de la suite (u,), a la main ou avec un logiciel de votre
choix.
Conjecturer le sens de variation de la suite (u,), ainsi que sa limite éventuelle.

Démontrer que la suite (u,) est bien définie et que, pour tout n € N, u,, > 0.
En ayant recours a la fonction f, démontrer que, pour tout n € N, u,, > 1.

Démontrer que la suite (u,) est décroissante.

RO

En déduire que la suite (u,) converge et déterminer sa limite.

Partie 3. Etude d’une fonction de deux variables
On considere la fonction g définie sur R* x R* par :

o) = (1) v
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W N =

. Donner les deux dérivées partielles de g.
. En quels points la fonction g peut-elle admettre un extremum local ?

. a. Montrer que, pour tout (z,y) € R* x R*,

o(@,y) = 1+ f(0) + F(y) + f (y) |

b. En déduire que g présente un extremum local en (1,1).

. Démontrer que la fonction g ne présente pas d’extremum local en (—1,—1).
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Solution.

Partie 1

1. L’ensemble de définition de f est R* qui est centré en 0 et, pour tout réel x # 0,

f(—x):;(—:c—l—_lgC) :;<—x—i> :—; (x—l-i) = —f(x)

donc ’ f est impaire ‘

2. La fonction f est dérivable sur R* comme combinaison linéaire de fonctions dérivables et,
pour tout réel x # 0,

22 x? '

f’(x)—1(1_1>:x2—1 (x —1D)(z+1)

T2

Pour tout réel = # 0, le signe de f’(z) est le signe du trindéme z% — 1 = (x — 1)(z + 1)
donc f'(z) 2 0six € |—o0;—1]U[l;+o0] et f(z) <O0size[—1;0[U]0;+00].

.1 . . .

De plus, IEIPOO _= mll)rfoo i 0 donc, par somme, Igrpoo f(z) = —o0 et ml_l)gloo flz) =

+00.
1 1
Enfin, lim — = —oo et lim — = +oo donc, par somme, lim f(z) = —oo et
z—0— X z—0t T z—0~

lim f(x) = +o0.
z—0t+

On aboutit donc au tableau de variation suivant :

T —00 -1 0 1 +00

0 +00 +00
Variations /
—00 —00 1

3. D’apres le tableau, ‘l’axe des ordonnées est asymptote verticale a & ‘ En revanche, € ne
possede pas d’asymptote horizontale.

4. On en déduit que la fonction f ne possede pas d’extremums globaux sur R*. En revanche,
elle possede deux extremums locaux : ‘un maximum local égale a 0 atteint en —1| et

un maximum local égale a 1 atteint en 1 ‘

1 1 1 1 1 1
5. Pour tout réel z # 0, f(z) = 53:%—% donc f(:v)—§a7 =5z Or, Z1_i>r_noo 9 = $l_1>riloo 9 = 0

1
donc, par définition, |la droite A d’équation y = ix est asymptote a € en —oo et en +00|.

Partie 2.

1. On calcule les premieres valeurs de (u,,) a 'aide de la fonction Python suivante :

66



2. Considérons, pour tout n € N, la proposition P(n) :

def suite(n):

u = 2

for i in range(n):
1/2%(u + 1/u)
return u

u=

On peut conjecturer que (u,,) est décroissante et converge (tres vite!) vers 1.

« u, existe et u,, > 0 ».
Initialisation. Par définition, ug existe et ug = 2 > 0 donc P(0) est vraie.
Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, u,, existe et u,, > 0 donc

1
u, et — existent et ainsi u,; existe. De plus, comme u, > 0, — > 0 donc, par somme,
Unp,

n
Un+1 > 0. Dés lors, P(n + 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que, pour tout n € N, wu,

(uy,) est bien définie et strictement positive|.

. Soit n € N. Si n = 0 alors u, =2 > 1. Sinon, n > 0 donc u,, = f(u,_1). Or, d’apres la
question précédente, u,_1 > 0 et, d’apres la Partie 1., sur |0; 4+o00[, f est minorée par 1
donc f(u,—1) = 1. Ainsi, u, > 1.

Le résultat est montré dans tous les cas donc, ‘pour tout n € Ny u, > 1 ‘
. Soit n € N. Alors,

existe et u, > 0. Ainsi,

U, +1—2u, 1—u,
) “ 2, 2,

1 1
un+l_un:(un+
2 Up,

car u, > 1. Ainsi, | (u,) est décroissante |.

. Comme (u,,) est décroissante et minorée par 1, (u,) converge vers un réel £ > 1 d’apres le
)

théoreme de la limite monotone. Alors, ¢ # 0 donc — ——— — et ainsi, par somme de
Unp, n—-+00 €

: 1 1 .
nl_lgloo Untl = 5 <€ + g)' Or, comme nl_lgloo Uy =L,

1 1\ . 1
= 5 (f—i— g) i.e. 26—6—#2 donc

1 1
limites, u, + — —— ¢+ —. Ainsi,
Unp, n—-+o0o f

lim w,.; = ¢ donc, par unicité de la limite de (u,41), £

n—+00
1
€:Eet finalement ¢? = 1. Comme ¢ > 0, on conclut que ¢ = 1. Ainsi, Erf U, = 11|
Partie 3.
1. Pour tout (z,y) € R* x R*,
dg 1 1 1 1 1 1 1 1 1
s = (1 ——(1 S+ o) x| =20 S 4=
o) =500 |-+ (f+ o) x| =gaen (- i )
donc




Les variables x et y ayant un role symétrique, on a de méme, pour tout (z,y) € R* xR,

g 1 11
Fy(x’y) =5(1+2) <$ - y2> -

2. Si f admet un extremum local en (z,y) € R* x R* alors (x,y) est un point critique de f.

Or,
1 1 1 1 1
@(w7y):0 7<1+y> T 9 =0 1—|—y:00u7_720
— 2 y 72
gg -0 1 1 1 1 B % I
@(x’y>_ ~(1+2x) ;—? =0 —l—x—Oou;—EfO

Or, comme z # 0,

_ 2 _ 2 _ .2 _
y=z y==zx y=x Y
x =2 r =zt 1 =23 r=1

Ainsi, les points critiques de g sont (1,1), (1,—1), (—=1,1) et (1,1).

Des lors, | g ne peut présenter un extremum local qu’en (—1,—1), (1,—1), (=1,1) et (1,1)|.

3. a. Pour tout (z,y) € R* x R*,

1/1 1 1/1 1
gz y)=z|-+-|Q+y+a+tay = —+g+1+y+f+1+f+x
1 1\ 1 1\ 1(z vy
:1+<$+>+ y+-|+=[=+Z

donc | g(z,y) = 1+f(37)+f(y)+f(§>-

b. On a vu dans la Partie 1. que, pour tout réel z > 0, f(x) > 1 donc, pour tout
(v,y) € RE xR, f(z) > 1, f(y) = Let f(£) > 1 de sorte que g(z,y) > 4. Or,

1
g(1,1) = 5(1+1)(1+1)(1+1) = 4 donc, pour tout (z,y) € R xR%, g(x,y) > ¢(1,1).

Ainsi, | g présente un minimum local en (1,1) |.

4. L’image de (—1,—1) par g est g(—1,—1) = 0. Soit h un réel appartenant a |—1;1[ de
sorte que —1 +h <0 et —1 —h < 0. Alors,

2

—1+h

g(—1+h,—1+h):1< ! + ! )(1—1+h)(1—1+h):

o\ Tivn T Tixn <0
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car h2>0et —14+h <0 et

1

g(—1+h,—1—h):2(_11+h+_11_h>(1—1+h)(1—1—h)

(-1 =h) + (=14+h), o R
"2 (=1+h)(=1—h) (=17 =13

>0

car |h| <1 donc 1 —h? > 0.

Ainsi, dans tout voisinage de (—1,—1), il existe des points (a, b) tels que g(a,b) <
g(—=1,—1) et des points (a,b) tels que g(a,b) > g(—1,—1) donc g ne présente pas
d’extremum local en (=1, —1).

Remarque On a g(1,—1) = g(—1,1) = 0. De plus, si h € |—1;1[ de sorte que —1 +h < 0
alors
“l4htl . h
—1+h  —1+h

1
9(1,—1+h):2(1+

—1—|—h> X2x(1—=14+h)=
qui est du signe opposé de h car —1 + h < 0 donc dans tout voisinage de (1, —1), il existe des
points dont les images sont supérieures a g(1, —1) et des points dont les images sont inférieures
a g(1,—1). Ainsi, g ne présente pas d’extremum en (—1,1). En échangeant le role de z et y, on
conclut de méme que g ne présente pas d’extremum en (1, —1). Ainsi, le seul extremum de g sur
R* x R* est 4 atteint en (1,1).
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Sujet 16. Etude d’une suite définie par une intégrale (02)

1
1. Calculer, pour tout £ € N, /3 t2F dt.
0

2. Pour tout n € N, on pose :
1 1 2n n
“ 2n+1 (3) ¢ ,g)uk

Exprimer, pour tout n € N, 5, sous la forme d’une intégrale.
1 g2n2

m dt.

3. Pour tout n € N, on pose [,, =
0

1 1
a. Encadrer la fonction ¢t — {—p 5@ {O; ]

3
b. En déduire lim I,.

n—-+oo

4. a. Déterminer deux réels a et b tels que, pour tout ¢t € [0 ; 3},

1 a b

1—t2_1—t+1+t'

5 1
b. En déduire la valeur de / ’ dt.

o 1—1¢2
5. A Taide des questions précédentes, montrer que la série Z u, converge et que sa somme

3
est égale a 5 In(2).

6. a. Ecrire en Python une fonction d’argument n € N qui renvoie la valeur de S,,.
b. Déterminer le plus petit entier n tel que S, > 1,0397.
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Solution.

1. Soit k£ € N. Alors,
(L)2k+1 g2k

% t2k+1 3
/ 2k g — _\3 _
0 2k +1 0 2k+1 2k+1

. ok 1 1 2k+1
He /0 i = 2k;+1(3) '

2. Soit n € N. Alors,

zn: 1 1 2k zn: 1 1 2k zn: 1 2k+1
vt () S () - )
=2k +11\3 i 2k +1\3 3 2

donc, d’apres la question précédente,

SnZSZ/gtzkdt.
k=0"0

Par linéarité de l'intégrale, on en déduit que
% n
Sh :3/ SR dt.
0 k=0

1
Or, pour tout t € [0 ; 3}, en reconnaissant la somme des termes d’une suite géométrique,

1 o (t2)n+1 1 - t2n+2

2k 2 —
Zt ,;)t 1—¢ 1-#

On conclut donc que

11 _ 2042

N S, = /37dt.
Vn € S, 30 T

1 1
3. a. Soit t € {O; ] Alors, 0 < t < = donc, par croissance de la fonction carré sur R, ,

1
0 <t? <~ Ainsi, — < —t2 < 0donc - < 1—1t? <1 et, par décroissance de la
. } 1 9
fonction inverse sur R T, 1< 1Tz < 3
1 1 9
Ainsi, | pour tout t € [O;], 1<——< =
P 3 -2 38
1
b. Soit n € N. Pour tout ¢t € {O, 3] en multipliant I'inégalité précédente par t2"2 > 0,
il vient
t2n+2 9
1—¢2 ~ 8



Par croissance de l'intégrale, on en déduit que

1 1 2n42 1
/ Tt qp / T < [° 92 gy
0 o 1—1¢2 0o 8

et donc, par linéarité de l'intégrale,

1 1
/3t2"+2dt<1n§9/3t2”+2dt
0 8 Jo

D’apres le résultat de la question 1,

% % 1 1 2n+3
/ 242 4t = / 2D qt = () ——0
0 0 2n + 3 \3 n—+oo

P
ot

car

Par le théoreme d’encadrement, on conclut donc que ligl I, =0]|
n—-+0o0

1
. a. Soit a et b deux réels. Alors, pour tout t € {O; 3],

a_ b a(l+t)+b(1—t) (a—bt+a+bd
1—t 1+t (1=t +t) 1—¢2

donc, pour que 1’égalité voulue soit réalisée, il suffit quea —b=0et a+b=11i.e.

a:betQazlsoit&:b:a

1 1 1 1
Ainsi, |pour tout t € [0;3], i 12_254_1_2‘_2%‘

b. Par linéarité de I'intégrale, on déduit de la question précédente que

! i3 3
dt:/ 2 2_dt
/01—t2 0 1—t+1+t
1 /s 1
=— [ ——dt+

soit, finalement,




5. Par linéarité de l'intégrale, pour tout n € N,

1 1 t2n+2 1 1
Sn:3/3 - (h:3/3
o 1—¢t2 1-—1¢2 o 1—1¢2

lim I, = 0 donc, par somme,
n—+00

Or, on a vu que

1
&—3/3
0

t2n+2

1—1t2

1
dt =3 x ; In(2) - 31,.

_ 3
nl_lg{loo Sy, = 51n(2). Comme (S,)

est la suite des sommes partielles associée a la série Zun, on en déduit que la série

+oo 3
> " u, est convergente et Y u, = 3 In(2) |
n=0

6. a. La fonction suivante convient.

def somme (n):
S =0
for k in range(n+1):
S += 1/(2xk+1) *(1/3) **x(2%k)
return S

7. On peut adapter la fonction précédente de la maniere suivante.

def seuil():

S =1
n =20
while S <= 1.0397:
n += 1
S += 1/(2*n+1) *(1/3) **(2%n)

return n

On obtient (ce qui illustre une convergence tres rapide de la série).
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Sujet 17. Modélisation d’une population de cerfs (02)

Soit u et K deux réels strictement positifs. On considere la fonction f : [0;+o00] — R
définie, pour tout x € [0; +oo], par

f(x) = zel &7

On considére également la suite (x,,),en définie par la donnée de son premier terme xo > 0 et la
relation de récurrence :

VneN, z,4 = f(z,).
1. Etude de la fonction f
a. Résoudre sur [0; 400 I"équation f(x) = x.
b. Justifier que f est dérivable sur [0; 400 et déterminer f’.
c. Dresser le tableau de variations de f sur [0;+oo[. On y fera apparaitre la limite de f
en —+oo.
d. Tracer l'allure de la courbe représentative de f dans un repere orthonormé.

2. Etude de la suite (Zn)nen
a. Quelle information nous apporte le résultat de la question 1.a. concernant la suite
(xn)neN 7
b. On suppose dans cette question que zy < %
i. Montrer que, pour tout n € N, 0 < z,, < %
ii. Etudier la monotonie de (Zn ) nen-
iii. Etudier la convergence de (Tp ) nen-
c. Que se passe-t-il si xg > % ?
3. Application
On étudie I’évolution de la population de cerfs dans une forét. On suppose qu’au
début de chaque année d’observation n € N, le nombre de cerfs vivant dans cette forét
est donné par z,,.
a. On suppose ici que o = 20, K =100 et p = 2.
Que peut-on dire de I'évolution de la population de cerfs de cette forét au fil des ans?
b. Méme question lorsque xy = 20, K = 100 et p = 20.
c. Méme question lorsque xy = 20, K = 100 et p = 200.
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Solution.

1. Etude de la fonction f

a.

d.

Pour tout z € [0; 00|,

f(x):x<:>xe1’%w:x<:>xel’%‘”—x:0<:>x(elf%r—1):0
<:>x:Oouel_%x:1<:>x:00u1—%95:0

K
< rx=0o0uzx=—
L

Ainsi, |'ensemble des solutions de f(z) = x est {0; %} :

La fonction f est dérivable sur [0;+oo[ comme produit et composée de fonctions
dérivables et, pour tout réel x > 0,

flx) =1xe k" 41 x (—['u(el_;;“>

donc | f'(x) = (1 — %az) el = %7 |
Comme la fonction exponentielle est a valeurs strictement positive, pour tout réel x,
le signe de f'(x) est le signe de 1 — £z Ainsi, f'(z) > 0six € [O ; Iﬁ et f'(z) <0si

T € {% ; +oo[. On en déduit donc que f est croissante sur [0 ; %} et décroissante sur

5]

x .
—. Or, comme 4 > 0, par crois-
eK

De plus, pour tout réel z > 0, f(x) = e X

B
KX

sances comparées, lim = 400 donc, par inverse et produit par une constante,

) r—+o00
Jm f(z)=0.

On aboutit donc au tableau de variation suivant.

T 0

Variations
de f / \

0 0

“+00

=X | ==

On obtient une courbe dont 'allure est la suivante.
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2. Etude de la suite (Tn)nen

a. Si (z,) converge vers un réel £ € R, alors (z,,41) converge aussi vers £. Or, comme f est
continue sur R, 1ir+n f(z,) = f(£) donc, par unicité de la limite de (z,1), f(£) = ¢.
T—>+00

b.

Ainsi, d’aprés la question 1.a., |si (z,) converge vers £ € R, alors { =0 ou { = &£ |

1.

ii.

1ii.

m

Considérons, pour tout n € N, la proposition P(n) : « 0 < z,, < % ».

Initialisation. Par hypothese, 2o > 0 et 2y < % donc P(0) est vraie.

Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, 0 < z,, < % et,
comme f est croissante sur [O; %}, f(0) < f(z,) < f(%) ie. 0 < zppr < % donc
P(n + 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que

K
VneN 0<z,< —|
1
Soit n € N. Alors, z, < % donc, comme % > 0, %:cn < 1etainsi 1 — %xn > 0.
Par croissance de la fonction exponentielle sur R, on en déduit que e!~ &% > 1

R _ & .
donc, en multipliant par z,, > 0, z,e! "% >z, i.e. 1,0 = T,

Ainsi, on conclut que | (z,,) est croissante |

La suite (z,)nen est croissante et majorée par % donc elle converge vers un réel
¢ d’apres le théoreme de la limite monotone. De plus, comme (z,,) est & valeurs
positives, £ € R,. Ainsi, d’apres la question 2.a., ¢ vaut 0 ou % Or, comme (z,,)

est croissante, elle est minorée par x¢o > 0 donc ¢ > xg > 0. Ainsi, ¢ # 0 donc
(=K,
o

On conclut donc que | (z,,) converge et que lim x, = &
n—-+oo K

c. Sixg > % alors, d’apres 'étude de f, x1 = f(xo) < % donc, d’apres ce qui précede, la
suite (x,41) (dont le premier terme est x; et qui vérifie la méme relation de récurrence

que (x,)) et croissante et converge vers %
Des lors, | (x,) est croissante a partir du rang 1 et converge vers % .

3. Application

a.
b.

Ici,

K

i 50 > zy donc la population de cerfs va croire et tendre vers 50.

Ici, % = 5 < x( donc la population de cerfs va décroitre la premiére année puis
croitre et tendre vers 5. (Remarque. Dans ce cas, f(zg) ~ 1 donc on imagine que des
individus extérieurs a la forét vont y venir durant 'année 1...)

Dans ce cas, % = 0,5 < 1 donc la population de cerfs s’éteint des la premiere année.
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Sujet 18. Modéeles de Maltus et de Verhulst (O2)

Nous allons étudier deux modeles utilisés pour décrire 1’évolution d’une population.

Partie I. Modeéle de Maltus
Soit @ > 0. On considére I’équation différentielle d’inconnue y € € ([0; +00]) :

(Ey) Vte[0;+ool, y'(t)=ay(t).

1. Déterminer I’ensemble des solutions de (F).
2. Soit yp > 0. Déterminer la solution de (£;) vérifiant la condition initiale y(0) = yo.
3. Soit y la solution de (E}) déterminée dans la question 2..

a. Déterminer, si elle existe, la limite de y en +o00.

b. Déterminer une fonction g telle que t — ¢(y(t¢)) soit une fonction affine dont on
exprimera les coefficients en fonction de a et de .

Partie I1I. Modele de Verhulst
Soit r > 0 et K > 0. On considére I'équation différentielle d’inconnue y € € ([0; +o0]) :

(Ey) Vte[0;4o00], ¢(t)=ry(t) (1 - y;?) :

On cherchera uniquement les solutions de (Es) a valeurs dans |0 ; K| c’est-a-dire les solutions y
telles que, pour tout ¢t € [0;+o0[, 0 < y(t) < K.

1. Soit y € € ([0;+00]) une fonction a valeurs dans ]0; K[. Pour tout ¢ € [0;+o00[, on
pose z(t) = ot Montrer que y est solution de (Es) si et seulement si z est solution de
I’équation différentielle linéaire :

,
(E3) Vte|0;400[, 2'(t)=—rz(t)+ d

2. Déterminer 'ensemble des solutions de I’équation (Ej).

3. Soit yy € |0; K[. Déterminer la solution de (E,) vérifiant la condition initiale y(0) = yo.

4. Soit y la solution de (E3) déterminée dans la question 3..

a. Déterminer, si elle existe, la limite de y en 4o00.

b. Montrer que la fonction h : ¢t —— In ( Ky_(;)(t)) définie sur [0;+o0| est une fonction

affine sur [0; +oo[ dont on exprimera les coefficients en fonction de r, K et yj.

Partie III. Application et identification de modeles
On observe empiriquement I’évolution de la croissance de bactéries Lactobacillus.
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temps (heures) 0 2 4 6 8 10 12

quantité (UFC.mL~1) | 0,52 | 0,83 | 1,37 | 2,29 | 3,71 | 6,11 | 10,06

On observe empiriquement 1’évolution de la croissance du nombre de plants d’algues Fucus
serratus.

temps (jours) 0 2 4 6 8 10 12

quantité (en milliers) | 0,12 | 0,73 | 3,54 | 8,03 | 9,68 | 9,97 | 10,04

Les modeles étudiés ci-dessus pourraient-ils décrire 1’évolution de la croissance des bactéries
Lactobacillus ou des algues Fucus serratus?
Dans chaque cas, quel modele correspondrait alors le mieux ?
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Solution.

Partie I. Modéle de Malthus

1. L’équation (FE;) est équivalente a

Vi e [0;+00] ¢'(t) —ay(t) =0

donc, par théoréme, |I'ensemble des solutions de (E;) est {t — Ce® | C' € R}|.
2. Soit C €Ret f:t+— Ce . Alors,

f(O):yO@CeO:y()(:)C:yO.

Ainsi, |Punique solution de (Fy) telle que y(0) = yo est t — ype®|.

m e = 400 donc, par composition, lim e =

3. a. Comme a >0, lim at = 4o00. Or, li li
t——+o0 T—+400 t—+00

+00. Comme 75 > 0, on en déduit, par produit, que tngrn y(t) = 4o00|.

b. Pour tout réel t > 0, y(t) > 0 car yo > 0 et In(y(t)) = In(yoe™) = In(yo) + In(e™) =
In(yo) + at donc |t — In(y(t)) est une fonction affine| dont le coefficient directeur

est a et 'ordonnée a l'origine est In(yp).

Partie II. Modeéle de Verhulst

1. Comme y ne s’annule pas sur [0;+oc[, z est bien définie sur [0; 00| et, comme y est

/
t
dérivable sur [0; 400, z l'est aussi et, pour tout réel t > 0, 2/(t) = — y(i)l Ainsi, z est
Yy
solution de (Fj3) si et seulement si, pour tout réel ¢ > 0,
"(t 1
y(t) y@t) K

ce qui équivaut, en multipliant par —y(t)? # 0, &

i.e.

Ainsi, on a montré que |z est solution de (Fj3) si et seulement si y est solution de (Ejy) |.

2. L’équation (Ej3) est équivalente & : pour tout t € [0;+oo[, 2/(t) + rz(t) = % L’équation

homogene associée est (H) : pour tout ¢ € [0;+oo[, 2/(t) + rz(t) = 0. L’ensemble des
solutions de (H) est {t — Ce™" | C' € R}

On cherche une solution particuliere de (Ej3) soit la forme d’une fonction constante
h:t+——aoua € R. Pour tout réel t > 0, h'(t) + rh(t) = 0+ ra = ra donc, pour que h
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1 1
soit solution de (Fj3), il suffit que ra = % i.e. que a = T Ainsi, h : t — 1% est une

solution particuliere de (Fj3).

1
On conclut que |I’ensemble des solutions de (Ej3) est {t — Ce " + Ve ’ Ce ]R} .

1
3. Une fonction y est solution de (E») si et seulement si — est solution de (E3) ce qui
)
1
équivaut a dire qu’il existe une réel C' tel que, pour tout ¢ € [0; +ool, o) =Ce "+ =
)
CKe™™+1
K

K
pour tout réel ¢ > 0, y(t) = CRoriil De plus, on a alors y(0)
e*'f‘

. Ainsi, y est solution de (F,) si et seulement s’il existe un réel C' tel que,

S OK 1 onc
1 1

K K K
—— =yYp&= —=CK+1<=CK=—-1=(C=— - —.
CK+1 % Yo Yo Yo K

— Yo
Yo

y(0) = yo <=

Ainsi, y(0) = yo si et seulement si C' = donc la solution de (E>) telle que y(0) = yq

est y : { —> —————— soit encore
yoefrt + 1

Yo

Kyo
(K —yo)e " + 4o

y:it—

Remarque : en toute rigueur, il faudrait vérifier que la fonction obtenue est bien a valeur
dans ]0; K[. C’est relativement clair car K > y, donc, d’une part, pour tout réel ¢t > 0,
y(t) = 0 et, d’autre part, pour tout réel t > 0, (K —yo)e ™ > 0 donc (K —yo)e " +yo > 4o
donc y(t) < K.

4. a. Comme r > 0, par le méme raisonnement que dans la question 3.a., tli+m e =0
—+00

donc, par produit, somme et quotient de limites, tligrn ft)=K|
—400

b. Remarquons que, pour tout ¢ € [0;+o0o[, 0 < y(t) < K donc Ky_(;)(t) > 0. Ainsi, h est

bien définie sur [0; +oo[ et, pour tout réel t > 0,

y() Kyo y 1
K—yt) (K —ypet+ K — —Bw
y yO yO (K—yo)e” +y0
_ Ky
K(K —yp)e " + Kyo — Ky
Yo Yo rt

= = e
(K —yoe ™ K —yo

/ Yo Yo .
donc, pour tout réel t > 0, h(t) = In e”) =In ( ) + In(e"™) soit
0= (" ) i)

Yo
teR h(t) =rt+1 .
Vie Ry h(t) T+H<K_yo>
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Partie III. Application et identification de modeles

temps (heures) 0 2 4 6 8 10 12

quantité (UFC.mL™1) | 0,52 0,83 | 1,37 | 2,29 | 3,71 | 6,11 | 10,06

In(quantité) -0,65 | —0,19 | 0,31 | 0,83 | 1,31 | 1,81 | 2,31

On constate que le logarithme népérien de la quantité de bactéries a une croissance linéaire avec
un taux d’accroissement d’environ 0,25 donc on peut modéliser I’évolution par le modele de
Malthus avec a = 0,25. Ainsi, on obtient que la population a I'instant ¢ est modélisée par le
fonction y : t — 0,52e%25¢,

temps (jours) 0 2 4 6 8 10

quantité (en milliers) 0,12 0,73 | 3,54 | 8,03 | 9,68 | 9,97

In(quantité/(1 — quantité)) | —4,41 | —2,54 | —0,6 | 1.41 | 3,41 | 5,8

La population semble se stabiliser autour de K = 10. On constate que le logarithme népérien
de la quantité divisée par 10 moins la quantité a un croissance relativement linéaire avec un
taux d’accroissement d’environ 1 donc on peut modéliser ’évolution par le modele de Verhulst
avec r = 1. Ailngi, on obtient que la population a l'instant ¢ est modélisée par la fonction

Y 9.88¢—" + 0,12
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Sujet 19. Racine carrée itérée (02)

Soit ¢ un réel strictement positif. On considere la suite (z,,) définie par :

ZTo =t
VneN, x,11 = /T,.

1. a. Déterminer le signe de la fonction g définie sur [0;4oo[ par g(z) = /& — x.

b. On suppose que t = 2.
A T'aide d’un logiciel ou d’une calculatrice, déterminer des valeurs approchées des
premiers termes de la suite (x,).

c. On suppose que t > 1.

i. Démontrer que, pour tout n € N, 1 < z,11 < z,,.

ii. En déduire que la suite (x,,) converge et donner sa limite.
d. Que se passe-t-il si 0 <t < 17

2. On considere les suites (uy,,) et (v,) définies par :

n 1
pour tout n € N, w, =2"(x, —1) et wv,= Un _ gn (1 — )
Ty,

a. Démontrer que, pour tout n € N, w11 — u,, = —2" <\/9:_n — 1)2.
En déduire le sens de variation de la suite (u,).
b. Déterminer, de méme, le sens de variation de la suite (v,,).
c. On suppose que t > 1.
i. Démontrer que la suite (u,) converge. On note L sa limite.
ii. En déduire que la suite (v,,) converge également vers L.
d. Que se passe-t-ilsi 0 <t <1 7
3. Question complémentaire, non posée a l’oral
On suppose t # 1.
a. Démontrer que : )
VneN, x, =t2".

, In(t
b. Démontrer que x, — 1 ~ %
n—-+00

c. En déduire la valeur de L.
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Solution.

1. a. Pour tout réel x > 0, g(z) = /(1 — /x) et \/r > 0 donc le signe de g(x) est le signe
de 1 — y/z. Or, par croissance de la fonction racine carrée sur [0;+oo[, si 0 <z < 1
alors /z < v/1ie z < 1et,siaz>1alors /x> +1ie /x> 1. Ainsi, pour
tout = € [0;1], 1 — /2 < 0 et, pour tout z € [1;+00[, 1 —/x < 1. On conclut que

g(x) = 0 pour tout x € [0;1] et g(z) < 0 pour tout x € [1;+ool|.

b. A l'aide du code Python suivant :

C.

from math import sqrt

def suite(n):
x=2
for k in range(n):
print (x)
u=sqrt (x)

on obtient I'affichage des n premieres valeurs de (x,,).
Par exemple, 'appel suite(5) donne

1.

ii.

2

.4142135623730951
.189207115002721
.0905077326652577

1
1
1
1.0442737824274138

Considérons, pour tout n € N, la proposition P(n) : « 1 < z,41 < o, ».
Initialisation. Comme ¢ > 1, d’apres la question a., g(t) < 0 donc v/t < t i.e.
x1 < zg. De plus, par croissance de la fonction racine carrée sur [0; +o00[, comme
t>1,v/t>+1ie x; > 1. Ainsi, 1 < z; < 29 donc P(0) est vraie.

Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, 1 < x,,1 < x,, donc,
par croissance de la fonction racine carrée sur [0;+oo], V1< Vo1 S /Ty 1€
1 < xpio < 2pyq done P(n 4+ 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que

‘VnEN, 1< 2 <xn‘.

La question précédente montre que (x,) est décroissante et minorée par 1 donc,
par le théoréme de la limite monotone, (z,) converge vers un réel ¢ > 1. Ainsi,

lim x, = ¢ donc, d'une part, lim =z,,; = ¢ et, d’autre part, comme la fonction
n—-+o0o n——+o0o

racine carrée est continue sur [0; +oof, lim /z, = v/ie. lim z,,; =+/{. Par
n—-+oo n—-+oo

unicité de la limite de (2,41), on en déduit que ¢ = v/¢. En élevant au carré, il
s’ensuit que ¢* = ¢ puis, en divisant par ¢ # 0 (puisque £ > 1), on conclut que

¢=1. Ainsi, | lim =z, =1|
n—4o0o
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.Si0<t<lalors1l >+t >tdonc xy < x; <. Par le méme raisonnement par
récurrence, on en déduit que, pour tout n € N, x,, < 2,41 < 1 donc (x,,) est croissante
et majorée par 1. Ainsi, par le théoréeme de la limite monotone, (z,) converge vers
un réel £ et le méme raisonnement que précédemment montre que ¢ = 1. Ainsi, si
O0<t<l1,| lim z,=1|

n—-+o00

. Soit n € N. Alors,

U1 — Up = 2" N (2 — 1) = 2%, — 1) = 2" (2 (VT — 1) — (2, — 1))
= 2" (=@ + 2T — 1) = —2"(a" = 2y/F, + 1) = =2" (V& — 2T + 1)

2
soit finalement |u, 1 — u, = —2" (, [Ty — 1)

Ainsi, pour tout n € N, w1 — u,, <0 donc ‘ (uy,) est décroissante ‘
. Soit n € N. Alors,

e ) e )2 o ) (- )
o) () )
_2"<\/1x_n—1>2>0

donc | (v,) est croissante |.

i. On a montré, dans la question 1.c.i. que, lorsque ¢ > 1, (x,) est minorée par 1
donc, pour tout n € N, z,, —1 > 0 et donc (u,) est minorée par 0. Ainsi, (u,) est

décroissant et minorée par 0 donc | (u,,) converge vers un réel L > 0|.

ii. On a vu que (z,) converge vers 1 donc, par quotient de limites, lirjrn vy = % =L]|
n—-—+0oo

. Si0 <t <1, les calcules précédents s’appliquent de la méme fagon pour montrer
que (uy,) est décroissante et que (v,) est croissante. De plus, dans ce cas, pour tout
neN, 0<x, <1donc x, —1<0 et ainsi, comme 2" > 0, u,, < 0. Des lors, pour
tout n € N, v, = 2* < 0 (puisque u, < 0 et x,, > 0). Ainsi, (v,) est croissante et
majorée par 0 donc, par le théoreme de la limite monotone, (v,,) converge vers un réel
L. Or, pour tout n € N, u,, = x,,v,, donc, comme x,, i 1, par produit de limites,

lim v, = lim u, =1L\
n—-+0o n—-+0o00

. Considérons, pour tout n € N, la proposition Q(n) : « z,, = oy,
1
Initialisation. Comme ¢20 = t! =t = x5, Q(0) est vraie.

1
o

Hérédité. Soit n € N. Supposons que Q(n) est vraie. Alors, z,, =tz donc

1 1N 1
1 \3 1
Tptl = /Ty = Tip = (th) =127 %2 = tontl
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donc Q(n + 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

b. Pour tout n e N, z, — 1 = tor 1 =em — 1 et, comme 2 > 1, ) 0 donc

2n n—-4o0o

comme In(t) # 0 (car t # 1), par les équivalents usuels, |z, — 1 ~ lg@ :

In(t)
277.
lim wu, = In(¢). On conclut donc que | L = In(?) |.

n—-+o0o

c. Ainsi, u, = 2"(x,, — 1) ~ 2" X

~ In(t) donc w, ~ In(t) et ainsi, par propriété,
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Sujets de probabilités : variables
aléatoires discretes a support fini
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Sujet 20. Remplacement d’une boule noire par une boule

blanche (C2)

Soit a un nombre entier naturel non nul. Une urne contient a boules blanches et a boules

noires.

On pioche une boule de 'urne.

e Si elle est blanche, on la replace dans I'urne.

e Si elle est noire, on la remplace par une blanche.

On répete cette expérience.

Pour tout ¢ € N*, on note B; ’évenement « on obtient une boule blanche au i-eme tirage ».

Pour tout n € N*, on appelle X, la variable aléatoire égale au nombre de boules noires tirées
au bout de n tirages.

1.

Déterminer X;(€2).

2. Déterminer, pour tout n € N, X, ().
3.
4. Montrer que, pour tout n € N* et pour tout k£ € [1,a],

Calculer, pour tout n € N, P(X,, = 0).

a+k a—k+1
P(X,.1=k _—
2a ( ! )+ 2a

P(X, 1 =Fk—1).

. Montrer que la suite (P(X,, = a)),en est croissante puis convergente.

6. Montrer que, pour tout n € N*, 2aE(X,,) = (2¢ — 1)E(X,—_1) + a.

On pose, pour tout n € N, e, = E(X,,).
a. Montrer que la suite (e, — a),en est géométrique.

b. En déduire, pour tout n € N, une expression de E(X,,) en fonction de n.
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Solution.

1. Si on tire une boule blanche au premier tirage alors X; = 0 et, sinon, X; = 1. Ainsi,
Xp(Q) ={0;1})
2. Soit n € N. Au bout de n tirages, on a tiré entre 0 et min(n,a) boules noires donc
X,,(£2) = [0, min(n, a)] |.
3. Soit n € N. Alors, (X,, =0) = By N ByN---N B, donc, par la formule des probabilités

composées
P(X,=0)=P(B)P(By | By)---P(B, | BiN---NB,_1)
1 1 1
= — X — X +++ X —
2 2 2
: I\
ie. |P(X,=0)= (2> .

4. Soit n € N* et k € [1,a]. L’évenement (X,, = k) est réalisé si et seulement si on a tiré k
boules noires lors des n — 1 premiers tirages et on tire une boule blanche au n-éme tirage
ou si on a tiré k — 1 boules noires au cours des n — 1 premiers tirages et on tire une boule
noire au n-ieme tirage. Autrement dit,

(Xn=k) = [(Xos = k) N BJU (X1 =k — 1) N B, |

donc, comme cette union est disjointe (puisque les deux événements (X, ;1 = k) et
(X,—1 = k — 1) sont incompatibles),

P(X, = k) =P(X,_1 = k)P(B, | Xp1 = k) + P(Xp_y =k — 1)P(B, | Xpo1 = k — 1).

Or, si (X,—1 = k) est réalisé alors on a tiré k boules noires au cours des n — 1 premier
tirage donc, au moment du n-eme tirage, I'urne contient a + k£ boules blanches et, ainsi,
par équiprobabilité des tirages, P(B, | X,—1 = k) = %%, De méme, si (X, =k — 1)
est réalisé alors on a tiré £ — 1 boules noires au cours des n — 1 premier tirage donc,
au moment du n-éme tirage, I'urne contient a — (k — 1) boules blanches et, ainsi, par
équiprobabilité des tirages, P(B, | X,_.1 =k —1) = “‘T’fjl

On conclut donc que

1
P(X,=a)=P(X,.1=a)+ ?P(Xn—l =a—1).
a

Or, %P(anl =a—1) > 0donc P(X,, =a) > P(X,_; = a). On conclut donc que la

suite | (P(X,, = a))nen est croissante|.

De plus, par définition d’une probabilité, (P(X,, = a)),en est majorée par 1 donc, on

déduit du théoreme de la limite monotone que | (P(X,, = a)),en est convergente |.
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6. Soit n € N*. D’apres le résultat de la question 4., pour tout k € [1,a],
20kP(X,, = k) =k(a+k)P(X,1=k) +k(a —k+1)P(X,,-1 =k — 1)

donc

S 2akP (X, = k) = 3 [k(a + F)P(Xot = k) + k(a — k+ P(Xys = k — 1)].

k=1

Par linéarité de la somme puis grace au changement d’indice 7 = k — 1, on en déduit que

k=1 k=1 k=1
a—1

=Y h(a+ BP(X = k) + Y + 1)@ — j)P(Xy s = )

J=0

En remarquant que, dans les deux premieres somme, le terme en £ = 0 est nul et que,
dans le troisiéme, le terme en j = a est nul, on obtient

2a Z KP(X, = k) = Z k(a+ k)P(Xp 1 = k) + Ea:(j +1)(a— j)P(Xps = 5)
k=0 k=0

J=0

= 3" [k(a+ ) + (k + D)(a— W] (X, = F)

= Za: [(2a — 1)k +a] P(X,-1 = k)

k=0

= (2a — 1) Ea: kP(X,—1=k)+a i: P(X,_1=k)
k=0 k=0

Or, X,,(€2) et X,,_1(£2) sont tous les deux inclus dans [0, a] donc > kP(X, = k) = E(X,,),
k=0

> kP(X,-1 =k) =E(X,_1) et Y P(X, =k) =1 donc on conclut que
k=0 k=0

20E(X,,) = (2a — HVE(X, 1) + a.

7. a. Soit n € N. Alors, d’aprées la question précédente,

2a — 1 +1 2a — 1 +a 2a2_2a—1
2a 2 2a 2¢ 2a  2a

eni1—a=E(X,11)—a=

20 — 1
2a |

Ainsi, | (e, — a)nen €St une suite géométrique de raison
) €N
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b. Comme Xj est une variable aléatoire certaine égale a 0, ¢g = E(Xy) = 0 donc

2a — 1\"
a2a > donc

eg —a = —a. On en déduit que, pour tout n € N, e, —a = —a<

2a — 1\"
Gn:a—CL(a ).Ainsi,
2a

VneN E(X,)=a
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Sujet 21. Germination de graines (C4)

On dispose de n pots, avec n € N*.

On plante une graine dans chaque pot. Les germinations des graines sont indépendantes les
unes des autres.

Pour chaque graine, la probabilité de germer est égale a p, avec p € ]0;1].

Pour chaque graine, la probabilité de ne pas germer est donc égale a ¢, avec ¢ =1 — p.

1.

On note X le nombre de graines ayant germé. Donner la loi de X et préciser, pour tout
i€ X(Q), la probabilité P(X = 1).

. Dans les pots ou la graine n’a pas germé, on plante une nouvelle graine.

On note Y le nombre de nouvelles graines ayant germé.
Donner, pour tout ¢ € X(Q2), la loi de Y sachant (X = i) et préciser, pour tout
(4,7) € X(Q) x Y(£2), la probabilité Px—_; (Y = j).

. On note Z le nombre total de graines ayant germé. Ainsi, Z = X + Y.

a. Préciser Z(Q2) et exprimer, pour tout k € Z(Q2), 'événement (Z = k) a l'aide des
variables aléatoires X et Y.

b. En déduire, pour tout k € Z(2), une expression sous forme de somme de la probabilité
P(Z =k).

. Montrer que, pour tout k € [[0,n] et tout i € [0, k],

=) ()= ()

. a. Montrer que 1 — p(1 +q) = ¢*

b. Soit k € Z(Q). Développer (1 + ¢)* & I'aide de la formule du bindme de Newton et en

k
k )
déduire une expression simple de Z < ,)q’.
i=0 \!
S\ (B g onick
c. Montrer que, pour tout k € Z(Q), P(Z =k) = _ L )P e
i=0 t
d. Montrer que Z suit une loi binomiale, dont on précisera les parametres.

. Déterminer I'espérance de Z et en donner une interprétation.
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Solution.

1. Si on numérote les pots de 1 & n et si on note, pour tout k € [1,n], X la variable
aléatoire égale a 1 si la graine du pot k germe et 0 sinon alors, pour tout k € [1,n], Xk
suit une loi de Bernoulli de parametre p. Comme les germinations sont indépendantes,

n

les variables X} sont mutuellement indépendantes. Or, X = Z Xy, donc | X — HAB(n,p)|.
k=1

Ainsi, | pour tout i € [0,n], P(X =1i) = (ﬁ)piqnl
i

2. Si (X = i) alors on a replanté n — i graines et, par le méme raisonnement que pré-
cédemment, la loi de Y sachant (X = i) est la loi binomiale de parametres n — i et

p.

n-—1

Ainsi, | pour tout i € [0,n] et tout j € [0,n], Px=y(Y =j) = < ,
J

=

3. a. Le nombre de graines qui ont germé est compris entre 0 et n donc | Z(2) = [0,n] |

Soit k € [0,n]. Comme ((X = 7))ic[o,n) est un systéme complet d’événements,

(sz:)z(sz:)ﬂ(O(Xzi)):O(X:z’)ﬂ(Z:k:)

=0

Il
et

I
o

(X=i)Nn(X+Y =k)

=i)NGE+Y =k)

I
—-
=

I
o

(X =i)N (Y =k —1)

I
-

@
Il
o

De plus, si k < i alors (Y = k — i) = & donc, finalement,

k
Z=k=UX=0)n¥ =k—-1)|
=0
Comme cette union est disjointe (car les évenement (X = i) sont deux a deux

incompatibles), on en déduit que

P(Z = k;):fjp X =i)n (Y =k—1)) :zk:P(Xzi)P(X_i)(Y:k—i)

k
n =0 ki _n—i—(k—i
21O
=0 -t

P(Z = k) = i <”> (Z - ;) prgnhi|

donc




4. Soit k € [[0,n] et i € [0, k]. Alors,

(Z ) Z) (?) k- z’)!(:zn—_ilz! k—i) " i!(nni 0k — z;‘(n “ k)
(Z) (f) - k!(nni TN z’!(k;ki ik — z;‘(n ST
(o)) - ()0

5. a. Commep=1—¢,1—p(1+¢)=1-(1-¢)(1+¢)=1—(1-¢*) =1—1+¢* donc
1-p(l+q)=¢*}

donc

k
b. D’apres la formule du binéme de Newton, (1 + q Z < >1iqk_i donc
1=0

k
On en déduit que (1 + q Z ( >q ¢~ " donc, par linéarité de la somme, (1 + q)k =

=0
k
qk Z < ) ' et ainsi

=0

50

7

c. Soit k € [0,n]. On déduit des questions 3.b. et 4.,

e S0 e SO0

d. Par linéarité de la somme, on en déduit que, pour tout k € [0, n],

P(Z=k)= <Z>p’“q2”"“ 2 (lf) q¢

donc, d’apres la question 5.b., pour tout k € [0, n],

P(Z = k;) — (Z)Z?qun—k(l_'_q)k _ (Z) (p(l +q))kq2n—2k _ <Z> (p<1 +q))k <q2)n_k.

qk
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Des lors, d’apres la question 5.a.,

Pz =)=} )o0+ )0 - s+ oy

On conclut donc que | Z suit une loi binomiale de parametres n et p(1 + q) |.

6. Des lors, | E(Z) = np(1 4 q) |. Cette espérance représente le nombre moyen de graines qui
germent.
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Sujet 22. Le loueur de voiture (O1)

Un concessionnaire dispose de 2 voitures qu’il peut louer chaque jour, pour un prix de 30€.
On définit les variables aléatoires suivantes :

e X est le nombre de clients qui veulent lui louer une voiture;;
e Y est le nombre de voitures qu’il loue;

e ( est le chiffre d’affaire qu’il réalise sur la journée.

1. On suppose dans cette question que la loi de X est donnée par le tableau suivant :

k 0[11]2]| 3
1111/

P(X = — 2] =

( k) 641|212

a. Déterminer la loi de Y, son espérance et sa variance.
b. Déterminer I’espérance et la variance de G.
c. Calculer le chiffre d’affaire réalisé en moyenne par le concessionnaire sur 30 jours.

2. Reprendre les questions précédentes en supposant que X suit une loi binomiale de

parametres 6 et 7

3. Reprendre les questions précédentes en supposant que X suit une loi de Poisson de
parametre 2.
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Solution.

1. a.

Par définition, Y (2) = {0;1;2}. De plus, {Y =0} = {X = 0} donc P(Y =0)

=5
1
{Y =1} ={X =1} donc P(Y =1) = 1 et {Y =2} ={X > 2} donc, comme les
évenements {X = 2} et {X = 3} sont incompatibles, P(Y =2) =P(X =2)+P(X =
7

3) = ! + ==
2 12 12
Alinsi, on peut résumer la loi de Y dans le tableau suivant :
k 0[1] 2
1117
PY=Fk|-=-|-|—=
( ) 6 4] 12
Des lors,
E(Y)—Ox—+1x1+2><l
B 4 12
17
soit | E(Y) = —|.
12
Enfin,
1 1 7 31
E Y2 = 2 — 12 — 22 Py
(Y9) O><6+ ><4+ X 15 = 13

donc, par la formule de Konig-Huygens,

31 17\?2
V(Y) = E(Y?) —B(Y)' = = - (12>
83
soit |[V(Y) = il
Par définition, G = 30Y donc, par linéarité de I'espérance E(G) = 30E(Y) = 30 x g
ie |E(G) = 825 !

Si on note, pour tout i € [1,30], G; le chiffre d’affaire réalisé le jour i alors le
chiffre d’affaire total sur 30 jours est T' = Gy + G5 + - - - + G39. Par linéarité de la

30

moyenne, on en déduit que le chiffre d’affaire moyen sur 30 jours est E(T') = Y E(G;).
i1

Or, chaque G; a la méme loi que G donc E(T) = 30E(G) i.e. E(T) = 1275. Ainsi,

le gain moyen du concessionnaire sur 30 jours est 1275€ ‘
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2. a. De méme, P(Y = 0) = P(X = 0) = (g) (;)0 @)6 — 614 et P(Y = 1) = P(X =

6\ /1\'/1\®> 3 57

1) = — —) =—.Enfin, P(Y =2)=1-P(Y=0-P(Y=1)=—.

) (1) (2) (2) 3 Bufin, P(Y'=2) (¥'=0-P{ =1
Ainsi, on peut résumer la loi de Y par le tableau suivant :

1|3 |57/

Alinsi,

1 3
E(Y)=0x — +1x 2 +2x 24
(V) =0x o+ 1x o +2x

soit | E(Y) = — |

De plus,
1 3 57 117
EY2 — 2 i 12 - 22 o
(V) =0 x g+ X o+ 2 x = 5

donc, par la formule de Konig-Huygens,

V(Y) =B - B = o - ()

soit [V(Y) = —

1 22
b. On en déduit que E(G) = 30 x 85 ie. |[E(G) = L et V(G) = 900 x 694 soit

2025

3375

c. Avec les mémes notations que précédemment, E(7) = 30E(G) ie. E(T) = 5

Ainsi, ‘le gain moyen du concessionnaire sur 30 jours est 1687,50€ ‘

20 2!
3. a. De méme, P(Y =0)=P(X =0) = ae_g =e2et P(Y =1) = —e? =2¢ 2 Enfin,

PY=2)=1-P(Y =0)—P(Y =1)=1-3e2
Ainsi, on peut résumer la loi de Y par le tableau suivant :

PY=k)|e?|22|1—3e?2
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Ainsi,
EY)=0xe?+1x2 24+2x(1-3e?)

soit |E(Y) =2 — 4e™?|.
De plus,

EY?)=0xe?+12x2?+2*x (1 -3¢ ?)=4—10e?

donc, par la formule de Konig-Huygens,

2

V(Y)=E(Y?) - B(Y)? =410 — (2 4e?)
=4—10e% — (4 — 1662 + 16e7)

ie. |[V(Y)=06e2—16e*|
. On en déduit que |E(G) = 30(2 — 4e~2)| et | V(G) = 900(6e~2 — 16e™1) |.

. Avec les mémes notations que précédemment, E(T) = 30E(G) = 30(60 — 120e™?%).
Ainsi, ‘le gain moyen du concessionnaire sur 30 jours est environ 1312,79€ ‘
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Sujet 23. Division cellulaire (O1)

Dans tout I’exercice, p désigne un réel appartenant a |0; 1].

Partie A. Etude d’une suite
On considere la fonction f définie sur R par

f(x) =1—p+pa?

ainsi que la suite (v,,) définie par

Vo =0
Vn €N, vy1 = f(vn)

1. Etudier le sens de variations de la fonction f.
2. Montrer que, pour tout n € N, 0 < v, < 1.

1—
3. Montrer que, pour tout réel z, f(x) = z si et seulement si z =1 ou x = J.

p
Ranger ces deux solutions dans l'ordre croissant. On discutera selon les valeurs de p.

1
4. Montrer que si p < 5 alors la suite (v,) est croissante et converge vers un réel a

déterminer.

1
5. Que se passe-t-il si p > 3 ?

Partie B. Application
On considere des cellules pouvant

e soit se diviser en deux cellules filles, avec une probabilité égale a p;

e soit mourir, avec une probabilité égale a ¢ = 1 — p.
Pour tout n € N, on note X,, la variable aléatoire correspondant au nombre de cellules a la

néme génération.

On suppose que Xy = 1 de fagon certaine.

1. Déterminer la loi de X7, son espérance et sa variance.

2. Pour tout n € N, on note u,, = P(X,, =0).

a. Donner ug et uy.

b. Soit n € N. Etablir, & partir du systéme complet d’événements {(X; = 0), (X; = 2)},
une relation entre u,, et w,.1.

3. Déterminer la limite de la suite (u,).
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Solution.

Partie A. Etude d’une suite

1. La fonction f est une fonction polynomiale du second degré dont le coefficient dominant
0

est p > 0 et qui atteint son minimum en zy = 2 = 0. On en déduit donc que

f est décroissante sur |—00; 0] et croissante sur [0; 400 |.

2. Considérons, pour tout n € N, la proposition P(n) : « 0 < v, <1 ».
Initialisation. vy = 0 € [0; 1] donc P(0) est vraie.
Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, 0 < v, < 1 donc, comme
f est croissante sur [0;+o0[, f(0) < f(v,) < f(1). Or, f(0)=1—p>0carp<1et
f(1)=1donc 0 < f(v,) < 1ie. 0< v,y < 1. Ainsi, P(n+ 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que, ‘ pour tout n € N, 0 < v, < 1|
3. Soit z € R. Alors,

f(x):x<:>1—p+px2:x<:>px2—x+1—p:()

Le discriminant de pX?— X +1—p = 0est A = (=1)*—4p(1—p) = 1—4p+4p* = (1-2p)*.
Ainsi, pX? — X + 1 — p posséde deux racines (non nécessairement distinctes) :

OB A Ut R S L’ ~(D -2 1412y

pr— t pr—
o 2p 2p oo 2p 2p
. . l—p . . 1—p
Sil—2p >0, on obtient z; =1 et 29 = et si 1 —2p < 0, on obtient x; = et
p p
To — 1.
1 —
Ainsi, dans tous les cas, | f(z) = x si et seulement si x = 1 ou z = it 4 )
p
1-2 1-—
Comme x93 — 21 = | i >0, v9 > x1. Ainsi, si 1 — 2p > 0 alors b > 1etsi
p p
l—p
1 —2p <0 alors <1
p
1— 1 1-— 1
Autrement dit, J}lsipéfetipglslp>—
p 2 p 2

1
4. Supposons que p < 7 Considérons, pour tout n € N, la proposition Q(n) : « v, < vy ».

Initialisation. vg = 0 et v; = 1 — p donc, comme p < 1, v > vy donc Q(0) est vraie.

Hérédité. Soit n € N. Supposons que Q(n) est vraie. Alors, v, < v,y donc, comme
f est croissante sur [0; 400, f(vn) < f(Vnt1) 1€ Upi1 < Upgo. Ainsi, Q(n + 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que, pour tout n € N, v,, <
Unt1-

Ainsi, | (vy,) est croissante|.
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Des lors, (v,) est croissante et majorée par 1 donc, d’apres le théoreme de la limite

monotone, | (v,) converge vers une limite £ < 1.

Alors, v, — ¢ donc, d’une part, v, —+> ¢ et, d’autre part, par produit et
n—-+0o0o

n—-+00
somme, 1 — p + pv? — 1 — p + pf?. Par unicité de la limite de (v,,41), on en déduit
1— 1
que £ =1 — p+ (2 donc, d’apreés la question 3., / =1 ou £ = L Or, comme p < 3
p

1—
J}ldone,commefgl, (=1|
p

5. Sip > 5 (vn) demeure croissante (car le raisonnement de la question précédente n’utilise

pas le fait que p < 5 pour montrer que (v,) est croissante) donc, comme précédemment,

(v,) converge vers 1 ou vers

l—p

Montrons par récurrence que (v,) est majorée par

Initialisation. vy = 0 < P car pel0;1].

1—
Hérédité. Soit n € N. Supposons que v,, < i Alors, comme f est croissante sur

1-p\. l—p
oitocl fo) < £ (10 )i v < 2
Conclusion. Par le principe de récurrence, on conclut que, pour tout n € N, v,, <
l—p
p
1— 1-—
Déslors,€<J<1donc fzJ.
p p

Partie B. Application
1. Comme I'évenement (Xy = 1) est un évenement certain, il y a initialement 1 seule cellule.
Ainsi, | X1(Q) ={0;2}, P(X; =0)=pet P(X; =1) =p|
Des lors, E(X;) =0 x ¢+ 2 x p donc | E(X) = 2p|.
De plus, E(X?) = 0% x ¢ + 2% x p = 4p donc, par la formule de Konig-Huygens,
V(X)) =E(X?) —E(X;)?=4p — (2p)? = 4p — 4p? donc | V(X) = 4p(1 — p) = 4pq|.
2. a. Comme (X, = 1) est un événement certain, . De plus, on a vu précédemment

ae [17 =]

b. En utilisant la formule de probabilités totales avec le systéeme complet d’éveénements
{(X1=0),(X; =2)}, on obtient

Unp4+1 = P<Xn+1 = 0)
— P(X) = 0P(Xos1 = 0| X1 = 0) + P(X; = 2)P(Xpis = 0] X; = 2)
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Or, P(X,,;1 =0| X; =0) =1et, s’il y a2 cellules a la génération 1, la probabilité
qu’il n’y en ait plus a la génération n + 1 est la probabilité que la descendance de chacune
de ces 2 cellules s’éteigne en au plus n générations. Or, pour chacun des deux cellules,
la probabilité que leur descendance s’éteigne en au plus n générations est u,, donc, par
indépendance, la probabilité qu’il n’y ait plus de cellules & la génération n + 1 est u?.

Ainsi, v, = uy X 14+ up X u2 = g+ pu? soit |up; =1 —p+ pu? |

. Par définition, uy = 0 et, pour tout n € N, u,y; = f(u,) donc, pour tout n € N, u,, = v,.
On déduit donc des résultats de la Partie A que

lim u, = _
n—-4o0o " 1

N | =
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Sujet 24. Les cents pas (O1)

Un homme fait les cent pas.

Il se déplace sur un axe infini, gradué par pas de 1 de —oo a +o0.

A chaque déplacement, il va vers la droite avec probabilité p ou vers la gauche avec probabilité
g=1-p.

|
—_
O T+
—_

Initialement, I’lhomme est en 0.

Pour tout n € N, on note X,, la position de I’lhomme apres n déplacements. En particulier,
on a Xg=0.
Soit n € N*. On note Y,, le nombre de pas vers la droite effectués apres n déplacements.

1. Donner la loi de Y,,, son espérance et sa variance.

Exprimer la variable aléatoire X,, en fonction de Y,,.

En déduire I'espérance et la variance de X,,.

Déterminer la probabilité d’étre revenu en 0 apres n déplacements.

Déterminer la loi de X,,.

S Uk L

Dans cette question, on suppose que p = % et n =2N avec N € N*.

a. Expliciter la loi de X,, dans ce cas.

b. Calculer F(X,) par deux méthodes :
— en utilisant le résultat de la question 3. ;
— en utilisant la loi de X,,.

c. Exprimer de méme V' (X,,) par deux méthodes, en déduire que :

2N

ol 2 N—1
k = N4~
11 0)
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Solution.

1.

Les n déplacements constitue un schéma de Bernoulli en prenant comme succes « L’homme
se déplace vers la droite ». La variable aléatoire Y,, compte le nombre de succes donc
Y, — B(n,p) |

Par propriété, | E(Y,,) = np et V(Y,,) = npq |

. L’homme fait n pas en tout dont Y,, vers la droite. Il fait donc n — Y,, pas vers la gauche

et sa position finale est donc Y,, x 1 4+ (n —Y,) x (—1) i.e. ‘Xn =2Y, — n‘

. Par linéarité de 'espérance, on en déduit que E(X,) = 2E(Y,) —n = 2np — n i.e.

E(X,) =n(2p—1)|
Par propriété de la variance, V(X,,) = 22V (Y,,) donc | V(X,,) = 4npq |.

. Remarquons que

P(ano):P(ZYn—nzo):P<Yn:Z).

Or, Y, est a valeurs enticres donc si n est impair alors § ¢ N donc P(X,, = 0) = 0.

De plus, si n est pair alors P(Y,, = §) = (Z)p;q"g = (n) (pq)?.

n n
2 2

0 si n est impair

Ainsi, |P(X,, =n) =< (n n .
. | (pq)2z  sin est pair
2

. Commencons par remarquer que X, (2) = {2k | k € [—%, 2]} si n est pair et X, () =

272

{2k + 1]k e [=%, 25*]} si n est impair. De plus,

2
e sin est pair alors, pour tout k € [—%, £],

2
n n+2k n—2k
e n+2k p 2 q 2

2

e si n est impair alors, pour tout k € [=%=, 2],

n+1 n n+l n—1_
P(Xn:2k:—|—1):P(2Yn—n:2k+1):P<Yn: 5 +k): ("“—i—k)p 2 *kq 2
2

n n+2k+1 n—2k—1
=\ nt2kr1 |JP * 4 2
2

Ainsi, on peut remarquer que, dans tous les cas,

105



6. a. Si n = 2N alors n est pair donc X,,(2) = {2k | £ € [-N,N]} et, pour tout
ke [-N,N],

P(Xn = 2k) = (]ffk) (i)Mk <;)N_k - (szk> (é)m'

b. D’apres le résultat de la question 3., E(X,) =n(2 x ; — 1) donc |E(X,,) =0|.

Par ailleurs, par définition,

E(X,) = k:z]\i:N 2kP(X,, = 2k) = k:ZJi:N 2k x <N21k> (;)m

1\2N-1| & ON N oON
— (= k k
(3) P <N+k>+0+kz <N+k>

1

-0 () s (e

=1 k=1

N X 2N N[ 2N
_(: Nk k

(2) _ kz::l (N—k)JF,; <N+k>]

Or, par le principe de symétrie, pour tout k € [—N, NJ,

2N\ 2N [ 2N
N—-k) \2N-(N—-k)) \N+k
donc finalement

- (7 [ £ )

k=1

ie. |E(X,)=0|

c. D’apreés la question 3., V(X)) =4 x 2N X % X
de transfert,

1 _ 9 JUR
3 = 2N. D’autre part, par le théoreme

N

B(X2) = 3. (GRPP(X,=20) = 3 4 x <N2f k) (;)

—1 N N N
:4><4%V {_Z k2<N2+k>+0+kZ::lk2<N2+k>
N of 2N N[ 2N
(v ) 2

- 4N1—1 Lé ¥ <N2fk> Py (Nkaﬂ

k=1
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Or, d’aprés la formule de Kénig-Huygens, V(X) = E(X?) — E(X)? = E(X?) donc

i.e.
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Sujet 25. Déplacement aléatoire sur un axe gradué (O1)

On déplace un objet sur un axe gradué de 0 a +oo, selon le protocole suivant.
Initialement, 1’objet est en 0.

A chaque tour, on lance un dé bien équilibré :

— si on obtient 5 ou 6, on avance 1'objet d’une position ;

— sinon, on replace 1'objet en 0.

Pour tout entier n € N, on note X, la position de I'objet a I'issue n-ieme tour.
1. Déterminer la loi de X, son espérance, sa variance.
Déterminer la loi de X5, son espérance, sa variance.
Montrer que, pour tout n € N* et tout k € [1,n], P(X, = k) = tP(X,_1 =k —1).
Montrer que, pour tout n € N*, P(X,, =0) = %
Montrer que, pour tout n € N*, E(X,,) = %E(Xn,l) + %
1

Pour tout n € N, on pose u, = E(X,) — 3.

a. Montrer que la suite (u,) est géométrique.

S vk L

b. En déduire, pour tout n € N, I'expression de E(X,,) en fonction de n.
c. Donner la limite de E(X,,) en +oc.
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Solution.
1. Commengons par remarquer que X;(2) = {0;1}. De plus, par équiprobabilité des faces,
P(X; = 1) = 2 = 1. Ainsi, | X suit une loi de Bernoulli de parametre  |. Par suite,

E(Xl) 2 et V<X1> % % = % .

2. Commengons par remarquer que Xo(2) = {0; ;1;2}.
Notons Y la variable aléatoire valant 1 si le second lancer de dés donne un chiffre supérieur
ou égal & 5 et 0 sinon. Alors, Y — (3) donc
e (Xo=0)=(Y <0)donc P(Xy,=0) =
o (Xo=1)=(X;=0)Nn(Y =1) don, par 1ndépendance,

2 1 2
PXo=1)=PX;=0PY =1)=-x - =~
(X =1) = P(X; = 0)P( )=3%3=73

e (Xy=2)=(X;=1)N(Y =1) donc, par indépendance
P(X,=2) = P(X; = JP(Y = 1) = - x - =+
S V737379

Ainsi, E(X5) =0x 2 x 1 x 2+2x ¢ soit |E(X,) =
Enfin, par le theoreme de transfert, E(X ) =0?x 2
formule de Konig-Huygens, V(X,) = E(X?) — E(Xl) =2 — (5)% soit | V(X)) =8
3. Soit n € N*. Notons Y,, la variable aléatoire égale a 1 si le n-ieme lancer donne un
résultat supérieur ou égal a 5 et 0 sinon. La encore, Y, — %’(%) De plus, pour tout
ke[l,n], (X,=k)=(X,-1=k—1)N (Y, =1) donc, par indépendance des lancers,
P(X,=k=PY,=1)P(X,1=k—1).
Ainsi, |pour tout k € [1,n], P(X, = k) = sP(X,.1 =k —1)|
4. Avec les notations de la question précédente, (X,, = 0) = (Y,, = 0) donc on conclut que
P(X,=0)=P(Y,=0)=2
5. Soit n € N*. Alors,

12><3+22><1—2d0nc parla

k=0 k=1
1 n—1
= I G P = )
=0
1 n—1 1 n—1
=3 JP(Xn —J)*’*ZP(anl =)
=0 3=0
n—1 n—1
Or, comme X,_1(2) = [0,n — 1], ZjP(Xn_l =j)=E(X,_1) et Z PX,.1=j)=1
j=0 7=0

donc on conclut que |E(X,) = 1E(X,,_1) + 3 |
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6. a. Soit n € N. Alors,

11 1 1 1 11
CEB(X ) = B(X) 4~ 2= -E(X,)—-=-(E(X,) -~ = ~u,.
tni1 = B(Xnp) = 5 = 5B(Xn) 4+ 5 = 5 = g BX) — ¢ 3( (X») 2) 3tn

1

Ainsi, | (u,) est une suite géométrique de raison g |

b. On déduit de la question précédente que, pour tout n € N, u,, = ug X <7> . Or,
uy = E(Xy) — 5 =0— 3 = —1% donc, pour tout n € R, u, = —3 (%)n
Or, pour tout n € N, u, = E(X,,) — 5 donc E(X,) = u, + 3 et ainsi on conclut que,

pour tout n € N, E(X,,) = — 1 (l)n :

3

c. Comme —1 < % <1, lim (%)n = 0 donc, par produit et somme, | lim E(X,)=1|

n—-+00 n—-+0oo 2
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Sujets de probabilités : variables
aléatoires discretes a support infini
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Sujet 26. Traine de la loi de Poisson (C1)

Soit X une variable aléatoire suivant la loi de Poisson de parameétre A > 0.
1. a. Rappeler la loi de Poisson, son espérance et sa variance.

b. Rappeler l'inégalité de Tchebychev et ses hypotheses.

1
c. Démontrer que P(|X — A\ > \) < 3
1
d. En déduire que P(X > 2)\) < T
“+o0o
2. Pour tout réel t > 0, si la série converge, on pose Gx(t) = > P(X = k)t*.
k=0

Vérifier que, pour tout réel ¢ > 0, Gx(t) = M1,

Exprimer, pour tout réel ¢ > 0, Gx(t) sous la forme d’une espérance.
Rappeler I'inégalité de Markov et ses hypotheses.

En déduire que, pour tout réel t > 0, P(t¥ > 2}) € AMt-172In(t)
Déterminer le minimum de la fonction f: ¢ +—— ¢ — 1 — 21In(¢) sur |0; +ool.

-0 R0 TP

Démontrer que, pour tous réels t > 1 et x > 0,
T > 2\ = t° >t

A
g. En déduire P(X > 2)) < (Z) .

3. A l'aide de GeoGebra, comparer les deux majorations de P(X > 2)) obtenues dans les
questions précédentes.
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Solution.

1. a.

. Pour tout réel t > 0 et tout k € N, P(X

Dire que X suit une loi de Poisson de parametre A signifie que | X(Q2) = N| et que,
_ N
k!
Par théoreme, |[E(X) = V(X) = \|

L’inégalité de Bineaymé-Tchebychev stipule que si Y est une variable aléatoire ad-
mettant une variance alors, pour tout réel € > 0,

pour tout k € N, P(X = k)

V()

e2

P(lY —E(Y)[>¢) <

En appliquant cette inégalité a Y = X (qui admet bien une variance) et e = A > 0,
on obtient

| >

P(X -2 < 5

i.e.

1
P(X - >N < 5|

On remarque que si X > 2\ alors X — A > A donc | X — A| > A Ainsi, {X > 2\} C
{|X — A| = A} donc, par croissance de la probabilité,

P(X > 2)\) < P(|X — E(X)| = \)

et ainsi, grace a la question précédente,

At)F
=7 x th = (k)e_)‘ donc, au

facteur constant e pres, la série Z P(X l{;)tk est une série exponentielle. Elle est

donc convergente est

—iOP(X > k)tk _ ef)\ —’—ZOO (At>k _ ef/\ % e/\t _ e*)\+)\t
k=0 ~ a k=0 k! B a

donc, | pour tout réel t > 0, Gx(t) = X1 |
Soit un réel ¢ > 0. Alors,

Gx(t) = Jiot’“P(X = k)

donc, par le théoréme de transfert, |Gx(t) = E(X")|.
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. L’inégalité de Markov stipule que si Y est une variable aléatoire positive admettant
une espérance alors, pour tout réel a > 0,

E(X
P(X >a) < ( )
a
. Soit un réel t > 0. D’apres la question 2.b., la variable aléatoire Y = t* admet une

espérance égale a G x(t). De plus, elle est positive donc, en lui appliquant 'inégalité
de Markov avec a = t** > 0, on obtient

Or, t* = e2I"(® donc
Gx(t) D _ AMD-20In() _ A(-1-21n(1)

222 e2AIn(b)

Ainsi, on conclut que, |pour tout réel t > 0, P(tX > t?) € eMt-172n(0) |

. La fonction f est dérivable sur |0;+o00] comme somme de fonctions dérivables et,
pour tout réel ¢ > 0,

1 -2
)=1-2x - =—".

Pour tout ¢ > 0, le signe de f’(t) est le signe de t — 2 donc f est décroisante sur |0 ;2]
et croissante sur [2;4o00[. Ainsi, f atteint son minimum en 2 et ce minimum vaut
f(2)=1-21In(2)|
. Soit un réel ¢ > 1 et un réel = > 0. Alors, par stricte croissance de la fonction
exponentielle sur R,

17 > 12 = "0 > 20— gn(t) > 2\ 1n(2).

Or, comme ¢ > 1, In(¢) > 0 donc

>t = > 2)\|.

. En appliquant ce qui précede avec t = 2 > 1, on obtient que, pour tout réel z > 0,
T > 2\ &= 2" > 2%

Comme X est a valeurs positives, on en déduit que {X > 2A} = {2%¥ > 2?*} donc
P(X > 2)\) = P(2¥ > 22Y). Des lors, d’apres la question 2.d., P(X > 2)) < eM®)
Le.

P(X > 2)\) < e)\(1721n(2))'

A el \* e\
_ M) _ (elfln(4)) _ < : (4)) _ () .
en 4

Or,

A1-21n(2))

Ainsi, on conclut que
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N 1
3. A l'aide de GeoGebra, on obtient les courbes suivantes pour les fonctions g : ©z — — et
x

e xT
h:zv+— (4) définies sur ]0; +oo[. Comme %, est située au-dessus de 6}, on en déduit

que, quelle que soit la valeur de A, la seconde inégalité fournit une meilleure majoration
que la premiere.
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Sujet 27. Clinique vétérinaire pour chiens et chats (C7)

Dans une clinique vétérinaire, on note X le nombre de chats et Y le nombre de chiens
présents lors d’une semaine. On suppose que X et Y sont des variables aléatoires indépendantes,
que X suit la loi de Poisson de parametre A\ > 0 et que Y suit la loi de Poisson de parametre
=0,

Rappeler la définition de la loi de Poisson.
Rappeler 'espérance de X. Démontrer la formule.
Rappeler la variance de X. Démontrer la formule.
On pose Z =X +Y.

a. Déterminer ’espérance et la variance de Z.

W=

b. Déterminer 1’ensemble Z(£2) des valeurs prises par la variable Z.
c. Exprimer, pour tout k € Z(2), I'évenement (Z = k) en fonction de X et Y.
(A + )

k!
e. Démontrer que Z suit une loi de Poisson dont on précisera le parametre.

d. Soit k € N. Développer et simplifier I’expression

5. On rappelle I'inégalité de Bienaymé-Tchebychev : pour tout € > 0,

V(X)
g2

P X -E(X)|>¢) <

On suppose dans la suite que A = 13 et ;= 17. La clinique est capable d’accueillir un
maximum de 80 animaux.

a. Majorer la probabilité de I'évenement (Z > 80).
b. La clinique devrait-elle investir pour augmenter sa capacité d’accueil ?
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Solution.

1. On dit qu’une variable X suit une loi de Poisson de parametre A si | X (2) = N| et si,

ATL
pour tout n € N, P(X =n) = —‘e_’\ .
n!

2. Par théoreme E(X) = A. Pour le démontrer, considérons un entier n € N. Alors,

n n )\k \ \ n )\k \ n )\k
FP(X =k) = kxZet=e?Ykx—— —¢
,;:%] kz:%) k! kzzzl kx (kE—1)! kz::l(k—l)'
n—1 )\j-i—l n—1 )\
= e : :)\_’\Zf—>)\e’\xe)‘—)\
Jj=k—1 — ]' — j' n——4oo
Jj=0 J

Ainsi, la série nP(X = n) converge et sa somme vaut A donc X admet une espérance et
E(X)=A\|

3. Par théoreme V(X) = A. Pour le démontrer, considérons un entier n € N. Alors,

n n )\k n )\k
kzP(X k? x —e’ =e BPx — = k———
,;) Z kz::l kx (kE—1)! kz::l (k—1)!
n )\k
e —1+1)
2 (k—1+ (k: 1)
— 1 _|_ =A
kZ::l - 1! kz::l (k—1)!
Or, d’une part,
n )\kz )\k n /\k
—A kE—1 7/\ —e A
SVt = - e =
n—2 /\j+2 n—2 by,
= ¢ — = \% Z o s Ne M xer =)\
j=k—2 =0 j' = ]' n—-+00

et, d’autre part, d’apres le calcul de la question précédente,

Ak f; KP(X = k) —— E(X) = \.

Ainsi, la série Z n*P(X = n) converge et sa somme vaut A2 + A\ donc, par le théoréme
de transfert, X2 admet une espérance et E(X?) = \2 — \.
Deés lors, par la formule de Konig-Huygens, X admet une variance et

V(X)=E(X?) —E(X)? =X 4+ ) -\

soit [ V(X) = A |.
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Autre méthode. On peut commencer par calculer la variance de X (X — 1). Soit
n € N. Alors,

n n k n Ak

A -A
Zk(k_l)P(X:k;):Zk(k:—l)xHe =e ;k(k_l)xkz(k‘—l)X(k’—Q)!

k=0 k=0

n—2 y\j5+2
j=k=2 = !
n—2 ]
)\2 - Z )\Qe—)\ % e)\ — )\2
]' n—>+oo

Ainsi, la série » n(n — 1)P(X = n) converge et sa somme vaut A\?. Par le théoréme de
transfert, on en déduit que X (X — 1) admet une espérance et E(X(X — 1)) = A% Or,
X? = X (X —1)+ X donc, comme X (X —1) et X admettent une espérance, par linéarité,
X? admet une espérance et E(X?) = E(X(X — 1)) + E(X) = A? 4+ \. Ensuite, on conclut
comme dans la premiere méthode a 'aide de la formule de Kénig-Huygens.
. a. Par linéarité, E(Z) = E(X) + E(Y) donc |E(Z) = A + u| De plus, comme X et YV
sont indépendantes, V(Z) = V(X) 4+ V(Y) donc | V(Z) = A + p .
b. X(Q) =Net Y(Q2) =Ndonc|Z(Q2) =N|

c. Soit k € N. Alors, comme ((X =1i));en est un systeme complet d’évenements,

<Z=m=(ﬁm¢w>wz=m=UﬂXZAMZ=m

—U N(X+Y =k) = U:[(X:i)ﬂ(Y:k—X)]

—U (¥ = ki)

De plus, si i > k alors k —i < 0 donc (Y = k — i) = &. Ainsi, on conclut que

(Z=h=UlX=)ny =k-i)|

soit finalement
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e. Soit k € N. D’apres le résultat de la question c.,
k
P(Z:k):P<U[(X:i)ﬂ(Y:k:—i)]>.
i=0
Or, les évenements (X = i) pour ¢ € [0, k] sont deux a deux disjoints donc
k
PZ=k =) P(X=9)N(Y =k—1))
i=0

et, comme X et Y sont indépendantes,

k n /\z k—1
P(Z=k) =Y P(X=i)P(Y =k—i)=Y Se? L o
— =il (k=)
B n )\z Mk—z’ Chen A n )\z Iuk—i
B0 F N A Dy ey ¥

Ainsi, grace au résultat de la question d.,

k
p(z =) = AT oy

donc ‘Z suit une loi de Poisson de parametre A + p ‘

. a. D’apres la question précédente, Z suit une loi de Poisson de parametre 13 + 17 = 30
donc E(Z) = V(Z) = 30. En remarquant que

7 >80 = Z — 30 > 50 = |Z — 30| > 50,

on peut affirmer que (Z > 80) C (|Z — E(Z)| > 50) donc, par I'inégalité de Bienaymé-

Tchebytchev,
30 3
P(Z>280)<P(|Z-E(Z)]>250) < — =—
(2280 <P(Z - E(2)] > 50) < 15 = 5o

ie. |P(Z > 80)<0,012]

b. La probabilité que la capacité d’accueil de la clinique soit dépassée est

P(Z > 80) < P(Z > 80) < 0,012

donc [la clinique n’a pas intérét a s’agrandir ‘
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Sujet 28. Tatouage de lapins (O1)

Un éleveur possede 100 lapins qui doivent se faire tatouer. Il choisit successivement des lapins
au hasard : si le lapin est tatoué, on le repose dans le clapier; sinon, on le tatoue et on le repose
dans le clapier. On continue ainsi jusqu’a avoir tatoué tous les lapins.

On modélise la situation en assimilant chaque lapin a un jeton et le clapier a une urne, dans
laquelle on effectue des tirages avec remise. On note X la variable aléatoire correspondant au
nombre de tirages nécessaires pour tatouer tous les lapins.

Pour tout n > 1, on note X, le nombre de tirages effectués, une fois qu’on a tiré n — 1 jetons
différents, pour obtenir un n-eéme jeton différent des précédents. Par exemple, si les tirages

donnent :
3,3,3,1,1,2,3,2,4, ...

alors X7 =1, X, =3, X5 =2, X, =3, etc

Premieére partie
Donner la loi de Xy, ainsi que son espérance.
Donner la loi de X5, ainsi que son espérance.

Soit un entier n € [1,100]. Donner la loi de X, ainsi que son espérance.

W o=

Calculer I'espérance de X. On donnera le résultat sous la forme d’une somme.

Deuxiéme partie

1. Vérifier que

2. Soit j € [2,100]. Montrer que

3. En déduire que

101 1 100 1 100 1
[gd<y s < 1+/
1 j=1J

puis donner un encadrement de E(X) a I'aide de la fonction In.

Troisieme partie
On admet que les variables aléatoires X7, X, ..., Xig0 sont indépendantes.

1. Exprimer V(X) en fonction de V(X;), V(Xs), ..., V(Xi00).

2. Déterminer alors la valeur de V(X). On donnera le résultat sous la forme d’une somme.
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Solution.

Premiere partie

1. La variable aléatoire est X est constante égale a 1 puisqu’aucun jeton n’a été tiré avant le

premier. Ainsi, |la loi de X; est la loi certaine telle que P(X; = 1) = 1|. Son espérance
est donc |E(X;) =1/

2. Une fois qu'un premier jeton k a été tiré, la succession de tirages qui suit constitue un
schéma de Bernoulli (puisqu’il y a remise) en prenant comme succes I’événement S : « ne

pas tirer le jeton k ». La variable X, est alors égale au rang du premier succes donc, par

propriété, elle suit | une loi géométrique de parametre P(S) = % . On en déduit que son

espérance est | E(Xp) = 49 |

3. Une fois qu’on a tiré n — 1 jetons différents, la succession de tirages qui suit constitue un
schéma de Bernoulli (puisqu’il y a remise) en prenant comme succes 1'événement S : « ne
pas tirer un jeton déja tiré précédemment ». La variable X, est alors égale au rang du pre-

100—(n—1) _ 101-n |

mier succes donc elle suit |une loi géométrique de parametre P(S) =

100 100
On en déduit que son espérance est | E(X,) = 722 |
100 100
4. Par définition X = > X}, donc, par linéarité de l'espérance, E(X) = ) E(X,) donc
k=1 n=1
100
100
E(X) = —
() nz::l 101 —n
Deuxiéme partie
1. A Paide du changement d’indice j = 101 — n, il vient
100
100
=1 J
L L o 1 1
2. La fonction inverse est décroissante sur |0;+oo[ done, pour tout t € [j;j + 1], i < -
J

Par croissance de l'intégrale, on en déduit que

J+1 ] J+l ] 1 1
it i) J J

1

De méme, pour tout ¢t € [j — 1;j], — > = donc

t
i1 i1 1 1
/ [ Sat=2G-G-1)=
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Ainsi, on conclut que

J+1 1] 1 V|
/ fdtgf,g/ atl,
j t 7 j—11

. En sommant les inégalités précédentes, on obtient

100 G+1 1 100 1 100 /
—dt
) / i<y

donc, par la relation de Chasles

101 1 100 | 100 |
/ —dt Z - < / —dt
2t sl 11
De plus, pour tout ¢ € [1;2], par décroissance de la fonction inverse sur |0 ; 400,
donc, par croissance de l'intégrale,

2 2
/;dtg/ 1dt=1x(2—1)=1.
1

1

On en déduit que
100

101 1
/tdt+/ fdt 1+Z—
1

J2]

1
i.e., par la relation de Chasles et le fait que 1= 1,

101 1 100 1
/ —dt <y =
1t =7
De plus,
100 1 100 1 100
S 14 7<1+/ Cdt
j=1 J j=2 J 1
Ainsi, on conclut que
101 1 100 ¢ 100
/ fdtng,gljt/ —dt
1 =) 1
Or,
101 1 101
/ - = [In(@®]}" = In(101) ~ In(1) = In(101)
1
et
100 1 100
/ 7 dt = Im(®)]}" = In(100) — In(1) = In(100)
1
donc
|
n(101) < ) = < 1+1n(100)
el

En multipliant cette double inégalité par 100, on conclut que

11001n(101) < E(X) < 100 + 100 In(100) |
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Troisieme partie

100 100
1. On a vu dans la premiere partie que X = Z Xj donec V(X) =V (Z Xk>. Comme X7,
k=1

k=1
Xo, ..., Xigo sont indépendantes, on en déduit que
100
V(X) = > V(Xy)|
k=1

2. Comme X; suit une loi certaine, V(X;) = 0. Ensuite, pour tout k € [2,100], X —
@ (10L=k) donc

100
110k L 1002 100(k — 1
V(Xi) = 101—200 - X - ( )
(I0=E)2 100 © (101 — k)2 (101 — k)2

donc

R 100(k — 1)
V(X)) =Y oL 02 |

k=2

123



Sujet 29. Un jeu a 2 joueurs (0O1)

Xavier et Yann participe a un jeu dont le principe est le suivant :

e les deux joueurs lancent chacun et de fagon simultanée un dé (cubique, équilibré et dont
les faces sont numérotées de 1 a 6);

e ils répetent I'opération jusqu’a ce que 1'un d’eux obtienne un 6 ; si ce joueur est seul a
obtenir un 6 a ce tour, il est alors déclaré gagnant ;

e le perdant continue alors a lancer son dé jusqu’a obtenir lui aussi un 6. Il devra verser au
gagnant un montant en euros égal au nombre de lancers supplémentaires qu’il aura di
réaliser avant d’obtenir lui aussi un 6;

e dans le cas ou les deux joueurs obtiennent un 6 lors du méme tour, il n’y a ni gagnant ni
perdant et le jeu s’arréte.

Par exemple, si Xavier obtient son premier 6 au 5° lancer et Yann obtient son premier 6 au 8¢
lancer alors Xavier est déclaré gagnant et Yann doit lui verser 3 €.
On définit les variables aléatoires suivantes :

e X désigne le nombre de lancers nécessaires a Xavier pour obtenir 6;

e Y désigne le nombre de lancers nécessaires a Yann pour obtenir 6;
e 7 =min(X,Y);
o T'=max(X,Y);

e (G désigne le nombre d’euros attribués au gagnant.

1.
2.
3.

Exprimer le gain GG en fonction de Z et T

Donner la loi de X et la loi de Y, leur espérance et leur variance.

a. Exprimer, pour tout n € N*, 'évenement (Z > n) en fonction des variables aléatoires
XetY.
b. Calculer, pour tout n € N* la probabilité P(X > n) et en déduire la probabilité
P(Z > n).
c. Déterminer la loi de Z.
. Soit n € N*.
a. Comparer, d'une part, les évenements (Z =n)N (T =n) et (X =n)N (Y =n) et,
d’autre part, les événements (Z =n)U (T =n) et (X =n)U (Y =n).
b. Exprimer P [(Z = n) U (T = n)| de deux fagons différentes.
En déduire P(T = n).
c. Calculer E(T).
. Déterminer, en euros, le gain moyen du gagnant.
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Solution.

1. La variable Z représente le nombre de lancers effectués par le gagnant et T' le nombre de

lancers effectués par le perdant donc .

2. Les variables X et Y correspondent au rang du premier succes dans un schéma de
Bernoulli, en prenant comme succes « Obtenir 6 ».

Des lors, | X et Y suivent des lois géométriques de parametre et

1—-141
Par théoreme, |[E(X) =E(Y)=6et V(X)=V(Y) = (1)26 =30|
6
3. a. Soit n € N*. L’événement (Z > n) est réalisé si et seulement si (X > n) et (Y > n)

sont réalisés donc [(Z >2n)=(X =2n)N((Y =>n)|

b. Soit n € N*. Alors,

~+o00 5 k—1 1 1 +o00 5 j+n—1
Pxzm=3(g) 55,52 (5)
k=n 7=0
) =0 -0
6\6/ “\6 6 \6 1-3

n—1
Ainsi, |P(X > n) = (Z) .

Comme Y suit la méme loi que X, on a également P(Y > n)

I
7N
| Ot
N~

7
—

Deés lors, comme X et Y sont indépendantes,

2 n—1
done |P(Z > n) = (32) |

c. Soit n € N*. En remarquant que (Z =n) = (Z 2 n)\ (Z > n+ 1) et que
(Z 2n+1) C(Z >n), on déduit de la question précédente que

25\ "1 25\ "
Z=m=Pzzn-Pzznr1=(5) - (5)
_(25)"‘1 <1_25)_(25>”‘111
\36 36/  \36 36
11
Ainsi, Z g()
111S1 — 36

4. a. Par définition, 'une des deux variables Z ou T vaut X et l'autre vaut Y donc

Z=n)N(T=n)=X=n)Nn¥ =n)|et|(Z=n)U(T=n)=(X=n)U(Y =n)|
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b. D’une part,

P
car X et Y ont méme loi. Ainsi, P(Z =n) + P(T =n) = 2P(X = n) donc
n-l (25)"1 11
6 36 36

i.e.

1 /57" 11 725\
P(T=n)=-(2) ——=(2) |
(T=n)=3 <6) 36 <36>

c. On peut remarquer que Z +7 = X +Y donc T' = X + Y — Z. Par linéarité de
I’espérance, on en déduit que

E(T)=E(X)+E(Y)-E(Z) =2E(X) - E(Z) =2 x 6 — i’f
soit | E(T') = % .
11
5. Comme G =T — Z, par linéarité de ’espérance
96 36 60
E(G) =E(T) - E(Z) =01 -1

60
donc |le gain moyen de gagnant est 1 ~ 5,45 euros |.
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Sujet 30. Empilement de dés (O1)

1. On souhaite empiler, les uns sur les autres, des dés cubiques et de méme taille. Pour tout
k € N*, lorsque k — 1 dés ont déja été empilés, la probabilité que le k-iéme dé ne fasse

pas écrouler I’édifice lors de sa pose est de % On note N le nombre de dés empilés avant

que l'édifice ne s’écroule (on ne comptera pas le dernier dé, responsable de la chute de
I'édifice).

a. Déterminer I'univers image de N que I'on notera N ().

b. Pour tout ¢ € N*, on note

A; . « Lors de sa pose, le i-eme dé empilé n’a pas fait s’écrouler I’édifice. »
Pour tout k € N(2), écrire 'événement (N = k) a partir des évenements A;.
c. Déterminer la loi de N et vérifier qu'on a

SRV =k =1

d. Montrer que N + 1 admet une espérance et déterminer sa valeur.
e. En déduire que N admet une espérance et déterminer sa valeur.

2. On dispose de 4 dés cubiques équilibrés numérotés de 1 a 4. Les faces de chacun de ces 4
dés sont numérotées de 1 a 6. On lance les 4 dés simultanément. On reprend les dés avec
lesquels on n’a pas obtenu 6 que 'on relance simultanément, et ainsi de suite jusqu’a
avoir quatre 6 sur la table. On note 7' le nombre lancers effectués. Pour tout ¢ € [1,4],
on note T; le nombre de lancers effectués pour obtenir la face 6 avec le dé numéro .

a. Pour tout ¢ € [1,4], déterminer la loi de 7; et donner (si elles existent) son espérance
et sa variance.

b. Exprimer T en fonction de T, 15, T3 et T}.

c. Pour tout k£ € N, déterminer P(T < k).

d. En déduire la loi de T

127



Solution.

1. a. Il faut poser au moins un dé sur un autre pour que 1’édifice s’écroule donc| N (€2) = N*|.
b. Soit k € N*. Alors, | (N = k) = AIN Ay N+ N Ag 0 Ay |

c. D’apres la formule des probabilités composées, pour tout k& € N*,

P(N =k) =P(A1)P4,(A2) - - Pasnssnnae (Ap)Painasnna, (Apsr)

1 1 1
XX xox (1o ——
X5 X ka( k:+1>

1 kE+1-1
k! k+1
d tout k € N*, P(N = k) K
onc,| pour tou =k)= .
1P ’ (k+1)!
Soit n € N*. Alors, en faisant apparaitre une somme téléscopique,
P = k = =
k; =4 kz::l(ﬂl)! kzl (k+1)! 2 k+ 1) (k+ 1)

+o0
donc|Y P(N =Fk)=1|

d. Par le théoreme de transfert, N + 1 admet un espérance si et seulement si la série
> (k+ 1)P(N = k) converge. Soit n € N*. Alors,

kzi:lkJrl :k)zgjl(szr i+ XZ: k+k1;+(1k)k_1)!
n 1 1
e g?wm

Ainsi, | N 4+ 1 admet une espérance et E(N + 1) = e|.

e. Comme N = (N + 1) — 1, par linéarité de 'espérance, N admet une espérance est
E(N)=E(N+1)—1lie |[E(N)=e—1|

2. a. Soit i € [1,4]. La succession de lancers du dé numéro ¢ constitue un schéma de
Bernoulli (éventuellement infini) en prenant comme succes « Obtenir 6 ». Ainsi, la
variable T; qui donne le rang du premier succes pour le dé numéro ¢ suit une loi
géométrique de parametre é.

1
1-3

(5)°

Par théoreme, E(T;) = + soit |E(T;) =6| et V(T;) =

5
= — x 62 soit
o soi

o] =

V(T;) = 30|
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b. La variable aléatoire T" est le nombre de lancers nécessaires pour que les 4 dés donnent
6 donc |T = maX(Tl, TQ, T3, T4) .
c. Soit n € N. Alors,

Or,
st 1ilsy 1 1-(3) 5\ ¢
Pr<k)=(2) - = -3 (2) == —1_<)
(T < #) 2(6) 6n:—16:0(6) 6" 1-2 6
J n
5\F*
On conclut que, pourtoutkEN*,P(Tgk):[1—(6)]

d. Pour tout k£ € N*,
PT=k=PT<k)-PT<k-1)

VEeN" P(T=k)= [1 - (2)14 - [1 - (E)H]

donc

4
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Sujet 31. Capture d’esturgeons femelles (O1)

Soit p €105 1[.

Un étang contient des esturgeons, dont une proportion p de femelles.
Un biologiste y péche dans le but d’obtenir une femelle.

S’il obtient un male, il le rejette a I’eau et recommence.

Partie A
Dans cette partie, on suppose que le biologiste péche jusqu’a obtenir une femelle.
On définit la variable aléatoire X égale au rang de la tentative qui apporte une femelle.

1. Donner X ().
2. Donner la loi de X, son espérance et sa variance.
3. Démontrer la valeur de E(X).

Partie B

Dans cette partie, on suppose que le biologiste s’arréte soit lorsqu’il a obtenu une femelle,
soit lorsqu'’il a effectué N tentatives (/N étant un entier naturel non nul fixé).
On définit la variable aléatoire Xy par :

o Xy = k sila k*™¢ tentative donne une femelle ;

e Xy = 0 si aucune femelle n’est obtenue a l'issue des N tentatives.
1. Donner Xy (£2).

2. Calculer P(Xy = k) pour tout k£ € Xn(Q).

3. Déterminer, en fonction de p, la plus petite valeur de N pour que la probabilité d’obtenir
une femelle soit supérieure ou égale a 0,9.

N
4. Pour z € R\ {1}, que vaut »_ 2*?
k=0
En dérivant 1’égalité précédente, montrer que, pour tout z € R\ {1},

i pghe1 L +2N(Nz — N - 1)
k=1 (1—a)

5. Calculer E(Xy).

6. Déterminer lim E(Xy). Que reconnait-on ?
N—+o00

7. Soit Yy la variable aléatoire égale au nombre total d’esturgeons péchés.
Donner la loi de probabilité de Yy et calculer E(Yy).
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Solution.

Partie A
1. Par définition, | X (Q) = N*|.

2. La variable X représente le premier succes dans un schéma de Bernoulli (en prenant

comme succes « pécher un esturgeon femelle ») donc | X < ¥(p) |.

Par propriété, | E(X) = % et V(X) = 1;—2” :

3. Soit n € N*. Alors,
SRP(X =k) =Y k(1l-p)*'p=p> k(1 -p)*"
k=1 k=1 k=0

Or, comme 0 < p < 1,0<1—p<1donc, en reconnaissant une somme partielle de série
géométrique dérivée convergente,

kZ::l ( ) e (1—-(1-=p)* p* p

donc X admet une espérance et | E(X) =

Partie B
1. Par définition, | X5 (Q2) = [1, N] |

2. Pour tout i € [1, N], notons A; : « la pécheur attrape un esturgeon femelle & la e
tentative ». Alors, pour tout k € [[1,n],

(Xy=k)=ANAyN---NA,_1NA;
donc, par la formule de probabilités composées,
k=1
N A,-) p <Ak
i=1

Pty = §) = PORPCE | )P (5 Na)=a-pt

N
De plus, P(Xy =0) =1- ) P(Xy = k) donc, comme 1 —p # 1,
k=1
al k—1 = j 1—(1-p~ N
PX,=0)=1=> (1-p)"'p=1-p> (1-p/=1-px ————"==(1-p)".
k=1 j=0 1—(1—p)

(1=p)*'p sike[l,N]

Ainsi, |pour tout k£ € [0, N], P(Xy = k) = {(1 )N k=0
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N
3. La probabilité d’obtenir une femelle est » (1 — p) et
k=1

N N
>(1-p)"p=09=1-> (1-p)* 'p<0,l < (1-p)¥ < 0,1 & NIn(1—p) <In(0,1)
k=1 k=1

par croissance de In sur |0 ; 4+00[. De plus, comme 0 <1 —p < 1, In(1 — p) < 0 donc

N
In(0,1
S -p) 1> 09 e N> O
k=1 In(1 - p)
Ainsi, |la valeur cherchée est le plus petit entier NV supérieur ou égal a liln((lofp)) .
ol 1— N+t
4. Pour tout réel x # 1, Zxk =
—x

k=0
En dérivant par rapport a x, on en déduit que, pour tout réel x # 1,

et (N DaN(1 —2) — (1 -2V (1)
kz:;)kx = (1)
(N4 12V 4+ (N + 1)V 41— N
(1—x)?
—(N + 12 + NXN* 41
(1 —x)?

donc, comme le terme de la somme est nul pour k£ = 0,

gjlm’“—l _1+a¥(Na—N-1)
= (1 —x)?

5. Par définition,

B(Xy) = - KP(Xx = k) = Y k(L —p)p =p Y k(1 — )"~
k=0 k=1 k=1

donc, comme 1 — p # 0, d’apres la question précédente,

1+(1-pN(N1—p)—N-1 1+ (1—pN(-Np—-1
E(Xy) = p x L1 =PV p)2 ) _px 1 p)z( p—1)
(I-(1—-p)) p
1— (N 1)(1 —p)N
donc |E(Xy) = (Vp+ 1)1~ p) :
p
1 —pN(1—=p)VN —(1=p)V
6. On peut réécrire E(Xy) = pN(1=p) (1=p) . Or, comme 0 < 1 —p < 1,
p
_ &N i A _ 2\ — In(1—p)N
(1—p) mOet, par croissances comparées, N(1 — p) Ne mOcar

.. .. . 1
In(1 — p) < 0. Ainsi, par somme de limites, NgrilooE(XN) =

On retrouve ainsi 'espérance de X (qui correspond, en quelque sorte, au cas N = +00).
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7. Par définition, Yy (Q2) = [1, N].
Soit k € [1, NJ.
Si k < N alors (Yn = k) est réalisé si et seulement si (Xy = k) donc P(Y,, = k) =
P(Xy =k)=(1-p)*'p.
De plus, (Yy = N) si et seulement si (Xy = N) ou (Xy = 0) donc P(Yy = N) =
P((Xy = N)U(Xx =0)) et, comme cette union est disjointe,

PYy=N)=PXy=N)+PXny=0=1-p) " 'p+(1-p~
=1-p"'p+Q-p=01-p" "

(1—plkip sike[l,N—1]
(1—-pNt sik=N '

On en déduit, en utilisant le résultat de la question 4. avec N — 1 au lieu de N, que

Ainsi, |pour tout k € [1, N], P(Yy =k) = {

E(YN) = % ]CP(YN — k) _ Nz_l ]{;(1 _p)k,1p+ N(l _p)Nfl

=pY k(1—p) '+ N1-p"*

L+ 1-p)" (V=D —p - (N-1)—1)

=p X (I—(1—p)2 + N(1—p)*~
14+ (1 =p)"(=(N—1)p— 14 Np)
p
1-(1-p)*

donc |E(Yy) =
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Sujet 32. Loi du second succeés (O1)

Premieére partie
Une épreuve comporte deux issues : succes ou échec.
La probabilité du succes est notée p, avec p € |0; 1].
La probabilité de 1’échec est notée ¢ =1 — p.
On répete cette épreuve de facon indépendante jusqu’a ce qu’on obtienne deux succes.
On note X la variable aléatoire égale au numéro de I’épreuve amenant le deuxieme succes.
Pour tout + € N*, on note R; I’événement « I'épreuve numéro i est un succes ».
1. Calculer P(X =2), P(X =3), P(X =4).
2. Préciser X (Q2) et calculer P(X = k) pour tout k € X (Q).

3. Calculer la probabilité de I’événement A : « il ne se produit pas de deuxieme succes ».

Deuxiéme partie
Un ticket de métro cofite 2 €.
En cas de fraude, la premiere amende est de 40 € et la seconde est de 80 €.

N

A chaque trajet, la probabilité pour un usager d’étre contrdlé est égale a p.

Tom décide de compter le nombre de trajets qu'il effectue. La variable aléatoire T' désigne le
numéro du trajet ou il est controlé pour la deuxiéme fois.

1. Donner la loi de T'. Calculer son espérance.
2. Démontrer que, pour tout n € N*, P(T' >n) = (1 —p)" ' [(n—1)p+ 1].
3. On suppose que p = 1073, Calculer P(T > 60). Interpréter le résultat.
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Solution.
Premieére partie

1. Comme (X = 2) = R; N Ry et comme les événements Ry et Ry sont indépendantes,
P(X =2) =P(R))P(Ry) ie. P(X =2) =p?|

Comme (X =3) = (R; N Ry N R3) U (R; N Ry N R3), comme cette union est disjointe
et comme R;, Ry et R3 sont indépendants :

P(X =3)=P(RiNRyN R3) + P(R; N Ry N R3)
= P(R,)P(R,)P(Rs3) + P(R,)P(Ry)P(Rs3) = pgp + qpp

donc | P(X = 3) = 2p%q|.

Enfin, on a de méme

(X=4)=(RiNRyNR3NRy)U(RINRyNR3sNRy)U(R N RN Ry N Ry)

donc, comme 1'union est disjointe et les évenements Ry, Ry, R3 et R4 sont indépendants,
P(X4) = pg*p + qpap + ¢*p? ie. P(X = 4) = 3p*¢°.

2. Il faut et il suffit d’avoir au moins 2 expérience pour pouvoir avoir 2 succes donc
X(Q) =N\ {0;1}}
Soit un entier £ > 2. Notons Y la variable aléatoire égale au nombre de succes obtenus
lors des k& — 1 premiéres expériences. Comme les répétitions sont indépendantes, Y suit
une loi binomiale #(k — 1,p). Or, (X = k) = (Y = 1) N Ry, donc, comme les évenements
(Y = 1) et Ry, sont indépendants (puisque le résultat de la k-iéme épreuve est indépendant
des k — 1 épreuves précédentes),

kE—1

P(X =k)=P(Y =1)P(R)) = ( |

)plq'“‘2 X p

donc |P(X = k) = (k — 1)p*¢c2|.

3. Le contraite de A est « il existe un entier k > 2 tel qu’on obtient un second succes a la
+oo

k-iéme épreuve » donc A = | J(X = k). Or, les événements (X = k) pour k > 2 sont
k=2
deux a deux incompatibles donc

400 “+o00 —+oo —+oco )
PA) = P(X=k=> (k—1p°¢d"?=p*> (k—1)¢" T Py e
k=2 k=2 = j=1

k=2

On reconnait la somme d’une série géométrique dérivée convergente (car g € [0;1[) donc

= 1.

1 , 1
)

P() = x 1—q? "7

Par suite, |P(A) = 0 i.e. A est un événement négligeable |.
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Deuxiéme partie

1. D’apres les résultats de la Premiére partie (et en supposant que les controles sont
indépendants), 7'(2) = N\ {0;1} et, pour tout entier k > 2,

P(T =k)=(k—1)p*(1—-p)*?|

Soit un entier n > 2. Alors,

n n

Zi: KP(X =k) =Y k(k—1)p*1—p)" 2 =p* > k(k—1)1—p)* >

k=2 k=2

On reconnait une somme partielle d'une série géométrique dérivée seconde convergente
(car 1 —p € [0;1]) donc

" 2 2
FP(X =k) —— pPx —————— ==,
== ol (e (7
Ainsi, T admet une espérance et | E(T) = % :
2. Soit n € N*. Alors,
= 2 =2 2 AN k—2
P(T>n)= ) (k=1p°1-p)2=p" Y (k-1)1-p)*
k=n-+1 k=n-+1
2N jtn—1
= P> (G+Hn)d-p)t
j=k—n—1 =0
2 = i—1
=p(L=p)" D (5 +n)(1 —p)~
7=0

=p’(1—p)" rij(l —p) '+ nio(l —p)j‘ll

P(1— p)" [1 n(l-p) S —p)ﬂ‘]

(1-(1-p) j=0
R I ]
2 n i n
=r(1-p) [pz p(l—p)]
9 —n Ll—=p+mnp
A p*(1—p)

soit |P(T'>n) = (1—p)" ' [1+ (n—1)p]

Autre méthode. Notons Y la variable aléatoire égale au nombre de contréles au
cours des n premiers trajets. Alors, comme précédemment, Y suit une loi binomiale de
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parametres n et p. Or, (T' > n) = (Y = 0) U (Y = 1) donc, comme cette union est
disjointe,

P(I'>n)=PY =0)+P(Y =1)= <g>p°(1 —p)"+ (T)pl(l —p)n?

=(1=p)"+np(l—p)" ' =1 —=p)" 1 —p+np

ie. P(T>n)=1—-p)" '[1+ (n—1)p]|
. Sip=10"3 et n = 60 alors

999 \ ¥ 59 999 \® 1059
P(T>60) = () (1 _ 2097 0,998,
(T"> 60) (1000) ( +1ooo> (1000) “ 1000 =

Ainsi, la probabilité que Tom ne soit contrélé qu'une seul fois en 60 trajets est environ
0,998. Or, si Tom paye son ticket a chaque trajet, cela lui revient a 120 € alors que §’il
ne paye pas, la probabilité qu’il n’ait qu'une seul amende et qu’il paie donc 40 € est tres
proche de 1. Ainsi, il a donc intérét a frauder!
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Sujet 33. Tirage avec ajout de boule noire (O1)

Une urne contient initialement 1 boule blanche et 1 boule noire.

On effectue des tirages selon le protocole suivant :

— i on obtient une boule noire, on arréte ;

— si on obtient une boule blanche, on la remet dans I'urne et on rajoute une boule noire.
Pour tout k£ € N*, on note :

e [ I'événement « on obtient une boule blanche au k-ieme tirage » ;

e N, I'événement « on obtient une boule noire au k-iéme tirage ».

On note T' le numéro du tirage qui amene une boule noire.
Donner T'(£2).

Soit un entier n > 2. Si ’on n’a pas obtenu de boule noire lors n — 1 premiers tirages,
quel est le contenu de I'urne au moment du n-ieme tirage ?

1.
2.

S vk W

Donner, pour tout entier n > 2, Pp,np,n..np, ,(Bn)-
Calculer, pour tout n € N*, P(ByN By N---N By,).

Déterminer la loi de T'.

a.

p TP T

o

Ecrire le polynéme X? comme combinaison linéaire de X (X +1), X + 1 et 1.
Ecrire le polynéme X? comme combinaison linéaire de (X — 1)X(X 4+ 1), X 4+ 1 et 1.
En utilisant la question 6.a., calculer E(T).

En utilisant la question 6.b., calculer V(7).

On note Y =T + 1. En utilisant la variable aléatoire Y, proposer une autre méthode

de calcul de E(T).

On note Z = (T + 1)(T — 1). En utilisant la variable aléatoire Z, proposer une autre
méthode de calcul de E (77).

138



Solution.

1. On peut tirer une boule noire a n’importe quel tirage a partir du premier donc | 7'(€2) = N*|.

2. Siles n — 1 premiers tirages ont amené des boules blanches, on a ajouté dans I'urne n — 1
boules noires dont, au moment du n-iéme tirage I'urne contient 2+mn —1 = n + 1 boules :
\1 blanche et n noires \

3. Soit un entier n > 2. Si I’événement By N By N --- N B, est réalisé, on effectue un n-ieme

tirage et la composition de I'urne est celle déterminée dans la question précédente. Ainsi,

_1
n+1 |

par équiprobabilité des tirages, | Pp,np,n-ns,_, (Bn) =

4. Soit n € N*. Alors, d’apres la formule des probabilités composées,

P(BiNnByN---NB,) =P(B1)Pg(B2) - Pprpnnp, . (Bn) = ; X il)) X e - Jlr |
ie. |\ P(BiNB:N---NBy) = gy |
5. Soit n € N*. Alors, (T'=n) =By NByN---NB,_1 NN, donc
P(T = 1) = P(By N By N1 By )Py, (Na) = — x —-
nl n+1

soit |P(T =n) = i |

6. a. Comme X(X +1) = X%+ X, on peut écrire | X? = X(X +1) — (X +1)+ 1|
b. Comme (X — DX (X +1) = X(X —1)(X +1) = X(X?—-1) = X* — X, on peut
éerire [ X2 = (X —DX(X + 1)+ (X +1)—1|

7. a. Soit n € N*. Alors,

~

> kP

&y
I
M=
=
_l’_
=
I
]

P (k+1)!

k=1

"k(k+1) & B+l
= - +
kz::l(lwrl)' k;(lwrl)! kz:;(lwrl)'
" 1 "1 n 1

= -y —+

N R T R DY
5! 3! 1>+n+11

=0 J! o ¥ =

n—ll no1 n+1
:j=oﬂ_1;)’f'+1+§'_2’”+oo o

Ainsi, T admet une espérance et |E(T) = e — 1.




b. Soit n € N*. Alors,

zn: KP(T =

k=1

Ainsi, T? admet une espérance et

oy
w

(k — Dk(k+1) +
(k+1)!

k:—l—l

(k+1)—1

Il
AM:

NE

k)

o~
_|_

T = =

Il
—_

o
o

n

Ny

k::l
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~— ~—
o
—
o
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~—~
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+
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Il
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Par la formule de konig-Huygens, on en déduit que T admet une variance et que

V(T)=E#)-ET) =ce+1—-(e—1=e+1—(e*—2e+1)
soit |[V(T) =e(3—¢)|
a. Par définition Y (Q) = N\ {0; 1} et, pour tout entier k > 2
k—1

P(Y = k) =P(T+1=k) =PI =k—1) =~

Soit un entier n > 2. Alors,
EP(YY =k)=) ——— = =>» — e.
kz::Q ;::2 k! kz:% (k=2)! gl no+oeo

Ainsi, Y admet une espérance et E(Y') = e. Or, par linéarité, E(T) = E(Y) — 1 donc

E(T)=e—1.
b. Par le théoreme de transfert, Z admet une espérance si et seulement si la série
> (k+1)(k — 1)P(T = k) converge. Soit n € N*. Alors,
n n (k’ _ 1) n 1 n—2 1
k: 1 p— f— R—
2o B N N

donc Z admet une espérance et E(Z) =e. Or, Z =T? — 1 donc T? =

Z + 1 et ainsi,

E(T?

par linéarité,

)=E(Z)+1=e+1|
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Sujet 34. Capture d’un couple d’esturgeons (O1)

Un biologiste péche des esturgeons.

Il souhaite pécher un esturgeon male et un esturgeon femelle pour les placer dans un aquarium
afin qu’ils se reproduisent.

Pour cela, il effectue successivement différentes tentatives. On suppose qu’a chaque tentative,
le biologiste a une probabilité p € ]0; 1[ de pécher un esturgeon.

On suppose que les proportion de males et de femelles sont identiques.

Soit X la variable aléatoire réelle égale au nombre de tentatives nécessaire pour pécher le
premier esturgeon (maéle ou femelle).

Soit Y la variable aléatoire égale au nombre de tentatives supplémentaires nécessaires
pour pécher un esturgeon de sexe opposé.
On suppose que les variables aléatoires X et Y sont indépendantes.

1. Déterminer la loi de X puis donner son espérance et sa variance.
2. Déterminer la loi de Y puis donner son espérance et sa variance.
3. On pose Z =X +Y.

a. Donner une interprétation de la variable aléatoire Z.
b. Déterminer Z(f).

c. Calculer P(Z =2) et P(Z =3).

d

. Pour tout n € Z(Q2), exprimer 'événement (Z = n) en fonction de X et Y.

1—]7 k-1
1_ .

1
e. Calculer, pour tout entier n > 2, la somme Z
k=1

7N

o3

f. En déduire la loi de Z.
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Solution.

1. Par définition, le loi X est la loi du premier succes dans un schéma de Bernoulli donc
X <= ¥%(p)|. On en déduit que | E(X) = % et V(X) = 1p;2p ‘

2. Pour une tentative, notons F : « le biologiste péche un esturgeon », M : « le biologiste
péche un male » et M : « le biologiste péche une femelle ». Comme les proportions de
males et de femelles sont identiques, P(M | E) = P(M | F) = 1. On en déduit que
P(ENM)=PE)PM|E)=Let P(ENF)=PE)P(F | E) ="t
Une fois que le biologiste a péché le premier esturgeon, il lui faut recommencer ses
tentatives jusqu’a pécher un esturgeon du sexe opposé. La loi de la variable Y qui compte

le nombre de tentatives nécessaires est donc la loi du premier succes dans un schéma de

Bernoulli de parameétre %. Ainsi, | Y < ¢(%) | donc | E(Y) = % et |[V(Y) = ZE_—E = % :
2

3. a. La variable aléatoire Z représente le nombre de tentatives nécessaires au biologiste
pour pécher deux esturgeons de sexes différents.

b. Comme X (2) =N*et Y(Q) =N*|Z(Q) =N\ {0;1}|

c. Comme (Z=2)=(X=1)N(Y =1) et comme X et Y sont indépendantes,

donc |P(Z =2) = %2 :
De méme, (Z =3) =
disjointe,

~—

donc |P(Z =3) = PP(=3p) |

n—1
d. Soit un entier n > 2. Alors, |[(Z =n)= |J(X =k)Nn (Y =n—Fk)|

e. Soit un entier n > 2.
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1—
Commep;«éo,l—p#l—gdoncl p;«él.Ainsi,

donc

_ b

1_p n—1
n—1 k—1 n—2 J 1 - P
sm8) ) -
s\ 5 o\ =35 1_1—p
1_2
2
1_p n—1 ].—p n—1
L= P L- P
1—5 _ 1—5
1-8-(1-p) 5
1—% 1—%
n— k—1 n—1
(o)
1_2 ) _>r ‘
k=1 2 2 2

f. Soit un entier n > 2. D’apres le résultat de la question d.

P(Z =

n):P(U(X:k)m(Y:n—k)).

k=1

Comme cette union est disjointe,

donc
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Sujets de probabilités : variables
aléatoires a densité
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Sujet 35. Le jeu des ampoules (C3)

Lors d’un jeu télévisé, 400 ampoules sont allumées dans une piece.

Un candidat ouvre la porte de la piéce, a I'instant « de son choix (z € R,).

Le gain du candidat est égal au nombre d’ampoules encore allumées lorsqu’il ouvre la porte,
multiplié par le temps x.

On suppose que les durées de vie des ampoules sont indépendantes les unes des autres, et
que la durée de vie de chaque ampoule suit une loi exponentielle de parametre A\ > 0.

1. On note T une variable aléatoire de loi exponentielle de parametre .

a. Rappeler la densité de T' et son espérance.
b. Calculer la variance de T.

c. Montrer que pour tous réels s et t strictement positifs.
P(T>s+t|T>s)=P(T>t)

2. On note A le nombre d’ampoules encore allumées a l'instant x.
Donner la loi de A ainsi que son espérance et sa variance.

3. On note G le gain du candidat.

a. Exprimer G en fonction de z et de A. En déduire E(G) en fonction de .

b. Déterminer la valeur z,, de x pour laquelle ’espérance du gain est maximale.
4. Dans cette question, on suppose que x = T,,.

a. Justifier que 'on peut approximer la loi de A par une loi normale dont on précisera
les parametres.

b. Dans cette question, la probabilité que le gain dépasse 1000 euros est égale a 0,001.
Déterminer une valeur approchée de A.

On donne ®(3,0902) = 0,999, ou  est la fonction de répartition de la loi normale
centrée réduite.
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Solution.

1. a. La densité de T est la fonction f définie sur R par

sit>0

sinon

VteR, f(t)= {Ae(_)kt

On a alors |E(T) = —|.

b. Par le théoréeme de transfert, la variable 7% admet une espérance si et seulement
+oo +o0o
lintégrale / 2 f(t)dt = / 2 x Ae™dt converge.
—0o0 0
Soit un réel A > 0. Les fonctions u : t — t2 et v : t — —e~ M sont de classe €
sur R et, pour tout réel ¢, u/(t) = 2t et v/(t) = Ae™* donc, en intégrant par parties,

A A
/ 2 x e Mdt = [t2 *M / o x (—e M) dt = —A%e M 42 / te M dt.
0 0

Or, par croissance comparée, comme A > 0, lim A2%e * = 0. De plus, comme T
A—+o0

) , 1
admet une espérance égale a v
/ te M dt — / o) zl/Atf( 1 dt — SE(T)
A AJo As+too A '
On en déduit donc que

A 1 2
2 o 2-E(T) = —.
/0 £f(t)dt —— 0+25E(7) =
2
Ainsi, T? admet une espérance et E(T?) = T Par la formule de Konig-Huygens, on

en déduit que T admet une variance et que

V() =B - B - 55 (5) = - 3

soit finalement | V(T) = — |.

c. Pour tout réel x > 0,

P(T > z) :1—P(T<x):1—/x)\e_’\tdt:1— [—e’\t}z
0

=1- (—e_’\’” — (—eo)) —14+eM_1=e""
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Par définition,

P(T>s—|—t|T>S):P({T>S+t}ﬂ{T>3})

P(T > s)
Or, comme t > 0, {T > s+t} C{T > s} donc {T >s+t} N{T > s} ={T > s+t}
et ainsi
P(T >s+t) et \
P(T > t|T>s)= — _ oA At
A = ‘
Le.

P(T>s+t|T>s)=P(T>t)|

Cela traduit que la loi exponentielle est sans mémoire i.e. que la probabilité quune
ampoule ait une durée de vie de t heures supplémentaires sachant qu’elle a déja
fonctionné s heures est la méme que la probabilité que 'ampoule ait initialement une
durée de vie de t heures.

2. Numérotons les ampoules de 1 a 400 et notons, pour tout k € [1,400], X la variable
aléatoire de Bernoulli dont le succes est « 'ampoule k£ est encore allumée a 'instant
x ». Alors, le parametre de X, est P(T > x) = e **. Comme les durées de vie des

ampoules sont supposées indépendantes, les variables aléatoires X} sont indépendantes.
400

Or, A= Z X donc | A suit une loi binomiale de parametres n = 400 et p = e~
k=1

Az

On en déduit que |E(A) = 400e=** et V(A) = 400e~%(1 — e~*?)|.

3. a. Par définition |G = zA| Par linéarité de I'espérance, on en déduit que E(G) = zE(A)
i.e. E(G) = 400ze |

b. Considérons la fonction g : x — 400ze=** définie sur R,.. Cette fonction est dérivable
comme produit et composée de fonctions dérivables et, pour tout réel x > 0,

g (x) = 400 4 400z (—Xe ™) = 400(1 — Az)e .

—Azr

Or, pour tout réel z, 400e~** > 0 donc le signe de ¢'(z) est le signe de 1 — Az. On

1 1
en déduit que ¢'(x) > 0 si z € [O;A} et ¢'(x) < O0siz e [)\;-1—00 [ Ainsi, g est

1
croissante sur [0 ; )\} et décroissante sur " ;00 { On en déduit que g atteint son
| i
maximum en z,, = %
- ) 1
Ainsi, | E(G) est maximale en z,, = —|.

1
4. On suppose que x = &, = N donc \z = 1.
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a. Comme n = 400 > 30, np = 400e™! ~ 147 > 5 et n(1 —p) = 400(1 —e™ ') & 252 > 5,
A —400e~!
\/4006_1(1 —e 1)

peut étre approximée par une loi normale centrée réduite donc la loi de A peut étre
approximée par une loi normale d’espérance 400e~! et de variance 400e~!(1 —e™1).
b. L’énoncé précise que P(G > 1000) = 0,001. Or,

par le théoreme de de Moivre-Laplace, on sait que la loi de B =

G > 1000 < iA > 1000 <= A > 1000\
A—d00e”' 1000 — 400¢”!
V400e 1 (L —e-1) (/4000 1(1 —e 1)
_ 1000 — 400"
\/4006_1(1 —e 1)

B

1000\ — 400e~*
\/400e—1(1 —e 1)
_ -1
P(B< 1000\ — 400e
\/400e—1(1 —e 1)

Ainsi, P (B >

) = 0,001 donc, en passant au complémentaire,

) = 0,999. Or, comme B suit approximativement une

1000\ — 400e~?
loi M (0,1), pour tout réel z, P(B < x) =~ ®(x). Ainsi, ® ( ¢ ) ~

\/4006_1(1 —e™ 1)
0,999. Or, & est strictement croissante sur R donc injective et I’énoncé précise que

1000\ — 400e™*
$(3,0002) ~ 0,999 donc ©  ~3,0002.
\/400e—1(1 —e 1)

3,0902,/400e~1(1 — e~1) + 400!

On en déduit que A\ =
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Sujet 36. Parc d’imprimantes dans une usine (C8)

1. On considere la fonction H définie sur [0;1] par H(x) =1 — 102° + 9z'°.

a. Etudier les variations de H sur [0;1].
b. Montrer que H réalise une bijection de [0; 1] vers un ensemble & déterminer.
c. Avec € = 0,025, déterminer graphiquement a et b tels que H(a) =1 —¢c et H(b) = ¢.
(On pourra utiliser GeoGebra)
d. Déterminer ¢; et ty tels que H(e™™) =c et H(e™) =1—¢.
2. Dix imprimantes équipent une usine. Cette usine est fonctionnelle si au moins 9 de ces
machines fonctionnent.
Pour tout & € [1,10], on appelle Dy la variable aléatoire donnant le temps de
fonctionnement, en année, de la k-éme imprimante.
Les 10 variables aléatoires Dy sont mutuellement indépendantes et suivent la méme
loi exponentielle.
La durée moyenne de fonctionnement d’une imprimante est de 5 ans.

a. Déterminer la fonction de répartition de la loi exponentielle.

b. Déterminer, pour tout réel ¢ > 0, la probabilité qu’une imprimante fonctionne au
moins ¢ années.

3. Pour tout réel t > 0, on note N, la variable aléatoire donnant le nombre d’imprimantes
qui fonctionnent au temps t.
Montrer que, pour tout réel ¢ > 0 et tout entier n € [0, 10],

10 t\ "N t\ 10—n
P(N, =n) = 5 1—e5 )
== () (1) (1)
4. Soit D la variable aléatoire donnant le nombre d’années de fonctionnement de 1’usine.

a. Déterminer la fonction de répartition de D.
b. Déterminer un intervalle de temps I = [u;v] tel que P(D € I) = 0,95.
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Solution.
1. a. La fonction H est un polyndme donc elle est dérivable sur [0; 1] et, pour tout = € [0; 1],

H'(z) = —902° + 902" = 902%(x — 1).

Pour tout réel x € [0;1], 2® > 0 et 2 —1 < 0 donc H'(z) < 0. De plus, H' ne s’annule
qu'en 0 et 1 donc | H est strictement décroissante sur [0;1] |.

b. La fonction H est continue (car elle est dérivable) et strictement décroissante sur
[0;1]. De plus, H(0) = 1 et H(1) = 0 donc, par le théoréme de la bijection continue,

H réalise une bijection de [0;1] dans lui-méme |

c. On trace, a 'aide de GeoGebra, la courbe de H et les droites d’équation y = 0,025 et

y = 0,975.
CH
1
A
0.8+t
0.6t
0.4+
0.2+
B
1 1 1 1 AN
0.2 0.4 0.6 0.8 1

Les points d’intersection A et B ont pour abscisses respectives environ 0,555 et 0,975
donc ‘a ~ 0,555 et b~ 0,975
d. Comme H est bijective,

H(e™ =0,025<=e'=be= —t=In(b) <t =—1In(h).

Ainsi, |t; = —1In(b) ~ 0,025 |.

De la méme fagon, |ty = —In(a) ~ 0,589 |.
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2. a. Si X est une variable aléatoire suivant une loi exponentielle de parametre A alors,
pour tout réel z,

o six <0, P(ng
esiz>0,P(X <z /)\e_’\tdt _At} =1—e ",

Ainsi, la fonction de répartition F'x de X est définie par

0 siz <0

VeeR F = .
v x() {1—e—*x siz>0

b. Soit un réel t > 0. La probabilité qu'une imprimante fonctionne au moins ¢ années est
P(D,>t)=1-P(D, <t)=1—Fp,(t) =M
(la deuxieme égalité découlant du fait que Dy est une variable aléatoire a densité donc
P(D; <t)=P(D; <1t)).

La durée de vie moyenne d’'une imprimante est 5 ans donc E(D;) =5 i.e.
donc A = 1.

=5

T

o

Ainsi, [la probabilité qu’une imprimante fonctionne au moins ¢ années est 75 |.

3. Soit t > 0. Notons X}, la variable aléatoire valant 1 si I'imprimante & fonctionne au temps
t et 0 sinon. Ainsi, X}, est une variable aléatoire suivant une loi de Bernoulli de parametre
10
e~5. De plus, N; = Z X}, et les variables aléatoires X}, sont indépendantes car les durées
k=1

de vies Dy sont indépendantes. Ainsi, /V; suit une loi binomiale de parametres 10 et es

ot

On conclut donc que

Vn € [0,10] P(N, =n) = <1O> (e8)" (1~ e—%)”"” .

n

4. a. Par définition, pour tout réel t < 0, P(D < t) = 0. De plus, pour tout réel ¢ > 0,
P(D <t)=P(N, <9) =1—P(N, =9) — P(N, = 10)

S (D) et e - () e

=1-10 (e’é

Ainsi, la fonction de répartition Fp de D est définie par

ew e 0 sit<0
I UES PR T
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5. Comme D est une variable aléatoire a densité, pour tous réels a et b,
P(De€[u;v))=P(D<v)—P(D<u)=P(D <v)—P(D<u)=Fpv)— Fp(u).

Or, pour tout ¢ > 0, —t < 0 donc e~ € [0;1]. Ainsi, pour tout ¢ > 0, Fp(t) = H(e 5).
On déduit alors de la question 1. que

P(D € [5t1:5t,]) = H(e ) — H(e ™) =1 — 0,025 — 0,025 = 0,95.

Ainsi, 'intervalle | I = [5t; ; 5ts] &~ [0,125;2,945] convient |.
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Sujet 37. Montage de panneaux solaires (02)

Dans cet exercice, on pourra utiliser sans démonstration la propriété suivante : une variable
aléatoire X est une variable a densité si et seulement si sa fonction de répartition F' est continue
sur R et de classe € sur R sauf, éventuellement, en un nombre fini de points. De plus, dans
ce cas, on peut obtenir une densité de X en dérivant la fonction F' en tout point ou elle est
dérivable et en lui donnant la valeur arbitraire 0 en tout point ou F' n’est pas dérivable.

Soit un nombre réel A > 0.

1.

Soit Z une variable aléatoire qui suit la loi exponentielle de parametre .

a. Donner une densité de Z, notée fz, ainsi que son espérance (sous la forme d’'une
intégrale, puis donner sa valeur sans calcul).

b. Donner le moment d’ordre 2 de Z, c’est-a-dire E(Z?).

. Soit f définie par :

0 sit<0
Mte ™ sit>0

VteR f(t):{

Vérifier que f est une densité de probabilité.

. On considere deux variables aléatoires réelles indépendantes 17 et T, admettant toutes

deux la fonction f comme densité de probabilité.
a. Déterminer leur fonction de répartition F'.
b. Montrer que T} et T, admettent une espérance et la calculer.

On considere différents systemes de montage de panneaux solaires. On se limite aux
systémes comportant deux panneaux. On admet que 7T} modélise la durée du vie du
premier panneau et 15 la durée de vie du second.

. Le premier systeme, noté S, tombe en panne lorsque I'un de ses deux éléments tombe en

panne. On dit que le systeme S est monté en série. On note U l'instant ot le systeme S
tombe en panne.

a. Exprimer, pour tout réel k, 'événement (U > k) en fonction de T} et Ts.
b. Déterminer la fonction de répartition Fy de U puis une densité fyy de U.

. Le second systéme, noté S’, tombe en panne lorsque ses deux éléments tombent en panne.

On dit que le systeme S’ est monté en parallele. On note V' l'instant ou le systeme S’
tombe en panne.

a. Exprimer, pour tout réel k, I’événement (V' < k) en fonction de T; et Ts.
b. Déterminer la fonction de répartition Fy de V' puis une densité fi, de V.

154



Solution.

1. a.

2. La
de

Par définition, une densité de Z est la fonction f; définie sur R par

0 sit<O0

VieR fZ(t):{)\e_*t sit>0/

Comme f est nulle sur R* | 'espérance de Z est

E(Z) = /Om tfz(t)dt = /Om Me M dt |,

Par théoreme, | E(Z) =
Soit A > 0. Alors,

!
N

A A
/ t2f(t)dt = / M2e M dt.
0 0

Considérons les fonctions u : t —> t2 et v : t — —e~ . Ces deux fonctions sont de
classe €1 sur R et v’ : t — 2t et v’ : t — Ae™* donc, en intégrant par parties,

A
/ 2 fy(t)dt = [—t? —” / 2t x (—e M)dt = —A%e M 12 / te M dt.
0

Or, Comme A > 0, par croissances comparées, Alim A% M = 0 et, d’apres les
—+00
résultats de la question 1.,

1 1
-\t
/te dt = A/ ta(t) dt ——— TB(Z) = .

A 2
Ainsi, par somme de limite, / t2f(t)dt —> ¥ donc, par le théoréme de transfert,
0
2
A2 |
fonction f est nulle sur |—oo; 0 et continue sur [0; +o00[ comme composée et produit
fonctions continues donc f est continue par morceaux sur R. De plus, pour tout

Z admet un moment d’ordre 2 et | E(Z?) =

t €]—00;0[, f(t) =0 =0 et, pour tout t € [0;+oo[, f(t) = Nte ™™ >0 cart > 0 et exp
est a valeurs positives. Ainsi, f est positive sur R. Enfin,

+o00 +o0o 1
/ F(t)dt = / A2e N — )\/ MeMdt = NE(Z) = A x ~ = 1.
R 0 0 A

On conclut donc que ‘ f est une densité de probabilité sur ]R‘.

3. a.

Soit un réel z. Si x < 0 alors

F(z) =P(Ty < z) = /_;()dt —0.
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Sixz > 0 alors
Fe) = P(Ty <) = [ N de =\ ["tx de Nt
0 0

Considérons les fonctions u : t — t et v : t — —e . Ces deux fonctions sont de
classe €' sur R et ' :t — 1 et v' : t —> Ae™ donc, en intégrant par parties,

/ tx e Mdt = / 1 x( e M )dt = xe_m—I—/ e Mdt
0

1 1
_ —Az At - _ . .V A
= —xe + { )\e ]0 xe /\e ( )\)

donc F(z) =1 — e — Aze 7,
Ainsi, F' est la fonction définie sur R par

0 siz <0
Ve ek F(gc):{1—e_’\7”—)\317e_*B sizx>0]

. Comme f est nulle sur |—o0o; 0], les variables T} et T, admettent une espérance si et

+oo
seulement si 'intégrale / tf(t) dt converge. Or,
0

+o0o +oo +oo
/ tf(t)dt = / Nt2e M dt = A / t2 x Me M dt = \E(Z?).
0 0 0

2

Ainsi, d’apres le résultat de la question 1.b., cette intégrale converge et vaut Ax — 2
2
St
. L’évenement (U > k) signifie que le systeme fonctionne au-dela de I'instant & donc
que les deux panneaux fonctionnent au-dela de I'instant k.

Ainsi, |(U > k)= (Th > k)N (T> > k) |.
. Comme les variables aléatoires T et T, donc indépendantes, on en déduit que, pour
tout réel x,

donc T} et T; admette une espérance et | E(T)) = E(Ty) =

FU(:E):P(ng)zl—P(U>x):1—P((T1>x)ﬂ(Tg>x))
=1-(1-F()(1-F(r)=1-(1-2F@ ) F(iv))
=1-1+2F(z) — F(x)?

soit finalement, | pour tout réel x, Fy;(z) = 2F(z) — F(x)?|.

La fonction Fy; est continue sur R (car F est) et de classe €' sur R\ {0} (car F
lest également) donc U est une variable aléatoire a densité fi; et, pour tout ¢ # 0,

fu(t) = F/(t).

156



Ainsi, pour tout réel t < 0, fy(t) = 2F'(t) — 2F'(t)F(t) = 0 et, pour tout ¢ > 0,
fult) = 2F'(t) — 2P (0 F () = 2/(t) — 2/ (1) P (1)
= 22\%te ™™ — 2\% e M(1 — e M — Me M)
= 2\ %te M (e 4 Me™ M)
= 20%t(1 + At)e M

Ainsi, une densité fyy de U est la fonction définie sur R par

0 sit<O0

teR t) = .
ViER ful®) {2A2t(1+At)e—2M sit>0

. L’événement (V' < k) signifie que le systéme tombe en panne au plus tard a l'instant
k donc que les deux panneaux fonctionnent sont en panne a I'instant k.

Ainsi, |(V < k)= (T1 < k)N (Ty < k)|
. Comme les variables aléatoires T} et T, donc indépendantes, on en déduit que, pour
tout réel x,

donc, | pour tout réel z, Fy(x) = F(x)?|.

La fonction Fy est continue sur R (car F lest) et de classe €' sur R\ {0} (car F
lest également) donc V' est une variable aléatoire a densité fy et, pour tout ¢ # 0,

fv(t) = Fl ().
Ainsi, pour tout réel t < 0, fy(t) = 2F'(t)F(t) = 0 et, pour tout ¢t > 0,

fr(t) =2F' () F(t) = 2f(t) — 2f () F(t) = 2X*te (1 — e — te™).

Ainsi, une densité fy de V est la fonction définie sur R par

0 sit<O0

VteR fy(t) = {2/\2te)‘t(1 _ e M /\te*/\t) sit>0][
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Sujet 38. La course a pied (02)

Lors d’une course nocturne, un nombre n € N* de coureurs passent la ligne d’arrivée entre
minuit et une heure du matin. Pour tout entier i € [1,n], on modélise I’heure d’arrivée du
coureur numéro ¢ par une variable aléatoire U; de loi uniforme sur U'intervalle [0; 1]. On suppose
que toutes les variables aléatoires U; sont mutuellement indépendantes. On note, pour tout
i € [1,n], Fy, la fonction de répartition de U; et fy, une fonction densité de U;.

1. Soit ¢ € [1,n]. Donner 'expression d’une fonction de densité de U; et 'espérance de U;.
2. Calculer la probabilité qu’'un coureur arrive entre 00h20 et 00h30.

3. On définit pour k € [1,n], la variable aléatoire T} égale au temps du k-iéme coureur le
plus rapide. On note Fj, la fonction de répartition de Tj.

a. Soit t € [0;1]. Exprimer I"évéenement (77 > t) a 'aide des variables aléatoires U,
i€[1,n].
En déduire la valeur de P(7} < t).

b. Que vaut Fi(t) lorsque ¢t > 17 lorsque t < 07 lorsque ¢t € [0;1] 7

c. En déduire I'expression d'une fonction de densité de T7.

d. Lorsqu’il y a 12 coureurs en lice, calculer ’espérance de Tj.

4. Pour tout réel ¢t € [0;1], on note N; la variable aléatoire égale au nombre de coureurs
arrivés dans l'intervalle de temps [0;¢]. Dans toute cette question, on considere un réel
t € [0;1] et un entier k € [1,n].

a. Reconnaitre la loi de NV,.
b. Exprimer I’événement (7} < t) en fonction de V; et de k.

c. Justifier que P(T), <t) =) (n) t(1—t)" "
i=k \!
d. Montrer que Fi(t) =1 — F,_py1(1 —1).

. 1
e. A l'aide d’une intégration par parties, montrer que E(T}) = / (1 — Fi(z))dz.
0
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Solution.

1. Une densité de U; est la fonction fy, définie sur R par

1 site|0;1]

0 sinon

Vvt eR fUi(t) = {

1
Par propriété, | E(U;) = ot

2. Comme 20 min = % h et 30 min = % h, la probabilité que le coureur ¢ arrive entre 0h20
et 0h30 est )
1 1 2 1 1 1
p(lene ) a1l
3 2 1 2 3 6

1
Ainsi, | la probabilité qu’un coureur arrive entre 0h20 et 0h30 est 6l

3. a. L’évenement (T > t) est réalisé si le coureur le plus rapide arrive apres U'instant ¢, ce
qui signifie que tous les coureur arrivent apres I'instant ¢. Ainsi,

=1

Comme les variables U; sont mutuellement indépendantes, on en déduit que
P(Ty >t)=PU, >t)P(Uy > t)---P(U, > t).
Or, pour tout ¢ € [1,n],

1
P(Ui>t):/ lde=1—t¢
t

donc P(T} > 1) = (1 —¢)". Comme (T} < t) = (T} > t), on conclut que

P(T,<t)=1—(1—t)"

b. Si ¢t > 1, 'événement (77 < t) est un évenement certain donc P(77 < t) = 1 i.e.

Sit < 0, ’évenement (77 < t) est un évenement impossible donc P(7) < t) = 0 i.e.
Fi(t)y=0|

Sit € [0;1], d’apres la question précédente, P(T} < t) = 1 — (1 — )" donc

Fit)=1-(1-t)"|

c. Pour tout t € |—00;0[, F{(t) = 0, pour tout t € |1;+o0[, F{(t) = 0 et, pour tout
t €]0;1[, F{(t) = n(1 — )" donc une densité de T} est la fonction g définie sur R
par :

n(l—t)"t site[0;1]

0 sinon

VteR g(t):{
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. Comme g est nulle en-dehors du segment [0; 1], 77 admet une espérance et

E(T)) = /01 tg(t)dt = /01 12t(1 — t)* dt.

Considérons les fonctions u : t — tet v : t — —(1—1)'2. Ce sont des polyndmes donc
elles sont de classe €' sur R et, pour tout réel ¢, v/ : t — 1 et v’ : t — 12(1 — ).
Ainsi, en intégrant par parties,

B(Ty) = [-t(1 - 1)), /1>< 1—t)12)dt—/01(1—t)12dt:[—“I;)lgr

1
13|
. Pour tout £ € [1,n], notons X}, la variable aléatoire égale a 1 si le coureur k arrive
dans l'intervalle de temps [0; 1] et 0 sinon. Ainsi, pour tout k € [1,n], X} suit une loi
de Bernoulli de parametre P(Uy < t) =1 — P(Uy > t) = t. Comme les variables Uy,
sont mutuellement indépendantes, il en est de méme des variables X, donc, comme

donc |E(Ty) =

n
N, = Z X}, on conclut que ‘Nt suit une loi binomiale de parametres n et t‘.
k=1
. L’événement (T}, < t) est réalisé si les k premiers coureurs sont arrivés dans I'intervalle
de temps [0;¢] donc |(Tp < t) = (N; > k)|

. On en déduit que

P(T, <t)=P(N, > (0 Nt—z)

donc, comme les évenements (N; = i) sont deux a deux incompatibles,

. Ainsi,

= (j)t”‘ﬂ(l—t)]:l— > (j)(l—t) (1—(1—t))t" .

j=n—k+1

Or, Pexpression trouvée dans la question précédente est valable pour tout ¢t € [0;1] et
tout k € [1,n] donc, comme 1 —t € [0;1] et n —k +1 € [1,n], on conclut que

Fu(t)=1— Fypr(1—1)]
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e. Comme T} est a valeurs dans [0; 1], sa densité est nulle en-dehors de cet intervalle.
Ainsi, comme F}, est une primitive d’une densité de Ty,

E(T}) = /0 ' 2Fl(2) da.

On considere les fonctions u : 2 — x et F}, qui sont de classe € sur [0;1] (car Fj
est un polynéme) donc, en intégrant par parties,

E(T}) = [¢Fy(x)]} — /01 Fo(x)dz = Fy(1) — /01 Fiulx) dz.

Or, ’évenement (7}, < 1) est un événement certain donc Fi(1) = 1 et ainsi

E(Tk):1—/Ole(a:)dm:/Olldx—/ole(x)dx

et, par linéarité de I'intégrale, on conclut que

B(T}) = /01(1 — F(x))dz |
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Sujet 39. FEtude de la croissance d’une plante (02)

La taille X d’une plante suit, en conditions naturelles, une loi uniforme sur l'intervalle [3;8].
Dans une pépiniere, a la fin de la croissance naturelle de la plante :
— si sa taille est inférieure ou égale a 4, on lui met un engrais qui fait doubler sa taille;
— si sa taille est supérieure a 4, on ne fait rien.
On note Y la variable aléatoire correspondant a la taille finale de la plante.

1. Donner une densité fx de X, ainsi que la fonction de répartition Fx de X.
2. Exprimer Y en fonction de X, puis donner I’ensemble des valeurs prises par Y.

3. Pour tout réel ¢, calculer P[(Y <t)N (X <4)] et P[(Y <t)N(X > 4)]. On discutera
selon les valeurs du réel t.

4. En déduire que la fonction de répartition Fy de Y est donnée par :

0 sit<4
=4 sid<t<6
FY(t)_ E4 . :
- si6<t<8
1 sit>8

5. Démontrer que Fy est continue sur R.
6. En admettant que Y est une variable aléatoire a densité, en donner une densité fy.

7. Calculer I'espérance de Y.
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Solution.

1. Par définition, une densité de X est fy définie sur R par

WER(&@:{éSHEBﬂ

0 sinon.

La fonction de répartition Fly de X est définie sur R par :

Vi € R, Fy(t) = P(X < 1) :/ fx(z) dz

Sit < 3 alors, pour tout (X < t) est une évenement impossible donc Fx(t) = 0.
Sit e [3;8] alors

¢ t _
FX(t): 0 ;dx: % 3:t53
Sit > 8 alors (X < t) est une événement certain donc Fx(t) = 1.
0 sit <3
Ainsi, | pour tout réel z, Fx(t) = {22 sit e [3;8]|
1 sit>8&.

2. Si X <4dalorsY =2X et si X >4 alors Y = X. Dans le premier cas, Y prend les valeurs
entre 6 et 8 et, dans le second cas, les valeurs entre 4 (exclu) et 8 donc |Y(Q2) = ]4;8]|.

3. On remarque que (Y <£)N (X <4)=(2X <t)N(X <4).
Sit<6alors (2X <t) =@ car X >3 donc P[(Y <t)N(X <4)] =0.
Sit > 8alors (2X < t)N(X <4) = (X <4)donc P[(Y < t))N(X <4)]=P(X <4) =
Si6<t<8alors (2X <tH)N(X <4) = (2X <t) = (X <
P(Y <#)N (X <4)] = P(X < )= LE.

1
. 5
5) donc, dans ce cas-la,

0 sit < 6
Ainsi, | pour tout réel ¢, P[(Y <) N (X <4)] =758 si6<t<8|
o sit>8

On remarque que (Y <£)N(X >4)= (X <t)N (X > 4).
Sit<4alors (X <t)N(X >4) =2 donc P[(Y <t)N(X >4)] =0.
t)n( )

Sid<t<8alors (X <t)N(X >4) =4 <X <4)donc P[(Y <t)N(X <4)] =
Fy(t) - Fx(4) = £ — L = 24
Sit>8alors (X <t)N(X >4) =4 <X <8)=Fx(8) —Fx(4)=1—-%=1
0 sit < 4
Ainsi, | pour tout réel ¢, P[(Y <) N (X <4)] =52 sid<t <8
% sit>8

4. Soit t € R. Comme les évenements (X < 4) et (X > 4) forment un systeme complet
d’évenements, d’apres la formule des probabilité totales,

Fy(t) = P(Y <) = P[(Y <) N (X <4)] + P[(Y <) N (X > 4)].
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Ainsi, grace au résultat de la question précédente
esit <4, Fy(t)=0+0=0;

’

o sid<t<6 Fy(t) =4 4+0= 51,
.Si6<t<8,Fy(t):%+tg4_3t1—014;
osit>8 Iy(t)=5+5=1
0 sit<4
t—4 :
=  sid<<t<6
Ainsi, | pour tout réel ¢, Fy(t) =1 ,°,, 1 ‘
oo si6<t<8
1 sit>38

. La fonction Fy est clairement continue sur chaque intervalle |—oo;4[, [4;6], [6;8] et

(8 400].

De plus, ligl Fy(t) = mo = 0= Fy(4), ce qui assure que Fy est continue en 4.
t—4- —

De méme, lim Fy(t) = lim &2
t—6— t—6
Enfin, lim Fy(t) = lim 22 = 10
t—8~ t—8

8.

Ainsi, on conclut que ‘ Fy est continue sur R ‘

= 2 = Fy(6), ce qui assure que Fy est continue en 6.

=1 = Fy(8), ce qui assure que Fy est continue en

. Une densité de Y s’obtient en dérivant Fy partout ou elle est dérivable (et en prenant
des valeurs arbitraires ailleurs) donc une densité de Y est la fonction fy définie sur R par

VieR fy(t) =

o Blw o o

sit<4

sid<t<6
si6<t<8|
sit>8

. Comme fy est nulle en dehors du segment [4; 8],

E(Y ’ d "l d S ot d c

( %_Ath“)t_ 59 10 L‘LJ
31

soit |[E(Y) = T
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Y est une espérance et

|

® 36 16 3x64 3x36
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Sujets de probabilités : couples de
variables aléatoires
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Sujet 40. Rangs d’apparition des deux premieéres boules
noires (C3)

Une urne contient 3 boules blanches et 2 boules noires.

Partie A. Tirage sans remise

Dans cette partie, on effectue des tirages sans remise.

On note X7 la variable aléatoire égale au rang d’obtention de la premiere boule noire et Xy
la variable aléatoire égale au rang d’obtention de la deuxieme boule noire.

1. Donner X;(€2) et X5(Q).

Les variables aléatoires X; et X5 sont-elles indépendantes ?

Déterminer la loi conjointe du couple (X7, X»).

Déterminer les lois marginales de X; et de Xo.

On définit la variable aléatoire ¥ = 6 — X5. Montrer que Y a la méme loi que Xj.
Donner une relation entre E(X;) et E(X3).

Calculer E(X;) et en déduire E(X5).

NS vk w

Partie B. Tirage avec remise

Dans cette partie, on effectue des tirages avec remise.

On note Y] la variable aléatoire égale au rang d’obtention de la premiere boule noire et Y5 la
variable aléatoire égale au rang d’obtention de la deuxiéme boule noire.

1. On considere le programme suivant, écrit en langage Python.

from random import x*

p = 2/5

nb_tirages = 1

while random() > p:
nb_tirages += 1

print (nb_tirages)

Que renvoie ce programme ?

Donner la loi de Y7, son espérance et sa variance.

Donner Y5(€2).

Déterminer la loi conjointe du couple (Y7, Y3).

En déduire la loi de Y5.

On définit la variable aléatoire Z = Y, — Y;. Montrer que Z a la méme loi que Y;.
Donner une relation entre E(Y]) et E(Y3).

En déduire I'espérance de Y.

ol SR A i ol
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Solution.

Partie A. Tirage sans remise

1. Comme il n’y a pas remise, X;(Q2) = [1,4] et X2(Q2) = [2,5].

2. Comme X; < X, (X7 =2)N(Xy =2) = @ done, P((X; =2)N (X2 =2)) =0. Or, par la

3 2 3 1 1
formule de probabilités composées, P(X; = 2) = X110 et P(Xy=2) = = X1= 59
donc P(X; = 2)P(X, = 2) # 0. Ainsi, ‘Xl et X5 ne sont pas indépendantes ‘

3. Commeonl'adit,sii > j, P(X; =i, Xy = j) = 0. Ensuite, pour tout (7, j) € [1,4] x[2, 5],
la probabilité de I’événement (X; = i, Xy = j) est la probabilité que, dans une permutation
des 5 boules, il y ait une boule noire au i-eme tirage et au j-ieme tirage. Or, il y a 5! = 120
permutations et il y a 2! x 3! = 12 fagons de répartir les boules pour que la i-eme et la
j-ieme soient noires (2! fagons de placer les deux boules noires aux rangs i et j et 3!
fagons de placer les boules blanches dans les 3 rangs restants). Par équiprobabilité, on en

12 1
déduit PXi=i,Xo=j)=—=—.
éduit que P(X; =1, Xy = j) 190 = 10
Ainsi, la loi conjointe de (X, X5) est donnée par

1 P .
ke <
V(i j) € [1,4] x [2.5] P(Xi=1i,X; = j) = { S
0 sinon
4. On peut utiliser une tableau pour déterminer les lois marginales :
X .
X, 1 2 3 4 Loi de X5
1 1
2 i 0 0 0 )
1 1 1
3 i | 9| 9]0 5
1 1 1 3
4 i | 10 | 10| 0 i0
5 11 [ 1L 2
10 10 10 10 5
. 2 3 1 1
Loi de X1 5 10 5 10 1

I
_ |~

5. Comme X,(2) = [2,5], Y(2) = [6 — 5,6 — 2]
tableau ci-dessus,

\‘P—‘
e~
=
|
I

(Q). De plus, d’apres le

« P(Y =1)=P(6- X, =1) =P(X,=5) = - = P(X; = ]
« PY =2)=P(6- X, =2) =P(X, = 4) = > = P(X, =)
. P(Y:3):P(6—X2:3):P(X2:3):é:P(XI:?,)
. P(Y:4):P(6—X2:4):P(X2:2):110:P(X1:4)

Ainsi, ‘Y a la méme loi de X ‘
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6. On en déduit que E(X;) = E(Y) = E(6 — X3) donc, par linéarité de 'espérance,

2 3 1 1
7. Par définition, E(X;) = 1 x R +2 % 10 + 3 x R +4 x 10 donc |E(X;) = 2|. Comme

E(X,) =6 — E(X3), on en déduit que |E(X,) = 4|

Partie B. Tirage avec remise

1. Ce programme simule la variable aléatoire Y; i.e. il renvoie le nombre (aléatoire) de
tirages nécessaires pour obtenir la premiere boule noire.

2. La variable Y] donne le rang du premier succes dans un schéma de Bernoulli (puisqu’il y

- 2 . 5 1-2 3 25
a remise) donc |Y; — ¢ (5> . Par théoréme, | E(Y;) = 5 et V(Vp) = BE =e X7
5

1
donc | V(Y]) = 45 :

3. La deuxieme boule noire arrive au minimum au deuxieme tirage donc | Y2(Q2) = N\ {0;1}|

4. Comme précédemment, si (i,7) € Y1(Q2) x Y2(Q) est un couple tel que i > j alors
P(Y1=14,Y,=j)=0.
Soit (i,7) € Y1(Q2) x Y2(Q) tel que i < j. Notons, pour tout k € N*, Nj : « obtenir
une boule noire au k-ieme tirage ». Alors,

Yi=4Yo=4)=NN--- NN 1 NN;NN;y1 NN N1 NN

donc, par indépendance,

i—1 j—i—1 i—14j—i—1 2 §—2
s () 202 0

Ainsi, la loi conjointe de (Y7,Y3) est donnée par

V(i, j) € Y1(Q) x Ya(Q) P(mzi,%:j):{ﬁ(g)]_ sii<j|

0 sinon

5. Comme ({Y] = i});en+ est un systeme complet d’événements, on déduit de la formule des
probabilités totales que

VieYy(Q) P(Y,=j) = %ZO:OP(Y1 =i,Yo=7)= 3:14 <3>j_2 =(—-1)x 4 (3)]-_2

car les termes sommés ne dépendent pas de .
Ainsi, la loi de Y5 est donnée par :

W eN\ {01} P =)= 2 (3)

168



6. Comme Y;(Q2) = N* et Y5(2) = N\ {0;1}, Z(Q) = N*. De plus, comme ({Y] = i});en
est un systeme complet d’évenements, on déduit de la formule de probabilités totales que,

pour tout k € N*,
+0o0 +oo
PZ=kYi=1)=) PYo-Y,=kY, =1)

1=1 i=1
+00 +oo
=Y PYo—i=kYi=i)=> PYo=i+kY =1
=1 =1
k—2 400 <3>z

400 4 /5 i+k—2 4 /3
i) =xG) 26
4 3 k—2 +o0 3 p+1 4 /3 k—2 3 +00 I\P
2l LG m56) 5506)
4 (3>k—1 1 4 (3)"?—1 5
— — | — X = — | = X =
0<i<1 25 \5 1-2  25\5 2
2 k-l 2
soit finalement P(Z = k) = R ( - ) ie. Z =% <5>
Ainsi, on conclut que ‘ Z a la méme loi que Y; ‘
E(Z) = E(Y, — Y1) donc, par linéarité de l'espérance,

7. On en déduit que E(Y)) = =
E(Vi) = B(Y2) - E(Ya) ice. [E(Yz) — 2E(V7)]
E(Y;) =5|

5
8. On conclut donc que E(Y3) =2 5 e
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Sujet 41. Lancers simultanés de n dés (C8)

On lance simultanément n dés bien équilibrés.

A DPétape 1, on note X; le nombre de dés ayant donné 6, puis on les exclut et on recommence
avec les dés restants, en excluant a chaque étape les dés ayant donné 6.
Pour tout 2 € N*| on note :

e X, le nombre de dés ayant donné 6 a 1'étape 7
e Y, le nombre total de dés ayant donné 6 apres I'étape 1.
1. Premiéres propriétés

Donner la loi de X7, son espérance et sa variance.

Donner une relation entre Y; et X;.

Donner une relation entre Y5, X; et Xs.

Pour k € [0,n], déterminer la loi conditionnelle de X, sachant X; = k.
Montrer que, pour tous entiers k, 7 et n tels que 0 < k <i < n,

W6 C)0

a. On considere le diagramme suivant, donnant la loi de Y5 pour n = 8.

8o TP

2. Loi de Y,

A Taide de ce diagramme, estimer E(Y3) et émettre une hypothese sur la loi de Y; et
ses parametres.

b. Montrer que pour tout ¢ € [0, n],



c. En déduire que pour tout i € [0,n],
n) /11\¢ /25\"*
P(Y, =i) = ) (2.
(¥2=19) (z) (36) (36)

d. Donner alors la loi de Y5.
e. Retrouver le résultat conjecturé pour E(Y3) dans le cas ou n = 8.
3. Loi de Y;
Démontrer que, pour tout j € N*, la variable aléatoire Y; suit une loi binomiale de
parametres n et p; ot p; est un réel appartenant a ]0; 1].
On procédera par récurrence, en s’inspirant de la démarche de la question 2). On
précisera une relation de récurrence entre p; et pjii.
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Solution.

1. a. Le lancer des n dés constitue un schéma de Bernoulli en prenant comme succes
« obtenir un 6 ». Ainsi, la variable aléatoire X; qui compte le nombre de succes suit

une loi binomiale | A(n, §) |

Par propriété, on a donc |E(X;) = 2 et V(X;) = 22|

36
b. Par définition, .
c. Par définition, |V = X1 + X; |,
d. Soit k € [0,n]. Si X; = k est réalisé alors, a la seconde étape, on lance n — k dés

et, pour la méme raison que dans la question, le nombre de 6 obtenu suit une loi

binomiale de parametre n — k et é. Ainsi, la loi conditionnelle de X5 sachant X; = k
est la loi B(n —k, g).
e. Soit k, i et n des entiers tels que 0 < k < 7 < n. Alors,

(Z) (?: :) - k;!(nni " = k)!(én—_kkz! (i — k)

_ ! 1

TR G —k)(n—1i)!

~on! 1

S (n—=9)! T kI — k)
n! 7!

D00

2. a. On peut conjecture a 'allure du diagramme que E(Y3) =~ 2,5 et que Y5 suit une loi
binomiale de paramétres 8 et (environ) %> = 2.
b. Comme ((Y1 = k))kec[o,n) forme est un systeme complet d’évenements, d’apres la

formule de probabilités totales, pour tout i € [0,n],

P(¥, =) = 3 P((Vi = K)N (% = ) = S P((¥i = K)1 (% + X = )
:iP((H:k)ﬂ(k—l—ngi)):iP((Yl:k)m(XQZZ'_k))

De plus, si k > i alors i — k < 0 donc (X3 =i — k) = & et, dans ce cas, on a donc
P(Yi=k)N(Xy=1i—k))=0. Des lors,




c. On en déduit que, pour tout ¢ € [0, n],

P(Y, = i) = ip(y1 —KP(Xo=i—k|Y,=Fk) = ip(x1 — B)P(Xy =i~k | X, = k).

k=0 k=0

Or, on a vu que la loi conditionnelle de X5 sachant ’évenement X; = k est la loi

B(n —k,¢) donc
DIe N IR
(O

2n—i—k
) d’apres 1.e.

2n—2i 1 <Z>1k <5)i—k
-\k)" \6

k=

2n—21 5\ ¢
(1 + 6) par la formule du binéme de Newton

soit finalement,

ros=0= () o) (o)}

d. Ainsi, pour tout i € [0, n],
n 11\° 11\
P(Y,) = ) (1=
(¥2) <z> <36> ( 36)

donc | Y; suit une loi binomiale de parametres n et % .

e. Ainsi, sin = 8, E(Y;) = 1%28 = % ce qui est assez proche de la valeur conjecturée

puisque % ~ 24.
3. Considérons, pour tout j € N*, la proposition #H(j) « il existe p; € ]0; 1] tel que Y; suive
une loi binomiale de parametre n et p; ».
e Initialisation. Comme Y; = X; suit une loi binomiale de parameétre n et p; = %,
H(1) est vraie.
e Hérédité. Soit 7 € N*. Supposons que H(j) est vraie.
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En utilisant le formule de probabilités totales avec le systeme complet d’évenements
((Y; = k))kefo,n], on obtient, pour tout i € [0,n],

n

PV =) = ¥ P(Y; = 0) N (Vi = 1)) = S P = )0 (% + Xy = )

= PG =00+ Xy = 1)) = S P = K0 (X =i = B)

De plus, si k > i alors i — k < 0 donc (X411 =i — k) = @ et, dans ce cas, on a donc
P((Y; =k)N(Xj31 =1 —k)) =0. Des lors,

Py = 1) = X P(Y; = 1) N (X =i = )
YR = WP = i~ kY = k),
k=0

Or, comme précédemment, la loi conditionnelle de X,;; sachant (Y; = k) est la loi
binomiale de parametre n — k et é donc

P == 5 (- (2 6O

k=0

R[N ONON

QS (e
0@ O s () (%)
Q- )
(G 6 amwr ()

() ey ()

_(n <5pj+1>i<1_5pj+1)"—"
-\ 6 6

Ainsi, Yj;; suit une loi binomiale de parametres n et p;; = 5”%1 (qui appartient & ]0; 1]
car p; € |0;1[) donc H(j + 1) est vraie.
e Conclusion. Par le principe de récurrence, on conclut que, pour tout j € N* il

existe p; € 10;1], tel que Y; — #(n,p,). De plus, (p;) est définie par p; = % et, pour
5pj+1

tout j € N*, Pj+1 = —%
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Sujet 42. Tirages avec ajout d’une boule blanche (02)

Une urne contient initialement une boule blanche et une boule noire.
On effectue des tirages successifs de la maniere suivante :

1. si on tire une boule blanche, on la replace dans I'urne et on rajoute une boule blanche,

2. si on tire une boule noire, on la replace dans I'urne mais on ne rajoute rien.

Pour tout n € N, on note X, la variable aléatoire égale au nombre de boules blanches tirées
au cours des n premiers tirages.

1. a.
b.

C.

Donner la loi de Xj.
Déterminer la loi du couple (X7, X5) et en déduire la loi de Xs.
Déterminer la loi du couple (X3, X3) et en déduire la loi de Xj.

2. Soit n € N.

a.

b
c.
d

Donner 'univers image de X,.

. Conjecturer la valeur de P(X,, = n).

Montrer que (X,+1 =0) = (X,+1 =0) N (X,, =0).

. Apres n tirages n’ayant amené que des boules noires, donner le nombre de boules

blanches et le nombre de boules noires de l'urne.

En déduire P(x,—0)(Xn+1 = 0).

Calculer P(X,11 = 0) en fonction de P(X,, = 0). En déduire une expression de
P (X, = 0) en fonction de n.

Apres n tirages ayant amené k boules blanches, ou 1 < k < n, donner le nombre de
boules et le nombre de boules blanches de I'urne.

En déduire, pour tout & € [0,n], P(x,—r) (Xng1 =k + 1).

Pour tout k& € [0,n], exprimer P(X,, 11 = k+ 1) en fonction de P(X,, = k+ 1) et
P(X, =k).
Démontrer ensuite la conjecture de la question 2.b..
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Solution.

1. a. Au premier tirage, on tire soit une boule blanche soit une boule de fagon équiprobable

donc | X; suit une loi de Bernoulli de parametre 5|

b. Au bout de 2 tirages, on a tiré 0, 1 ou 2 boules blanches donc X5(§2) = {0;1;2}.

1 1 1
[} P(Xl = O,XQ = 0) = P(X1 = O)P(X1:O)(X2 = O) = 5 X 5 = Z’
e P(X;=1,Xo=0)=0car Xy > X;;

1 1 1
[} P(Xl = O,XQ = 1) = P(Xl = O)P(X1:O)(X2 = 1) = 5 X 5 = Z’

1 1 1
[} P(Xl:1,X2:1):P<X1:1)P(X1:1)(X2:1):§ 526’
[ P(X1:0,X2:2):0CarX2<X1+1;

1 2 1
e P(X; =1,X,=2)=P(X; =1)Px,-1)(X2 = 2) = 3 X373

On en déduit le tableau suivant donnant la loi conjointe de (X, X5) et celle de X5 :

X Loi de
0 3 0 :
1 1 5
1 il s i)
2 0 3 :
Loi de X1 % % 1

c. De méme, X3(Q) ={0;1;2;3} et sij & {i,i+ 1}, P(Xy=14,X3=7)=0. De plus,

1 1 1
o P(Xp=0,X3=0) = P(Xp = 0)Pxpm0) (X3 = 0) = 7 x 5 = o
1 1 1
‘P(X2:07X3:1):P(Xzzo)P(XQ:O)(X?»:l):ZXizé;
¢ P(Xy=1,X3=1) = P(Xy = )Py, (Xs = 1) = = x + = 2
2 — 4H A3 — - 2 — (X2=1) 3 — _12 3_367
5 2 5
P(Xo=1.Xa=2)=P(Xo=1)P/v.o\ (X =2)= — X — = —:
L ( 2 y <23 ) ( 2 ) (X271)( 3 ) 12><3 187
1 1 1
¢ P(X;=2X;=2)=P(X; =2)Px, (X3 =2) = g x /= 153
1 3 1
[ ] P(XQ :2,X3 :3) :P<X2 ZQ)P(X2:2)(X3 :3) — g X Z e Z’

On en déduit le tableau suivant donnant la loi conjointe de (X, X3) et celle de X :
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X Loi de
X, 20 |1 | 2 X,
0 s 10| 0 5
1 s | | 0 P
2 0 | % | = | 3=
3 0| o013 !
Loi de X5 i 15—2 % 1

2. Soit n € N.

a. Au bout de n tirages, on a tiré entre 0 et n boules blanches donc | X,,(©2) = [0, n] |
1 1 1

b. Onavuque P(X; =1) = 2 P(X;=2)= 3 et P(X3=3)=-.

1

n+1]

On peut conjecturer que P(X,, =n) =

c. Etant donné que X,11 = X, >0, si X,,,; =0 alors X,, = 0. Autrement dit, on a
I'inclusion (X1 =0) C (X, =0) donc | (X,,41 =0) = (X001 =0)N (X, =0) |

d. Si les n premiers tirages n’ont amené que des boules noires, la composition de I'urne
n’a pas changé donc ‘il a toujours 1 boule blanche et 1 boule noire ‘

1
On en déduit que | P (x,—o) (X1 =0) = 3|

e. Comme (X,11 =0) = (X,,11 =0)N (X, =0),

1
P(X,11 =0)=P(X, =0)Px,-0)(Xnt1 = 0) = §P(Xn =0).

1
Ainsi, la suite (P(X; = 0))gen est une suite géométrique de raison 3" De plus,

P(Xo = 0) = 1 donc | P(X, = 0) = (1)n .

2

f. Soit k € [1,n]. Si on a tiré k boules blanches au cours des n premiers tirages, alors
on a ajouté k boules blanches : ‘il y a donc k 4 2 boules dont k& + 1 sont blanches ‘

kE+1

g. Soit k € [1,n]. On déduit de la question précédente que | P (x, —p)(Xny1 =k + 1) = ol

h. Soit k£ € [0,n]. L’événement (X, ;1 = k + 1) est réalisé si X,, = k+ 1 et on tire
une boule noire au (n + 1)-eéme tirage ou si X,, = k et on tire une boule blanche au
(n + 1)-eéme tirage. On en déduit que

(Xnp1=k+ 1) =[(Xpo=k+1)N(Xpp =k +DJU[X, =) N (Xpp1 =k +1)]

177



donc, comme cette union est disjointe,

P(Xpn=k+1)=P(X, =k+1)N(Xps1 =k +1)) + P(X,, = k) N (Xpp1 =k + 1))
= P(Xn =k+ ]-)P(Xn:k+1)(Xn+1 =k+ 1)
+P(X, = )P,y (Xpir =k + 1)

1 kE+1
=P(X,=k+1 P(X,=k) x ——
( +>Xk+3+ ( )Xk:+2
Ainsi,
1 k+1
PX,yw=k+1)=—-"PX,=k+1)+ —P(X,,=Fk)|
(Kuir =kt 1) = P = k4 1) + T P(X, = )
1
Considérons, pour tout n € N, la proposition P(n); « P(X,, =n) = 1 ».
n

Initialisation. Comme P (X, = 0) = 1, P(0) est vraie.
Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, d’apres le résultat
précédent

1
P(X, =n+1)+

P(X, =n).

Or, X,, <ndonc (X, =n+1) =2 donc

n+1 1 1
x 04+ X = .
n+3 n+2 n+1 n—+2

P(Xn+1 =N + 1) =

Ainsi, P(n + 1) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

1
n+1]

VneN P(X,=n)=
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Sujet 43. Probabilité que X +Y = 7 (02)

Une urne contient quatre boules indiscernables au toucher, numérotées de 0 a 3.

On effectue trois tirages successifs avec remise.

On note X, Y et Z les variables aléatoires égales au résultat de chacun de ces tirages.
On note p la probabilité de I’évenement (X +Y = 7).

1.

RO R ol

Donner les lois de X, Y et Z ainsi que leur espérance et leur variance.

Déterminer la loi conjointe du couple (X,Y). Préciser sa covariance.

En déduire la loi de la variable aléatoire X + Y. Préciser son espérance et sa variance.
En déduire la valeur de p.

Application

Un forain propose un jeu de loterie avec trois roues identiques, chacune divisée équitable-
ment en quatre cadrans numérotés de 0 a 3.

Le joueur mise 1 euro et fait tourner deux roues, le forain fait tourner la troisieme roue.
Le joueur gagne si la somme de ses deux numéros est égale au numéro obtenu par le
forain. Il remporte alors la somme de a euros.

a. Exprimer en fonction de a l'espérance de gain du joueur.

b. Pour quelle valeur de a le jeu est-il équitable? On rappelle que le jeu est équitable
lorsque 'espérance du gain est égale a 0.
En déduire pour quelles valeurs de a le jeu est rentable pour le forain.

c. Le joueur décide de rejouer jusqu'a ce qu’il gagne une partie.
En moyenne, combien de parties devra-t-il faire ?

179



Solution.

1. Comme il y a remise, X, Y et Z suivent toutes une loi uniforme sur [0, 3].
L ' tdone S kx bolypo b, 3xd 3
eur espérance est donc -== == =_.

P P B e R T

Pour la variance, calculons d’abord ’espérance de X? :

3 1 13 1 3x4x7 7
EX?) =) Fx-=-Y F=-x""—=-
= 4 4% 4 6 2

donc, par la formule de Konig-Huygens,

V(X)=E(X?) -E(X) = ; - (3>2 _5

2. Comme il y a remise, les deux variables aléatoires X et Y sont indépendantes donc,

1
pour tout (7,7) € [0,3]%, P(X =4,Y =) =P(X =)P(Y =j) = Tl

De plus, comme X et Y sont indépendantes, | Cov(X,Y) = 0]|.

3. Commencgons par remarquer que (X + Y)(£2) = [0, 6].
Soit k € [0, 6]. Alors, comme ((X = i));co,3] est un systeme complet d’évenements, par
la formule des probabilités totales

Remarquons que si k —i < Qousi k—i > 3, (Y = k—1i) = @ et, dans ce cas,
P(X =4Y =k—1i)=0donc

3
P(X =i, X+Y =k) =Y P(X =i,V =k —1i).

3
i=0 1=0

P(X+Y =k)
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Ainsi,

1
P(X+Y:0):P(X:O,Y:O):T6
2 1
HX+Y:D:HX:LY:®+HX:QY:U:E:§
MX+Y:m:mX:zY:m+HX:LY:n+mX:QY:m—E
PX+Y=3)=PX=3Y=0+PX=2Y=1)+P(X=1Y=2)+P(X=0,Y =3)
41
16 4
P(X+Y:4):P(XZS,YZ1)+P(X:2,Y:2)+P(X:1,Y:3):136
2 1
PM+Y:):PM:ZY:$+HX:&Y:):E:§
1
P(X +Y =6)=P(X=3Y=3)=

k 0O 111 2 13| 4|5 6
1 (1] 31111 3 1] 1
PX=HF|%615|16131]16|8| 16

Par linéarité de l'espérance, E(X +Y) = E(X) + E(Y) donc |E(X +Y) = 3] et,
comme X et Y sont indépendantes, V(X +Y) = V(X) + V(Y) donc | V(X +Y) = 2|

4. Comme ((Z = k))re[o,3) est un systéme complet d’évenements, par la formule de probabi-
lités totales,

HX+Y:@:§3HX+Y:ZZ:M:§ﬁ%X+Y:hZ:m

k=0 k=0

Comme il y a remise, les tirages sont indépendants donc les variables aléatoires X + Y et
Z sont indépendantes et ainsi

3 3 1 1,1 1 3 1
PX+Y =2)=Y P(X4+Y =k)P(Z=k) = IPX}%J::< -+ )
(X+ ) §0<+ JP(Z = k) k;(+ =1\ te Tt

5
=35
5. a. Notons X le numéro obtenu sur la premiere roue, Y celui obtenu sur la seconde

roue et Z celui obtenue sur la troisieme roue. Alors, X, Y et Z sont des variables

soit | p
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aléatoires indépendantes suivant la méme loi uniforme sur [0, 3]. Par la question

précédente, la probabilité que le joueur gagne est p = et, par conséquent, la

32
27
probabilité que le joueur perde est 1 —p = 32 Ainsi, la variable aléatoire G égale au
27
gain du joueur prend les valeurs —1 et @ — 1 avec les probabilités P(G = —1) = 3 et
5
PG=a-1)= 35 Ainsi, I'espérance de gain du joueur est
27 5
E(G)=—-1% =+ (a—1) x —
(@) X 35 +(a—1) x ™
oa
it | BE(G) = —= —
soit | E(G) %
. Sachant que
da 32
EG =0 —=1l<—=a=—
@ 32 “=%5

le jeu est équitable si et seulement si a = 6,4 |.

Il s’ensuit que | le jeu est rentable pour le forain si a < 6,4|.

. Notons 7' le nombre de parties jouées pour gagner une partie. Alors, T" est le rang du
premier succes dans un schéma de Bernoulli en prenant comme succes « gagner une
partie ». Ainsi, T" suit une loi géométrique de parametre p et donc le nombre moyen

1 32
de parties faites par le joueur est | E(T) = - = = |
p
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Sujet 44. Loi conjointe du min et du max I (O2)

Une urne contient cinq boules numérotées de 1 a 5.

On tire deux boules successivement sans remise.

On note X; la variable aléatoire égale au premier numéro obtenu et X, la variable aléatoire
égale au deuxiéme numéro obtenu.

On définit de plus les variables aléatoires Y = min(X, X3) et Z = max (X, X»).

1.

NSk WD

Donner la loi de X; et son espérance.

Soit ¢ € [1,5]. Donner la loi conditionnelle de X5 sachant que X; = i.
Déterminer la loi conjointe du couple (Y, Z).

Donner la loi de Y et la loi de Z.

Les variables aléatoires Y et Z sont-elles indépendantes ?
Déterminer E(Y') et E(Z).

Déterminer Cov(Y, 7).

183



Solution.

1. Par équiprobabilité des tirages, | X; suit une loi uniforme sur [1,5] | L’espérance de X;

est donc |E(X;) = 12 = 3|

2. Si 'évenement (X = 1) est réalisé, il reste dans l'urne les 4 boules autre que i et par
équiprobabilité des tirages, chacune a une probabilité i d’étre tirée.

T osij#i

Ainsi, |pour tout j € [1,5], P(Xo =j | X1 =1i) = { _
0 sinon

3. Notons que Y (2) = [1,4] et Z(22) = [2,5]. Soit (i,7) € [1,4] x [2,45].
e Comme Y < Z,sii>j, P(Y=4i2Z=j)=0.
e Supposons i < j. Alors, (Y =i, Z =j) = (X7 =14, Xy = j) U (X; = 7, Xy = j) donc,
comme ces deux évenements sont incompatibles,

P(Y =i,Z=j)=P(X1 =i, Xy = j) + P(X; = j, X5 = j)
PX,=i)P(Xo=j| X1 =)+ P(X; =/j)P(Xo =i | X; =)

_1X1+1X1
574 574
1
107

L sii<y
Ainsi, |pour tout (i,7) € [1,4] x [2,5], P(Y =i, Z2=75)=31 7|
0 sit>=y

4. Comme ((Z = j))je[2,5) est un systéme complet d’évenements, d’apres la formule de
probabilités totales, pour tout i € [1, 4],

L . . 5001 5—(i+1)+1
P(Yzz):ZP(Y:Z,Z:]):ZE: 10
=2 j=it1

donc, | pour tout i € [1,4], P(Y = i) = 4|,

De méme, ((Y = 7))icpi,q) est un systeme complet d’éveénements donc, d’apres la
formule de probabilités totales, pour tout j € [2,5],

& N1 j-1-1+1

P(Z=j)=YPY=iZ=j)=Y — =
Z; 10 10

donc, | pour tout j € [2,5], P(Z = j) = L2 |.

5. Etant donné que P(Y = 2,Z =2) =0 et P(Y = 2)P(Z = 2) = 16X 1 =100 # 0,

les variables aléatoires Y et Z ne sont pas indépendantes ‘
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6. Par définition,
. 5—i

E(Y) = 2-t_4 6 6 ¢
V) =2 ix45=1% "1 19

=1

donc |E(Y) = 2|.
De méme,
5 ]_1
E(Z) = | X P = — o+ —
(2) ;2“ 0 10 10
donc |E(Z) = 4]|.

4 6

2 6

7. Par le théoreme de transfert pour le produit,

4 5

1430 —i(i + 1))
20

donc, par la formule de Konig-Huygens

1424
10 10

6 4

12 20

010"

20
10

40
10

Cov(X,Y) = B(XY) ~E(X)E(Y) = 5 —2x4

soit |Cov(X,Y) = 1|
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Sujet 45. Loi conjointe du min et du max II (02)

Une urne contient cinq boules numérotées de 1 a 5.
On tire deux boules simultanément.
On note X la variable aléatoire égale au plus petit numéro obtenu et Y la variable aléatoire

égale au plus grand numéro obtenu.

1. Donner X () et Y ().

Donner la loi conjointe de X et de Y.

Donner la loi de X et la loi de Y.

Les variables aléatoires X et Y sont-elles indépendantes ?

Déterminer E(X) et E(Y).

Déterminer Cov(X,Y).

2. Reprendre les questions précédentes en supposant cette fois qu’on tire deux boules
successivement et avec remise.

- o TP
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Solution.

1. a. Comme les deux boules sont distinctes, | X () = [1,4] et Y(Q) = [2,5] |

5
b. Le nombre de tirages possibles est <2> = 2%4 = 10. Soit (¢,7) € [1,4] x [2,5].

Siizjalors P(X =4,Y=j)=0car X <Y.

Sii < jalors (X =1,Y = j) est réalisé si et seulement si on a tiré la boule 7 et la

boule j donc, par équiprobabilité des tirages, P(X =4,V = j) = %.

Losii<j
Ainsi, | pour tout (i,7) € [1,4] x [2,5], P(X =4, Y =j5) =<1 _
0  sinon

c. Comme ((Y = j))jees] est un systeme complet d’évenements, par la formule de
probabilités totales, pour tout i € [1,4],

> o1 5—(i+1)+1 5—i
PX=i)=> PX=4,Y=j)= > —= ie. |P(X =i)= :
Jj=2 j:i+110 10 10

De méme, ((X = 1))icpi,4) est un systéme complet d’évenements, par la formule de
probabilités totales, pour tout j € [2,5],

& 1 j-1-1+1

. . . J . .

P(Y =j) =3 P(X =iV =j)=> 5="5 i PV =j)="|
i=1 =1

d. Etant donné que P(X =2,V =2)=0et P(X =2)P(Y =2) = 2 x L = 3. 40,
les variables aléatoires X et Y ne sont pas indépendantes ‘

e. Par définition,

4 4 .
5—i 4+6+6+4
E(X) =S iP(X = i)=Y ix ot =212 T 08 TR(X) = 2
= ~" 710 10
et
5 5 .
. . =1 246412420 .
E(Y) =3 jP(Y =j)=3 x5 = o ie [B(X)=14]|
Jj=2 j=2
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. a. Comme il y a remise, | X (2) =Y (Q) = [1,5] |

f. Par le théoreme de transfert pour le produit,

4 5

E(XY) =Y Y ijP(X =iY =j)=3 > i]

I
S
M%
~.
]Mm
.
I
-
o
M-
-~
/

<
Il
—
<
Il
~
+
=
~
Il
_

s
I
_

I
— —_
= o‘*—‘ O‘H
NERNNES
N .
—_
Ot
<.
| Do | X
- o
Y]
= |
) .
+ =
Z o+
N~ —
N—
v

-
Il
—

8 17
144244+27+2 —
10( +24 427+ 20) = 0= 3

donc, par la formule de Konig-Huygens,

Cov(X,Y) =E(XY) - E(X)E(Y) = 127 —2x4

soit | Cov(X,Y) = 3

b. Le nombre de tirages possibles est 5% = 25. Soit (4, ) € [1,5]>.
Sii>jalors P(X =¢,Y =j)=0car X <Y.
Sii=jalors (X =1i,Y = j) est réalisé si et seulement si on a tiré la boule 4 puis a
nouveau la boule ¢ donc, par équiprobabilité des tirages, P(X =4,Y =1i) = 25
Sii < jalors (X =14,Y = j) est réalisé si et seulement si on a tiré la boule 4
puis la boule j ou la boule j puis la boule 2 donc, par équiprobabilité des tirages,

P(X=iY=j)=2

= sii<j
Ainsi, | pour tout (i,7) € [1,5]*, P(X =4,V =j) =5 sii=j|
0 sii>y

c. Comme ((Y = j))jep,5) est un systeme complet d’évenements, par la formule de
probabilités totales, pour tout i € [1, 5],

> 1 ° 2 1 2(55—(i+1)+1)
P(X :
2 LT n

Jj=1

i |P(X =) =12

De méme, ((X = 14))icp 51 est un systeme complet d’évenements, par la formule de
probabilités totales, pour tout j € [1,5],

5 =19 2’—1—1 1
PY =)= P(X=iY =j)= Sl U )

=1 =1

25 25
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. : 2j—1
ie |P(Y =j) =

d. Etant donné que P(X =2,Y = 1) =0et P(X =2)P(Y = 1) =
‘les variables aléatoires X et Y ne sont pas indépendantes ‘

e. Par définition,

5 5 11—2i 94+ 14+15+12+5
;z ( i) ;zx o 5 i.e
et
o . 5. 2j—1 1+46+15+28+45 .
:Z]P(Y:]) :Z] X 5% = 5% ie.
j=1 j=1

f. Par le théoreme de transfert pour le produit,

5 ?:2 5 22]
= — + —_—

ot

I
[M] e
N
E
<

Il

o
<
~

)

-
I
—
<.
I
—

1[N, R 5x6x11 >
= 2 — +2) i
25 (22 ray ,le P T S,
= 7 Jj=i+ i=
1 > z—i—l)
— 2
(e (5 ))
1 > (i + 1)
il 155 — -~ ")
“ (e (-
1 225
28+4 4+4 =
25(55+ 8 +48 + 54 4 40) = 55 =9
donc, par la formule de Konig-Huygens,
11
Cov(X,Y)=EXY)-EX)EY)=9 - 5 X

soit | Cov(X,Y) = 22|
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Sujets mixtes algebre/analyse
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Sujet 46. Résolution d’un systéme différentiel I (C5)

-6 11

1. Déterminer les valeurs propres de A.

On considere la matrice A = <_10 18).

2. Justifier que A est diagonalisable et expliciter une matrice P telle que P~1AP soit une
matrice diagonale. On wveillera a ce que les coefficients de P soient des entiers.

3. Calculer P~ 1.

4. Soit x et y deux fonctions dérivables sur R et vérifiant z(0) = 11, y(0) = 7 et, pour tout
t eR,

y'(t) = —6x(t) + 11y(?)
On pose, pour tout t € R, <ZE§)>> = p! (58;)

a. Déterminer une équation différentielle vérifiée par a et une équation différentielle
vérifiée par b.

{x’(t) = —10x(t) + 18y(t)

b. Déterminer, pour tout réel ¢, a(t) et b(t).
c. En déduire, pour tout réel ¢, z(t) et y(t).
5. On pose, pour tout t € R, f(t) = 2e~! 4 9e*.

a. Ecrire en Python une fonction qui calcule f (t) ou t est un réel passé en argument de
la fonction.

b. Calculer f(0,5) et f(1).
1
c. Montrer que ’équation f(t) = 30 admet une unique solution « dans [2 ; 1}

d. En utilisant I'outil informatique, déterminer une valeur approchée de o & 1073 pres.
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Solution.

1. Méthode 1 : par le calcul
Soit A € R. Alors,

det(A — AL) = |_126_ e A‘ — (10— \)(11 = \) — (=6) x 18
= —110 + 10X — 11X + A% 4 108
=M -2

Le discriminant du trinome X2 — X —2est A = (=1)2 -4 x 1 x (=2) =9 > 0 donc ce
trindme possede deux racines réelles :

—(=1) — —(—
e e ) G Ll A
2x1 2x1

On en déduit que |Sp(A) = {—1;2} |

Méthode 2 : a ’aide de Python

Grace au code suivant,

import numpy as np

A = np.matrix([[-10, 18], [-6, 11]1])
print (np.linalg.eig(A))

qui affiche
(array ([-1., 2.]1),
matrix ([[-0.89442719, -0.83205029],
[-0.4472136 , -0.5547002 11))

on obtient que |Sp(A) = {—1;2}|

2. La matrice A est une matrice carrée d’ordre 2 qui admet 2 valeurs propres distinctes
donc A est diagonalisable.
Pour déterminer P, on cherche une base de vecteurs propres de A.

Soit (z,y) e R* et V = <§>

=z =2y

-1 18y = — 18y =
AV:—V(:}{ Oz + 18y x <:>{8y 9x

—6z 4+ 11y = —y 12y = 62

Ainsi, V] = <2

1) est un vecteur propre de A associé a la valeur propre —1.
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—10 18y =2 18y =12 2
AV =2V «—= T+ iy . <— Y v = y=-x
—6x + 11y = 2y 9y = 6x 3

. Alinsi, V5 = <§> est un vecteur propre de A associé a la valeur propre 2.

On en déduit que |si D = <_01 g) et P = G 3) alors A= PDP~'|.

-1 2

<Z§’g> ) <‘21 _23> (ﬁi) - (32(52)13512((3)))

donc a(t) = 2x(t) — 3y(t) et b(t) = —x(t) + 2y(t). On en déduit que a et b sont
dérivables sur R comme combinaisons linéaires de fonctions dérivables et, pour tout
réel t,

3. Comme det(P)=2x2—-1x3=1, P1:<2 _3>.

4. a. Pour tout réel t,

a'(t) =22/ (t) — 3y'(t) = 2(—10x(¢t) + 18y(t)) — 3(—6x(t) + 11y(t))
= —22/(t) + 3y'(t) = —d'(t)
et

b'(t) = —2'(t) + 2y (t) = —(—10x(t) + 18y(t)) + 2(—6x(t) + 11y(¢))
= —22(t) + 4y (t) = 2V'(¢).

Ainsi, |a est solution de (Fy) : 2/ + 2z = 0 et b est solution de (Es) : 2/ — 22 =0|.

b. On en déduit qu'il existe une constante réelle C; telle que, pour tout réel ¢, a(t) = C’le*t.
Or, a(0) = 22(0)—3y(0) = 1 donc 1 = C1e’ = C et ainsi, | pour tout réel ¢, a(t) =

De méme, il existe une constante réelle Cy telle que, pour tout réel ¢, b(t)

CQ th .

Or, b(0) = —2(0)+2y(0) = 3 donc 3 = Cse® = Cy et ainsi, | pour tout réel ¢, b(t) =

c. Pour tout réel ¢, (Zg;) = P (‘;Eg) done (jgg) =F (28?) - ( (<t)> 2b (Et))>

Ainsi, | pour tout réel t, z(t) = 2e" + 9e* et y(t) = e~ + 6e* |

5. a. La fonction suivante convient :

from math import exp

def fonction f(t):
return 2*exp(-t) + 9%exp (2*t)
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b. Par définition, | £(0,5) = 2e=%% + 9e et f(1) = 2e~' + 9¢?| A Paide de la fonction
précédente, on trouve | f(0,5) ~ 25,68 et f(1) ~ 67,24 |.
c. La fonction f est dérivable sur R comme composées et combinaisons linéaires de
fonctions dérivables et, pour tout réel ¢, f(t) = —2e~"+18e*. De plus, pour tout ¢ > 0,
—t < 0 donc, par croissance de la fonction exp sur R, e < 1 et ainsi —2e™? > —2.
De méme, pour tout ¢t > 0, 2t < 0 donc, par croissance de la fonction exp sur R,
e?® > 1 et ainsi 18e* > 18. Deés lors, pour tout ¢t > 0, f'(t) > —2 + 18 = 16 donc
f'(t) > 0. Ainsi, f est strictement croissante sur R et en particulier f est strictement

croissante sur 3 i1,

1
On en déduit que f est continue (car dérivable) et strictement croissante sur [ i1

sur

1
donc, par le théoreme de la bijection continue, f réalise une bijection de {2 i1

/()

1
De plus, d’apres la question précédente, 30 € f ({2 : 1]) car f(0,5) < 30 et

1
f(1) > 30 donc |il existe un unique o € {2 ; 1] tel que f(a) = 30|

d. En programmant l'algorithme de dichotomie suivant :

u = 0.5
v = 1
while (v-u > 0.001):
m=(u+v) /2
if fonction_f(m) > 30:
vV = m
else:
u =m
print (m)

on obtient .
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Sujet 47. Equation différentielle et dérivée n-ieme (O3)

1. On considere 1'équation différentielle suivante
25
(E):y" =5y — 7Y
Résoudre I'équation différentielle (E) sur R.
2. Soit (a,b) € R% Notons f : t — (at + b)egt. On considére, pour tout n € N, f la
dérivée n-eme de f.
a. Démontrer par récurrence que, pour tout n € N, il existe des réels a,, et b, tels que,
pour tout réel ¢, ]
FM(#) = (ant + by)ez".
Dans I’hérédité, on mettra en évidence les relations de récurrence suivantes :

5

Ap41 = ian
)
bn+1 =ap + §bn

b. Déterminer, pour tout n € N, une expression de a,, en fonction de n et de a.

2 n
3. On pose, pour tout n € N, u,, = (5> by,.

a. Exprimer, pour tout n € N, u,; en fonction de w,.
b. Calculer, pour tout n € N, la somme

n—1

Z (Upy1 — up)

k=0
de deux manieres différentes et en déduire une expression de u,,.
c. En déduire, pour tout n € N, une expression de b,, en fonction de n, a et b.
4. On propose de retrouver le résultat précédent par une méthode matricielle.
a. Démontrer que, pour tout n € N,
25

bn+2 = 5bn—‘,—l - an

On pose, pour tout n € N, X, = (bb" )
n—+1

1
b. Déterminer une matrice B telle que, pour tout n € N, X, = ZBX"'

c. En déduire, pour tout n € N, une expression de X,, en fonction de B, n et Xj.

10 2 20
_ -1 _ _
d. Montrer que B = PTP~" avec T = (0 10) et P = (5 1).

01
0 0)

f. Calculer N? et en déduire, pour tout entier n € N, 7™ en fonction de n.

e. Exprimer T en fonction de I et de la matrice N =

g. Déterminer, pour tout n € N, b, en fonction de n.
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Solution.

1. L’équation (FE) est équivalente a y” — 5y’ + 7= 0 qui est une équation homogene du
second ordre.

L’équation caractéristique associée est (C) : x? — bz + i 0. Le discriminant du

25 25
trindme X? — 5X + - ost A=(-5)2—-4x1x i 0 donc (C') posséde une unique
. ) -5 5
solution réelle zg = —— = —.
2x1 2
Par théoréme, on en déduit que ’ensemble des solutions de (E) sur R est

{t— (At+ B)es' | (A, B) e R?}|

2. a. Considérons, pour tout n € N, la proposition P(n) : « il existe des réels a, et b, tels
que, pour tout réel ¢, f(V(t) = (at + bn)egt ».
Initialisation. Par définition, f(®) = f donc, en posant ag = a et by = b, pour
tout réel t, fO(t) = (agt + by)es’. Ainsi, P(0) est vraie.
Hérédité. Soit n € N. On suppose que P(n) est vraie. Alors, il existe des réels
a, et by, tels que, pour tout réel £, f™(t) = (ant + by)e2. La fonction f™ est donc
dérivable comme produit et composée de fonctions dérivables et, pour tout réel ¢,

5 5 5

5 5
Ainsi, en posant a,;; = 50 et b1 = a, + ib"’ pour tout réel ¢, fH(¢) =

(@ni1t + bpyr)ez! donc P(n + 1) est vraie.

Conclusion. Par le principe de récurrence, pour tout n € N, il existe deux réels
a, et by, tels que, pour tout réel ¢, f™(t) = (ayt + by )e2".

De plus, on a montré que ag = a, by = b et, pour tout n € N,

5
Up41 = ian

)
bn+1 =ap+ ibn

5
b. Ainsi, la suite (a,) est une suite géométrique de premier terme a et de raison 3 donc,

5 n
pour tout n € N, a, = a <2> .
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3. a. Soit n € N. Alors,

2 n+1 2 n+1 5
n =\ bn = \T n bn
et <5> ! <5> (a *5 >
2 n+1 5 n 2 n+1
=(5) xe(5) +(5) <
2>< 2><5)n>< —|—2><5><(2)nb
= -_ —_ —_— a/ p— p— —_— n
5 5 2 5 2 5)
2 2\"
=—-x1" 1 - b,
E X xa-+1Xx <5)
2 +
= —a-+u,
5
.. 2
Ainsi, | pour tout n € N, u,, 11 = u, + ga .

b. Soit n € N. D’une part, en reconnaissant une somme téléscopique,
n—1

Z(uk+1—uk):un—uozun—bozun—b.
k=0

2
D’autre part, d’apres la question précédente, pour tout £ € N, ag 1 — ap = ga donc

)y PO
(U1 —ug) = —a=nXxX —a= —an.
k=0 =0 5 5

2 2
Ainsi, on en déduit que u,, — b = gan donc u,, = gan + .

2
On a donc montré que, |pour tout n € N, u,, = gcm + bl

2 n 5 n
c. Pour tout n € N, u,, = <5> b, donc b, = (2> u, et ainsi, d’apres la question

5\" /2 5\""! 5 /2
précédente, pour tout n € N, b, = <2> (an + b) = () X — (cm + b) ie.

) 2 2\5
¥neN b (5)n1 ( + 55)
n = = an+ =b) |
2 2
4. a. Soit n € N. Alors,
5! 5 5)
bngy2 = Gpy1 + §bn+1 = 50 + §bn+1-

5 5
Or, byy1 =a, + §bn donc a, = b1 — ibn' Ainsi,

5 5 5 5 25 5 25
bn+2 = 5 (bn+1 - 2bn> §bn = §bn+1 - an + ianrl = 5bn+1 - an
, 25
On a donc montré que, | pour tout n € N, b,,0 = 5b,, 11 — an :
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. Soit n € N. Alors,
b 0 1
b n+l b 1 0 4
n+1 <bn+2> (5bn+1 — fbn) (—45 5) (bn+1> 4 (—25 20) n

1
Ainsi, |la matrice B = (_25 24()) est telle que, pour tout n € N, X, 1 = ZBXn )

1
. La suite (X,,) est une suite géométrique de matrices colonnes de raison - B donc,

1
pour tout n € N, X, = (4

B) X, |

1
. Comme det(P) =2 x1—5x0=2=#0, P est bien inversible et P~ = 5 ( L O).
Ainsi,
(2 0\ (10 2
PTP— = (5 1)\0 10

5 2
10y _1{20\(0 4)\_
-5 2) 2\5 1)\=50 20)
donc | PTP~ ' = B\

Lo 8
2 \—50 40
. On observe que T = (10 0) + (O 2) donc ’T =101, + 2N ‘

N | —

0 10 0 0

NPT

. On vérifie que

donc | N? = 0, |.
On en déduit que

T? = (1015 + 2N) (1013 + 2N) = 10%I; + 20I,N + 20Ny + 4N? = 10°I5 + 40N
et
T3 = T°T = (10°I + 40N) (101, 4+ 2N) = 10*I3 + 200I;N + 400N I + 80N? = 10*I, + 600N

Considérons, pour tout n € N, la proposition P(n) : « T = 10"I, + 2n10" "N ».
Initialisation. D’une part, 7° = I, et, d’autre part, 10°7, +2 x 0 x 107'N = I,
donc P(0) est vraie.
Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors,

T =T"T = (10"I5 + 2n10" ' N) (101, + 2N)
= 10" 15 4+ 2 x 10" LN + 2n10" N1y + 4n10™ ' N2
=10"" 1, +2(n + 1)10"N
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donc P(n + 1) est vraie.

Conclusion. On a montré par récurrence que, pour tout n € N, T" = 10"15 +
2n10" 1N,

Remarque. On peut aussi obtenir les résultats en utilisant la formule du binome de
Newton pour les matrices. ATTENTION, cependant, on ne peut développer (A + B)"
a I'aide du binéme de Newton que si les matrices A et B commutent. Ici, c¢’est le cas
puisque I[bN = NI, = N donc, pour tout n € N,

n

T" = (101, +2N)" = 3 (") (101 @N)»F = S0 () 108 1F % 2n -k Nk
k=0 k k=0 k
= (") 1052 Nk,
k=0 k
Or,sin—k>2ie sik<n—2 N"%=0,donc
n . n kon—k nrn—~k n n—1o1 a7l n no0 A70 n—1 n

™= % ()102 N :( )10 2N+< )102N = nl0"'x2N+1x10"1,.

o \K n—1 n

Ainsi, pour tout n € N, T" = 101, + 2n10" ! N.

0 10™ 0 10
. Comme B = PTP~!, par propriété, pour tout n € N, B" = PT"P~! donc

Bn_w”—1 2 0\ (10 2n\ (1 0) 10"" (2 0)[10-10n 4n
— o2 \5 1) 0 10)\-5 2/ 2 \51 —-50 20

B 10™1 (20 — 20n 8n _ gt 10 — 10n 4dn
2 —50n  20n—20) — —25n 10n — 10

n n—1
On conclut que, |pour tout n € N, T" = <10 2n10 ) — 107! (10 2”) ‘

Ainsi, pour tout n € N,

o/t Nt 1o 1 (10—10n 4n by
X”_(4B> Ko = bR = gl ( —25n 10n—10> <b0>'

5 5
Or, by =0bet by =ag+ 51)0 =a+ §b donc, pour tout n € N,

_ b
anlxl()M(lo 100 4n )( -

4n —2bn 10n—10/ \a + §b
)
1 (10 — 10n)b + 4n <a+b
— 7 X 1On_1 2
4 —25nb + (10n — 10) <a + 2b>
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En particulier, on déduit de la premiere ligne que, pour tout n € N,

1
by = — x 10" {(10 —10n)b + 4n <a + ;bﬂ

4n

- (5~
-G)

Ainsi, on retrouve bien que,

1
) 1(106 — 10nb + 4na + 10nb)

( b—l—na)

5\ 1 5
pour tout n € N, b, = <2> (an + 2b> )
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Sujet 48. Etude d’une réaction chimique (O3)

Le sujet traite d’une réaction chimique avec plusieurs réactifs.

Initialement, la concentration en benzeéne est de 0,2 mol.L~!, la concentration en produit 1
est 0 mol.L=! et la concentration en produit 2 est 0 mol.L~1.

On note C' la concentration en benzene.

e Siln(C) est une fonction affine du temps ¢ alors on dit que la réaction est d’ordre 1.
1
o Si ol est une fonction affine du temps ¢ alors on dit que la réaction est d’ordre 2.

1. On observe les valeurs suivantes de C en fonction de t.

t |0 10 20 50 100 200 300
10210179 0,161 | 0,115 | 0,0666 | 0,0222 | 0,007

Déterminer 'ordre de cette réaction chimique.

2. On appelle maintenant x la concentration en benzeéne, y la concentration en produit 1 et
z celle en produit 2, fonctions du temps .
Ces fonctions vérifient, pour tout réel t > 0, le systéme

2() = —Ka(t) (Ey)

() {4/ (t) = —Koy(t) + Ka(t) ()
(1) = —Foz(t) (Ey)

ou K, et Ky sont des constantes réelles distinctes et strictement positives.
Déterminer les solutions de (E}).

3. Proposer une valeur de K en accord avec les valeurs expérimentales.

Une premiére version (analyse)

4. a. Montrer que y vérifie une équation différentielle notée (Ey).

b. Résoudre (Ej4). On cherchera une solution particuli¢re sous la forme ¢ — ae™1* ou
a € R.
. . o _Kqt — Kot 072K1
5. Soit f et g les fonctions définies sur Ry par f(t) = e "1t —e "2t et g(t) = ﬁf(t)
2 — I

A quoi correspond la fonction ¢ ?

6. Déterminer les variations de f sur R.

Une seconde version (algébre linéaire)
() /(1)
a. Pour tout réel ¢t > 0, on pose X (t) = [ y(t) | et X'(t) = | ¥/ (¢)

2(t) Z(t)

Ecrire le systeme (S) sous la forme matricielle X'(t) = AX(t) (E).

X
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b. Donner ensuite une matrice D diagonale et une matrice P inversible telles que
A= PDP.

71(?) 71(?)
c. On pose, pour tout réel ¢t > 0, X1(t) = P71X(t) = [ yi(t) | et X1(t) = | v4(¢)
z1(1) z1(1)

On admet que, pour tout réel ¢ > 0, X} (t) = P71 X'(t).
Déterminer, pour tout ¢ > 0, la forme générale de X ().
d. En déduire, pour tout réel t > 0, X ().
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Solution.

1.

t 0 10 20 50 100 | 200 | 300
C 02 [0,179 | 0,161 | 0,115 [ 0,0666 | 0,0222 | 0,007
In(C) | -1,61 | —1,72 | =183 | =2,16 | —2,71 | —3,81 | —4,96

5 5 559 | 6,21 | 870 | 15,02 | 45,05 | 142,86

On constate que, lorsque ¢t augmente de 10k, les valeurs de In(C') diminue de 0,11k donc

In(C) est une fonction linéaire de ¢ (et ce n'est pas le cas pour ).

Ainsi, |la réaction est d’ordre 1]

. L’équation (E)) est équivalente a 2/(t) + Ky2(t) = 0 donc, par théoréme, I’ensemble des

solutions de (E}) sur [0;+oo| est | {t — Ae K11 | A € R} |.

. Ainsi, il existe A € R tel que, pour tout réel t > 0, z(t) = Ae 1%, De plus, £(0) = 0,2 donc

A = 0,2. Ainsi, pour tout réel ¢ > 0, In(x(t)) = In(0,2) — Kt donc — K est le coefficient
de directeur de la fonction de la fonction affine ¢ — In(x(¢)). Or, d’apres la question 1.,

0,11
ce coefficient directeur est environ égale a — iO = —0,011. Ainsi, | K7 ~ 0,011

. a. La fonction y vérifie, pour tout réel t > 0, (Ey) : ¢/ (t) + Koy(t) = 0,2Ke~ 11,

b. L’équation homogene associée a (Ey) est (H) : ¢y + Koy = 0 et 'ensemble des solutions
de (H) sur [0;+oo[ est {t — Be %2t | B € R}.
Soit @ € R et h : t — ae 51t Alors, pour tout réel ¢ > 0,
R (t) + Kyh(t) = —aKe 5 4 aKye ™ = a(Ky — Ky)e 5!
donc, pour que h soit solution de (Ej), il suffit que a(Ky; — K;) = 0,2K; ie. a =
0,2K,
Ky — Ky
. 072K1 —Kqt . . N
Ainsi, h : t —» ————e~ """ est une solution particuliere de (Ej).

Ky — K
On conclut que I'ensemble de solutions des (Ey) sur [0; +oo[ est

{t — 0,25, e it 4 Be~ 2t

Ky — Ky

BE]R}.

0,2K,4

. Ainsi, il existe B € R tel que, pour tout réel ¢, y(t) = e K1t 1 Be~K2t De

K, — K,

0,2K; . 0,2K4
1 0)=0d ————+B=0ie. B=——-—
plus, y(0) oncK2_K1+ ie e
0,2,

v = g (e¥1t — =72t done [g = y]

. Ainsi, pour tout réel t > 0,

. La fonction f est dérivable sur R, comme somme et composées de fonctions dérivables

et, pour tout réel t > 0,

f’(t) = —Kle_fﬁt + KQG_K2t — e—KQt <K2 _ Kle(Kg—Kl)t> )
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Pour tout réel ¢ > 0, e %1* > 0 donc, comme K; > 0 et Ky > 0,

K,

f/(t) >0« Ky — Kle(K2_K1)t >0 <— e(K2—K1)t < 7
1

On en déduit que si K; < Ky alors

1 K,
()
Ky — K, K

| ()
>
() 20<=1t> o Klln e

P t | <K
osons tg = ——— K K n K,

Ky
donct0>Oet,31K1<K2,K2 K1<Oetln<K
les cas tg > 0.

ft) >0t

et, si K1 > K, alors
1 K,

) Notons que, si K1 < Ky, Ko — K1 > 0et In <K> >0
1

) < 0 donc tg > 0. Ainsi, dans tous
1

On conclut donc que, |si K7 < K, f est croissante sur [0; %] et décroissante sur [tg;+oo|

et, |si Ky > Ky, f est décroissante sur [0;to] et croissante sur [ty ; +00]|.

7. a. L’écriture matricielle du systeme () est, pour tout réel ¢t > 0, X'(t) = AX(t) ou

-K5 0 0
A=| K1 —-Ky, 0
0 0 —Ko

b. Comme A est triangulaire, ses valeurs propres sont ses termes diagonaux donc Sp(A) =

{_Kl 3 —KQ}
a
Déterminons les sous-espaces propres. Soit (a,b,c) € R® et X = | b |. Alors, comme
c
Kl 7é K27
—Kla = —Kla K (K K )b
a= —
AX = —K X < { Kja — Kob= — Kb <—={ ' >
(K1 - KQ)C =0
—KQC = —ch
A
<~ Kg Kl
c=0
Ainsi, le sous-espace propre associé a la valeur propre — K est engendré par le vecteur
Ky — Ky
Ky
0
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De méme,

—Kl& = —Kga <K2 _ Kl)a —0
AX = Ky X <= Kia— Kyp = —Kyb <— { B
—KQC = —KQC Kla =0
< a=0.

Ainsi, le sous-espace propre associé a la valeur propre —Ky est engendré par les

0 0
vecteurs [1] et |0 ].
0 1

La somme des dimensions des sous-espaces propres est 1 +2 = 3 donc A est
diagonalisable et A = PDP~! en posant

-K5 0 0 Ko—Ky 0 0
D= 0 —K2 0 et P = Kl 10
0 0 —Ky 0 01

donc il existe des constantes «, 3 et « telles que, pour tout réel ¢, x,(t) = ae X1t
y1(t) = Be 52t et 2(t) = ye K2t Ainsi, pour tout réel ¢ > 0,

ae Kt
Xi(t) = [ Be B!
'Ye_KQt
. Des lors, pour tout réel ¢t > 0,
KZ - Kl 0 0 oae_Klt a(Kz _ K1>e—K1t
X(t) = PX;y(t) = K, 1 0| |ge | = | akje Kt 4 geKet
0 01 'ye_KQt ,ye—KQt
0,2
De plus, X(0) = | 0 | donc
0
a(Ky — K1) =0,2 o = K20i2K1
aKi+5=0 donc { § = — 22
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Ainsi, on conclut que, pour tout t > 0,

0,2e— Kt

0,2/, (elet . efKQt)

X(t) =
() KZ_Kl
0
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Sujet 49. Elevage de lapins et suite de Fibonacci (0O3)

On s’intéresse au nombre de couples de lapins dans un élevage.

En janvier (mois 0), un couple de lapereaux est réuni.

En février, ce couple devient mature. Le mois suivant, il donne naissance a un couple de
lapereaux.

La suite du développement suit les regles suivantes :

e un couple mature donne naissance a un couple de lapereaux tous les mois;

e en revanche, un couple de lapereaux doit attendre un mois avant d’atteindre sa maturité
et, adulte, se mettre a procréer tous les mois.

Pour tout n € N, on note f,, le nombre de couples de lapins le n-eme mois.

1. Montrer que fo = 1, f{ = 1 et f, = 2 (mois de mars) et que, pour tout n € N,
fn+2 = fnJrl + fn

2. a. A Taide du logiciel de votre choix (Python, Excel ou la calculatrice), écrire une
fonction permettant de calculer f,,, n étant passé en argument.

b. Donner les 8 premiers termes de la suite (f,).

3. Soit A — G é) € Ms(R).

a. A P’aide du logiciel de votre choix, donner une conjecture sur le lien existant, pour
tout entier n > 2, entre A", f, fn_1 et fn_o.
Démontrer cette conjecture.

b. Sachant que, pour toutes matrices A et B de #5(R), det(AB) = det(A) det(B),
montrer que, pour tout entier n > 1, fi1fn1 — f2 = (—1)"*

4. Pour tout n € N, on pose X,, = (f?l).

Etablir, pour tout n € N, un lien entre A, Xni1 et X,,.

5. Calculer, pour tout n € N, A" avec la méthode de votre choix. On pourra introduire

1-+5 1+5
(e et o = .
2 2
6. Déterminer, pour tout n € N, une relation entre X,,, A, n et Xy. En déduire, pour tout

n € N, le nombre de couples de lapins le n-eme mois en fonction de n.

7. Donner un équivalent de f,,. En déduire la limite du rapport an.

n
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Solution.

1. En janvier, il y a un seul couple de lapereaux donc . En février, ce couple devient
mature mais ne s’est pas encore reproduit donc . En mars, il se reproduit en

donnant naissance a un couple de lapereaux donc il y a 2 couples en mars soit .

Soit n € N. Au mois n + 2, le nombre de couples de lapins est égal au nombre
de couples de lapins présents au mois n + 1 auxquels s’ajoutent autant de couples de
lapereaux que de couples de lapins matures. Or, le nombre de couples présents au mois
n+ 1 est f,11 et le nombre de couples matures est le nombre de couples présents deux

mois avant i.e. f,. Ainsi, ‘fnﬁ = foi1+ fn ‘

2. a.
b
3. a.

. En utilisant 'instruction

En Python, on écrit la fonction suivante :

def lapin(n):
f =1
g =1
for i in range(n):

f, g =g, f+g
return f

for n in range (8):
print (lapin(n))

Onobtient | fo=1, =1, fo=2 fs=3,f1=5f; =8 [y =13 et fr = 21|

En utilisant le script suivant :

import numpy as np

A=np.matrix ([[1,1],[1,0]])

B=A
for k in range(1,6):
B=Bx*A
print (B)
: 2 1 fo fi 3 2 ERE) 5 3
2 _ _ 3 _ _ 4 _
OnObtlentA_ll_flfo’A_Ql_fgfl’A_?)Q
fa f3 5_ (85 fs Ja 6_ (13 8 fo [
, A% = = t AY = = .
(fzfz 53/ \fi fs)° 8 5/ \fs fu
On peut donc conjecturer que, pour tout entier n > 2, A" = <ff" ;Z”_l)
n—1 n—2
Considérons, pour tout entier n > 2, la proposition P(n) : « A" = ( ff” ;”_1> )
n—1 n—2
o . . . 2 2 ]. . f2 fl .
Initialisation. On a vu que A® = = donc P(2) est vraie.
L1 i fo
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Hérédité. Soit un entier n > 2. Supposons que P(n) est vraie. Alors,

n n— 1 1 fn + fnfl fn
An—i—l — AnA — f f 1 _ )
<fn1 fn72 10 fn71+fn72 fnfl
OI‘, djaprés la question 1., fn =+ fnfl = fn+1 et fnfl + fnf2 = fn donc A"t =
(f;,ﬂ ff” > i.e. P(n+ 1) est vraie.
n n—1

Conclusion. Par le principe de récurrence, on conclut que

n __ fn fn—l
vn 2 2 40= (fn—l fn—Z) '

b. Soit n € N. Alors,
det(A™™) = det(AA™) = det(A) det(A™) = (1 x 0 — 1 x 1) det(A™) = — det(A™).

Ainsi, la suite (det(A™))nen est une suite géométrique de raison —1 donc, pour

tout n € N, det(A") = det(A°)(—=1)". Or, det(A°) = det(ly) = 1 donc, pour tout

n € N, det(A") = (—1)". En particulier, pour tout n > 1, det(A™™!) = (—1)"*!

et, commen > 1, n+1 > 2 donc A" = (f;H ff" ) Ainsi, pour tout n € N*,
n n—1

det(A™™) = f,11fn_1 — f? et on conclut donc que

Vn e N* foiifoo1 — f,f = (—1)n+1 .

X —_ fn+2 _ fn+1+fn _ I 1 fn—i—l
il fn—l—l fn+1 1 O fn '

Ainsi, |pour tout n € N, X,,,; = AX, ‘

5. La matrice A est une matrice symétrique a coefficients réels donc elle est diagonalisable.
Soit A € R. Alors,

4. Soit n € N. Alors,

1—-X 1

‘:(1—)\)(—)\)—1:)\2—)\—1.

Le discriminant du trindme X% — X —lest A = (=1)? -4 x 1 x (=1) =5 > 0 donc
celui-ci possede 2 racines réelles :

~(-D-vE _ 1=V (D HVE 1406
2 B ¢ 2= 2 — 2
-5 1+V5

b= .
5 9¥ 2

A =

Ainsi, les valeurs propres de A sont 1) =
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Déterminer des vecteurs propres associés. Soit (z,y) € R? et X = <I>

Y
1 -5 1 -5
rT+y= \/_a: rT+y= T
AX =YX —= —
1 -5 I -5
T = 2\/_ T = 2\/_
1-5 I 4
y= 5 rT—x = 9
1_\/3 Yy y—12_\/32
—1—-+5
—y= 2\/_:15:—@:15

14++/5 1++5
Ax X T+y= 5 T Tty = 5 x
A = 1+ 5 — 1+ 5
Ty R
1_|_\/5 :—1-1-\/5
Yy = 5 Tr—x Y 9 z
1+v5 7 12 F
—14++5
@y:Tm:—gbx

. 1 AR
Ainsi, | " est un vecteur propre associé¢ a la valeur propre .

En posant P = 1 1 et D= ¥ 0 ,on adonc A= PDP!.
—p =Y 0 ¢

Des lors, par propriété, pour tout n € N, A" = PD"P~!. Or, D est diagonale donc, pour

tout n € N, D" = <¢ 0n>. De plus,
0 ¢

~1+v5 145
7o 2f+ 2\/__\/5
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Ainsi, pour tout n € N,
w= (5 )0 250 )
S\ )0 ) s e
Sl A7)
VB e =) ettt et

1 ( 90n+1 wn—&-l Spn_wn )
@™t — ™t ™ — ahp”

1-v6 _ 1+V5  12—F

En remarquant que ¢y = 5 X 5 = 1 = —1, on en déduit que
4n L ( n+1 wn—&-l %7; — " _1> _ L ( n+1 wn—&-l (6? _ wn_l
VB \ (@)Y = (eg)e™ ()" — ()" V5 o A e T

Ainsi,

1 gOn+1_,¢}n+1 gOn_wn )
VneN A"= S
n \/5( gDn_wn gDn l_w 1

. On a vu que, pour tout n € N, X, ;; = AX,, donc (X,,) est une suite géométrique de
matrices de raison A donc,‘ pour tout n € N, X,, = A" X, ‘

1 L1
Comme X, = <1>, on en déduit que, pour tout n € N,

v i (QOTL—H _ wn-i—l Son _ wn ) (1) B L <§0n+1 _ 1/}71—&-1 + Spn _ wn)
n — \/5 (pn - djn (pnfl - 77anl 1 - \/5 SOn - ,¢n + sanl _ wnfl .

Il s’ensuit que, pour tout n € N,

i i o 2 A e (ot O R e et

V5 V5 '
Or, comme ) et ¢ sont racines du polynéme X? — X —1=0,ona¢? -9 —1=0et
©? —p—1=0donc 9> = + 1 et ©?> = ¢+ 1. Dés lors, on conclut que,

(anrl - 77/}”+1

Remarque. On a suivi I’énoncé mais en fait on pouvait faire bien plus court en remarquant
que, pour tout n > 2,

A" = ( fn fn_1> _ L <¢n+1 o wn+1 SOn . wn )
fnfl fnf2 \/5 gpn — w” 8071—1 _ 7ﬁn—l

donc, en égalant les termes d’indices 1 et 1 des deux matrices, on vient que, pour tout
n=>2 f,= \1[( ntl gt De plus, cette égalité est encore vraie, pour n = 0, car
L =) = B = 1= fyet, pourn = 1, car (¢ —4?) = L (p+1— (Y1) = fo = fu

n+1_ wn+1

_
A1n51, pour tout n € N, f,, = 7

fn:

VneN f,=
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7. Comme ¢ ~ 1,6, ¢ > 1 et, comme ¢ ~ —0,6, ¢ € [—1;1], "' —— +o00 et

n—-+o00
wn—&-l
Yt ——— 0 donc % =1- —— 1. On conclut que
n—4o0 Sﬂf (pn+1 n—-+00
5
+1
forn &
" :
V5
o A J
. 1 : 1
Deés lors, =2 ~ 5 done | lim 22
n ‘P\/g n—-+00 fn

213



Sujet 50. Etude d’une population d’individus hermaphro-
dites (03)

On considere une population d’individus hermaphrodites.

On note ag la proportion de males dans la population de départ et by la proportion de
femelles. Chaque individu a une probabilité i de changer de sexe une fois par an. Pour tout
n € N, on note a, la proportion de males dans la population a la fin de I'année n et b, la
proportion de femelles dans la population a la fin de ’année n .

Partie 1

1. Exprimer, pour tout n € N, a, 1 et b,,1 en fonction de a, et b,.
2. Que peut-on dire de la suite (a, + b,)?

ap + b . L
— =22 =% Montrer que la suite (¢,) est géométrique.

3. On pose, pour tout n € N, t, = a,,

4. En déduire, pour tout n € N, des expressions explicites de a,, et b, en fonction de n.

5. Quelles sont les limites des deux suites (a,) et (b,)?

)

On pose, de plus, pour tout n € N, X,, = (Z")

1. Soit n € N. Donner une relation entre X,, .1, M et X,,.

Partie 2
Soit M =

= o
TSN

2. Montrer que 1 est une valeur propre de M et déterminer un vecteur propre de M associé
a cette valeur propre.

3. Trouver une valeur propre x de M telle que 0 < x < 1.
4. Déterminer une matrice inversible P et une matrice diagonale D telle que M = PDP~!,

5. S0it (Un)nen €t (vn)nen deux suites définies par leurs premiers termes ug et vg et par la

relation de récurrence :
U U
VneN ) — D).
Un+1 Un

Montrer que, pour tout entier n € N, (2") = D" (20)
n 0

6. Retrouver les limites des suites (an)nen €t (bn)nen-
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Solution.

Partie 1

1. Chaque année, % des individus males restent males et i des femmes deviennent males

donc, |pour tout n € N, a,1 = %an + ibn .

De méme, chaque année, 3 des individus femelles restent femelles et i des males deviennent

femelles donc, |pour tout n € N, b, = ian + %bn .

2. Pour tout n € N, a,11 + bpy1 = %an + ibn + ian + %bn = q, + b, donc la suite

(an + b,) est constante |.

3. Soit n € N. Alors,

ap+b 3 1 ag+b
tn+1:an+1_%zian+zbn_ 02 0~

Or, comme (a, + b,) est constante, a,, + b, = ag + by donc b, = ay + by — a,. Ainsi,

3 1 (Io+b0 3 (I0+bo 1 (Io+bo
tn = —Un - by — n) — = —Un — Un —
w1 =gt a0t by —an) == it T 2
_1 ao—i‘bo_} CL0+bO —lt
Tt T Ty T\ Ty T

1
Ainsi, | (t,,) est une suite géométrique de raison 3t

a0+b0_a0—b0
2 2

1 n
4. On en déduit que, pour tout n € N, ¢, =ty X (2) . Or, tg = ag —
ag — bo 1 ag — bo
5 _

donc, pour tout n € N, t,, = 5 n = oni

Or, pour tout n € N, a,, =

De plus, on a vu que, pour tout n € N, b,, = ag + by — a,, donc

ap+by  ag— by

VneN b, = 5 T oni
5. Comme 2 > 1, 1_131 2"t = 100 donc, par quotient et somme,
ap+b
lim a, = lim b, = 0+0.
n—-+o0o n—-+oo 2
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Partie 2
1. Par définition,

i)

done | X1 = MX,,|

1

2. On peut constater que M G) = (1

1
) donc, comme le vecteur (1) est non nul, on en

’ . 1 .z
déduit que |1 est une valeur propre de M et que < ) en est un vecteur propre associé |.

1

3. Soit A € R. Alors,

oo

det(M — )\]2) =

-2 1 3 21 9 3 1 3 1
4 2 2
— _)\> S A WD © e ) W
1 j—A| (4 16 16 2 16 2" " 2

Comme 1 est valeur propre de M, 1 est racine du trindme X? — %X + % donc celui-ci
se factorise par X — 1. On vérifie alors que X? — %X + % =(X-1) (X — %) donc on

conclut que |z = % est une autre valeur propre de M |.

Autre solution. On pouvait également utiliser Python :

import numpy as np

M = np.matrix ([[3/4,1/4]1, [1/4,3/41]1)
print (np.linalg.eig(M))

qui affiche

(array ([1. , 0.5]),
matrix ([[ 0.70710678, -0.70710678],
[ 0.70710678, 0.7071067811]1))

on obtient | Sp(M) = {1; %

4. On a vu que (1

1) est un vecteur propre associé a la valeur propre 1. De plus, le résultat

, - -1 s .
donné par Python semble indiquer de ( 1 ) est un vecteur propre associé a % Vérifions-le :

(V)= () =200

ce qui confirme que ( ) est un vecteur propre associé a la valeur propre %

1

0 3 1 1

2

On en déduit que |M = PDP~! avec D = <1 9) ot P — (1 —1) ‘
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. La suite <<:">> est une suite géométrique de matrices de raison D donc
n

Vn € N (“") — pn (“0) .
Un, Vo

. Pour tout n € N, X,,,; = MX,, = PDP~'X, donc, en multipliant par P~! & gauche,

P~'X, ., = DP7X,,. Posons, pour tout n € N, (un = P71X,,. Alors, d’aprés ce qui

n

() =7 ()

Or, comme D est diagonale, pour tout n € N, D" = (

précede, pour tout n € N,

1
0 5

() =6 1) ()= (2)

On en déduit que, pour tout n € N, u,, = ug et v, = 5% donc lim u, =wuget lim v, =0.
n—+00 n—+400

el (3
Un Up + Up

donc, pour tout n € N, a,, = u,, — v, et b, = u, + v,. Ainsi, par sommes de limites, (a,,)
et (b,) tendent vers uq.

1
0) donc, pour tout n € N,

Or, par définition,

1
Enfin, det(P) = 2 donc P71 = 3 (_11 1) donc

EHENIWE

. On retrouve donc que

1 ag + b
2 \ap — by

a0+b0

et ainsi ug =

. . ap + bo
lim a, = lim b, = )
n—-+o0o n—+o0o 2
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Sujet 51. Résolution d’un systéme différentiel IT (O3)

Partie I. Equation différentielle linéaire du premier ordre
Soit a un nombre réel. On consideére y une fonction dérivable sur R vérifiant 1’équation
différentielle :

y =ay
1. On considére la fonction z définie sur R par z(t) = e~ *y(¢).

Montrer que z est une fonction constante.

2. En déduire, pour tout ¢t € R, 'expression de y(t).

Partie II. Systeme différentiel linéaire du premier ordre
Soit A la matrice de .#>(R) définie par :

- (4 )

On considere u et v deux fonctions dérivables sur R vérifiant le systeme différentiel :

(9) {u’:u—l—v

v = —2u+4v

/

1. On note Y = <Z> et Y= (Z,) Ecrire le systeme (S) sous forme matricielle.

2. a. Déterminer une matrice P inversible et une matrice D diagonale telles que A =
PDP~!
b. En déduire, pour tout n € N, I'expression de A™ en fonction de n.

3. Pour tout t € R et tout n € N, on note

a. Expliciter, pour tout n € N, a,(t), b, (), c,(t) et d,(t) en fonction de t.

b. Soit ¢ € R. Justifier que les suites (a,(t))nen, (0n(t))nen, (¢n(t))nen et (dn(t))nen
convergent et donner leurs limites.

c. Expliciter, pour tout ¢ € R, la matrice FE(t, A) définie par

lim a,(t) lm b,(t)
E(t,A) = "1 notee :
’ lim ¢,(t) lim d,(t)
n—-+0oo n—-+00

4. Montrer que, pour tout ¢ € R, les matrices E(t, A) et E(—t, A) sont inversibles et inverses
I'une de l'autre.
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5. On note, pour tout t € R,

(nio) =20 (65).
a. Expliciter, pour tout t € R, uy(t) et vy (t).

b. Montrer que, pour tout réel ¢, u}(t) = vi(t) = 0.

6. Démontrer qu’il existe deux réels a et 5 tels que, pour tout réel ¢,

(0) = 3

et en déduire, pour tout réel ¢, les expressions de u(t) et v(t).
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Solution.

Partie I. Equation différentielle linéaire du premier ordre

1. La fonction z est dérivable sur R par composition et produit de fonctions dérivables et,
pour tout t € R,

() = —ae™y(t) + ey (1) = e (y'(t) — ay(t)) = 0
donc, comme R est une intervalle, | z est constante sur R].

2. Posons C' = 2(0). Alors, pour tout ¢t € R, 2(t) = C donc e “y(t) = C et ainsi
y(t) = Ce |,

Partie II. Systéme différentiel linéaire du premier ordre
1. L’écriture matricielle de (S) est Y’ = AY.
2. a. Soit A € R. Alors,
1—-Xx 1
-2 4=
S A-A—4A+ N +2=0
= AN -5A+6=0

Le discriminant du trindme X2 —5X + 6 est A = (=5)? =4 x 1 x 6 =1 > 0 donc
celui-ci possede deux racines réelles :

—(-5) VI ~(5) V1
i 2% 1 et 2% 1 3

Ainsi, Sp(A) = {2;3} donc, comme A est une matrice carrée d’ordre 2 ayant deux
valeurs propres distinctes, A est diagonalisable.

Soit (z,y) eR2 et X = |

)\GSp(A)<:>det< >:0<:>(1—)\)(4—)\)—(—2)><1:O

Déterminons Ey(A) :

=2
X € Ey(A) <= AX =2X — rhy=c = y==x
—2x +4y =2y
x 1
donc Ey(A) = { (:c) T € R} = Vect <<1>>
Déterminons E5(A) :
=3
X € B3(A) <= AX =3X < Fhy=ox = y=22
—2z 4+ 4y = 3y

aone 5y {(2)] e ) v (1))

On conclut que |A = PDP~" avec D = <§ g) et P = G ;) :
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b. On en déduit que, pour tout n € N, A"

D est diagonale, pour tout n € N, D"
2 -1

5 3)=(5)

Ainsi, pour tout n € N,

2
-1

-1

1 _ 1
P = 1

1

(PDP~H" = PD"P~!. Or, comme
). De plus, det(P) = 1 donc

2" 0
0o 3"

An 1 1\ /2" O 2 -1\ (1 1 ontl _ogn
S \1 2 0o 3*/\-1 1) \1 2 -3 3"
i.e.
A — 2n+1 _3n 3n _9on
T\l 2% 3 2x3r -2
a. Soit t € R et n € N. Alors,
b 1k k+1 k k k
t 20— 3 3% —2
En(taA) _kzz;)y <2k+1 —92%x 3k 92x3k _2k>
N Lkok+1_ak N Lkiak_ok
kzt(zk!i%) t(dk!2)
— =0 k=0
N kok+1_ k nook k_ok
kZ::Dt (2 . 2x3%) kZ::O t (QXZ! 2k)
n k_ k n k_ k
) 2(2t) - (3t) D %
_ | k=0 k=0
n k_ k n k_(onk
kz_: 2(2t) ’jx(:%t) z_: 2(3t) k!(2t) )
=0 k=0
donc
n (Qt)k n (3t)k n (3t)k n (Qt)k
wl®) =20 ST X )= 2 S m L
lfzzo(zt)k k:no (3t)k kzr? (3t>k k:;z) (Zt)k
Cn(t):2z L! _22 k! dn(t>:22 k! _Z k!
k=0 ' k=0 : k=0 ' k=0 :

Toutes les sommes qui apparaissent sont des sommes partielles de séries exponentielles

donc les suites (a,(t))nen, (0n(t))nen, (ca(t))nen et (dn(t))nen convergent et

lim an(t) = 2e* — &3 lim bu(t) = e —e
lim c,(t) = 2e*" — 2e3 lim d,(t) = 23 — e*
n—-+o0o n—+0o00
c. Ainsi, pour tout ¢t € R,
9e2t _ @3t o3t _ o2t
E(tv A) - <262t — 93t 9p3t _ o2t | |
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4. Soit t € R. Alors,

262t _ 2€3t 2€3t _ e2t 267215 _ 26731} 2e73t _ ef2t

(4 —2et—2e'+ 142" —2—-242e" 2t —2—-14e'+2—e"—2e"+1
T4 =2t —4et + 2+ 46t —4—2 427t 2t —2 242t +4—2t -2t 1

4

donc E(t,A)E(—t, A) = L.
Ainsi, | E(t, A) est inversible et E(t, A)™' = E(—t, A)|.
5. a. Pour tout t € R,

<Zi 8) - <22ee_;t—_ ;eit 2€ej);_—ee_22tt> (%;)
(e e
(2e 2e ) u(t) + (2e e *u(t)

2t 3t 3t 2t —2t -3t -3t —2t
E(t,A)E(—t,A): (26 e e e )(26 e e e )

donc, pour tout réel t,

ui(t) = (2e72 — e u(t) + (e — e 2)o(t)

et

vi(t) = (2672 — 2 u(t) + (2673 — e 2 )u(1)|.

b. Les fonctions u; et v; sont dérivables sur R comme composée et produits de fonctions
dérivables et, pour tout réel ¢,

u)(t) = (—de ™ + 3e 3 u(t) + (2672 — e/ (t) + (=3¢ + 272 (t) + (e — e )/ (1)
= (—4e " + 3e ) u(t) + (2e7 — e ) (u(t) +v(t)) + (=3¢ ¥ 4+ 27 )u(t)
+ (7 — e *)(—2u(t) + du(t))
= (—de  + 3% + 27 — e — 207 4 27 )u(t)+
(2072 — e — 37 4 207 4™ — de ' )u(2)

V() = (—4e " + 6eu(t) + (2672 — 23N/ (t) + (=6 + 2 H)v(t) + (2673 — e )/ (1)
= (—4e " + 6 )u(t) + (2072 — 273 (u(t) + v(t)) + (—6e " + 2e2")v(t)
+ (273 — e7 %) (—2u(t) + 4v(t))
= (—de " +6e* + 27 — 273 — 4o + 207 u(t)+
(2072 — 27 — 6™ + 267 + 8e ! — de?)u(t)

Ainsi, pour tout t € R, u)(t) = v}(t) = 0.
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6. Comme R est un intervalle, on en déduit que u; et v; sont constantes sur R. Notons
a =u1(0) et S =v1(0). Alors, pour tout réel ¢, us(t) = a et vy(t) = 8 donc

(g) — E(=t, A) (58) |

Or, pour tout réel t, E(—t, A) est inversible et son inverse est E(t, A) donc on en déduit
que, pour tout réel t,
u(t) a
=E(t A )
(o) =50 ()
Ainsi, pour tout réel t,

u(t)) (20— ¥ e — e\ (a) [ a(2e® — ) + B(e¥ — )
v(t))  \2e* —2e3 2e3 —e? ) \B)  \a(2e* — 2e%) + 5(2e3 — )

i.e. pour tout réel ¢,

u(t) = 2o — B)e* + (8 — a)e® et v(t) = (2a — B)e* + (28 — 2a)e* |
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Sujets mixtes algebre/probabilités
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Sujet 52. Evolution d’un génotype (C7)

Certaines plantes, par exemple le lupin, se reproduisent par auto-fécondation (ou autogamie).

Tout se passe pour la descendance comme si on fécondait deux plantes de méme génotype,
chaque chromosome d’une paire étant sélectionné au hasard et de facon indépendante.

On s’intéresse a I’évolution du génotype de la descendance d’une plante mere, concernant un
gene qui possede deux alleles A et a.

1.

Expliquer ce qui se passe pour la descendance si la plante est de génotype AA ou aa.
On suppose désormais que la plante mere est de génotype Aa.

. Déterminer les probabilités que la descendance de la premiére génération soit une plante

de génotype AA, Aa ou aa.

. On définit, pour tout n € N, les évenements suivants :

e F, : «la plante de la n-iéme génération est de génotype AA » et on note y,, = P(E,);

)

e [, : «la plante de la n-ieme génération est de génotype Aa » et on note z, = P(F,);

e GG, : «la plante de la n-ieme génération est de génotype aa » et on note x, = P(G,,).
a. Montrer que, pour tout n € N,

1 1 1
n = dn PRz n = Yn - cn t n = S*n-
Tn+1 x+4z UYn+1 y+4z et  Zn41 22

b. Exprimer, pour tout n € N, z, en fonction de n.
n—1
c. Soit n € N. Calculer de deux fagons Z Try1 — o) et en déduire z, et y, en fonction
k=0
de n.

Tn

. Pour tout n € N, on pose X,, = | y»

Zn
a. Déterminer une matrice M € .#3(R) telle que, pour tout n € N, X, 11 = M X,,.
b. En déduire, pour tout n € N, X, en fonction de Xy, M et n.

5. Retrouver, pour tout n € N, les expressions explicites de z,, y, et z, en fonction de n.

. Etudier le comportement & I'infini de ces suites et Panalyser en fonction des propriétés

de l'information génétique.
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Solution.

1. Si la plante mere est de génotype AA, elle ne peut transmettre que I’allele A donc toute
sa descendance est de génotype AA.
De méme, si la plante mere est de génotype aa, toute sa descendance est de génotype aa.

2. Notons A; : « le premier allele est A » et Ay : « le second allele est A. Alors, on identifie
le choix des alleles & des choix aléatoires, P(A;) = P(4y) = 3

e la probabilité que la descendance de la premiere génération soit de génotype AA est
P(A; N Ay) done, par indépendance, cette probabilité est =X o= % ;

e la probabilité que la descendance de la premiere generatlon SOIt de génotype Aa est
P((A1 N AQ) (A1 N Ay)) donc, incompatibilité et indépendance, cette probabilité est
=X 2 —|— X = = 2 :

° la probablhte que la descendance de la premiere génération soit de génotype aa est

1

P(A; N Ay) donc, par indépendance, cette probabilité est 3 X5 =7

3. a. Soit n € N. Comme (E,, F,,,G,) est un systéme complet d evenements donc, par la
formule des probabilités totales,

Tnt1 = P(Gri1) = P(ER)P(Grsr | En) + P(F)P(Grsr | ) + P(GR)P(Gryr | Gn)

1 1
:ynx0+znxz+xnx1:mn+1zn

Ynt1 = P(Eni1) = P(EL)P(Enia | En) + P(E)P(Enga | F) + P(Gr)P(Enya | Gn)

1 1
= Yn 1 n - n O:n ~<n
UYn X +z><4+x>< y+4z

Antl = P(Fn—i—l) = P(En)P(Fn-H | En) + P(Fn)P(Fn-H | Fn) + P(Gn)P(Fn-H | Gn)

1 1
:yn><0+zn><§+xn><0:§zn

Ainsi, |pour tout n € N, z,,1 = x,, + zn, Ynil = Yn + zn et 2,41 = lzn .

b. La suite (z,) est une suite géométrique de premier terme zy = 1 (car le génotype de

la plante meére est Aa) et de raison % donc, | pour tout n € N, z, = (%)n )

c. D’une part, en reconnaissant une somme téléscopique,
n—1
D Ty — Tp = Ty — To = Ty,
k=0
car ro = 0. D’autre part, en utilisant le résultat de la question a.,

S -n- 518 (0 -1 0 ())

k=0 2
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On en déduit que,

pour tout n € N, z,, = 3 {1 — (%)n} .

De plus, pour tout n € N, z,, + y, + z, = 1 donc, pour tout n € N,

wotmn=a=1=3[-(5)]- () =3+36) -G)

soit,

pour tout n € N, y, = 1 {1 - (%)n} .

4. a. Pour tout n € N,

Tnal T, + izn 1 i 0 Ty
Xn+1 = |\ Yn+1 | = | Un + izn =10 1 i Yn
Zn+1 %zn 0 0 % Zn
10 4
Ainsi, posant |[M = [0 1 i ,on a, pour tout n € N, X,,,; = MX,,.
00 1
2

b. Ainsi, (X,) est une suite

géométrique de matrices colonnes de raison M donc,

‘pour tout n € N, X,, = M"X, ‘

5. Montrons que M est diagonalisable. Comme M est triangulaire, son spectre est constitué
de ces termes diagonaux i.e. Sp(M) = {1;3}.

x
Soit (x,y,2) ER3et X = |y
z
Déterminons E; (M) :
:L‘—f—iZ::L‘
MX=X<=qy+iz=y <>z=
$2=12
T 1 0
Ainsi, E;(M) =S |y | | (z,y) eR?} =Vect | [0], |1
0 0 0
Déterminons £ (M) :
1 1
1 T+ 32=32 o 1,
MX:§X<:> y+iz=3y < :_iz
ook :

Ainsi, E%(M)

Comme dim(E,(M))
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100 1 0 1
D=1010|etP=1]01 1 |. Ainsi, pour tout n € N, M* = (PDP~ )" =
00 % 00 —2
1 0 0
PD"P~!. Comme D est diagonale, pour tout n € N, D" = [0 1 0 |. De plus, on
00 (i)
vérifie (par exemple a 'aide de Python ou de Geogebra ou en résolvant un systéme) que
10 3
pPrt=(01 3
00 —%
Ainsi, pour tout n € N,
10 1\/10 0 10 £\ /0
X,=M"Xg=PD"P'Xg=|0 1 1|01 0 |f0o1 % ][0
00 -2/\00 (3"/\00 —%)\1
10 1\/10 0 z
=101 1|01 0 3
00 -2/\00 (") \-3
10 1 2
=10 1 1 E
00 -2/ \-(4)"
n+1
()"
== (3)
1 n
(3)

Ainsi, on retrouve bien que, [pour tout n € N, z, =y, = % [1 — (%)n} et z, = (%)n )

n
. Comme—1<%<1, (;) —>0doncxn—>%,yn—>%etzn—>0.
n—4o00 n—-4o00 n—4o0o n—-4o00

Ainsi, au bout d’un grand nombre de générations, les génotypes AA et aa tendent a
s'imposer de fagon équiprobable.
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Sujet 53. Matrices aléatoires dont les coefficients suivent
des lois géométriques (C8)

Soit X et Y deux variables aléatoires réelles indépendantes définies sur un univers noté €.

On suppose que X suit une loi de Poisson de parametre «
de parametre p € ]0; 1.

I. Probabilités

1. a. Donner la loi de X, son espérance et sa variance.

b. Donner la loi de Y son espérance et sa variance.
2. Calculer P ((X =0)U (Y =0)).

“+o0o
3. Montrer que (X =Y) = [J((X =k) N (Y =k)).
k=0
Calculer P(X =Y).
II. Matrices
—a
1. Soit deux réels positifs ou nuls a et b et M = | 2a
0

et que Y +1 suit une loi géométrique

a 0
0 0].
0 b

a. Déterminer les valeurs propres de M en fonction de a et b.

b. Donner une condition nécessaire et suffisante pour que M soit inversible.

c. Donner une condition nécessaire et suffisante pour que M possede 3 valeurs propres

distinctes.
—X(w) X(w)
2. Pour tout w € Q, on note M(w) = | 2X (w) 0
0 0

aléatoires de la partie I.

0
0 ou X et Y sont les variables
Y(w)

a. Donner la probabilité que la matrice M (w) soit nulle.

b. Donner la probabilité que la matrice M (w) soit inversible.

c. Donner la probabilité que la matrice M (w) posseéde trois valeurs propres distinctes.
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Solution.

I. Probabilités

akz

—x

1. a. Par définition, | X(Q2) = N et, pour tout k € N, P(X = k)

De plus, par théoreme, |E(X) = V(X) = «a|.
b. Par définition, (Y + 1)(2) = N* donc |Y(Q2) = N| et, pour tout entier naturel k,
P(YY=k)=P(Y +1=k+1)ie. pourtout ke N, P(Y =k)=p(l—p)F|

1 1—
De plus, par théoreme, E(Y +1) = —et V(Y + 1) = Tp donc, par linéarité de
p p

1 11—
lespérance, E(Y)=E(Y +1—-1)=E(Y +1) —1s0it |[E(Y)=-—-1= _p et,
p p
1—
par propriété de la variance, V(Y)=V(Y +1—-1) = V(Y + 1) soit | V(YV) = 2p :
p

2. Par propriété, P ((XO: OUY =0)=PX=0+PY =0-P(X=0n(Y =0)).

Or, P(X =0) = %e_o‘ =e* P(Y =0) = p(1l —p)° =pet, comme X et Y sont

indépendantes,
P(X=0n(Y=0)=PX=0PY =0)=e*xp
donc |P((X =0)U (Y =0)) =e “+p—pe®|

3. La famille ((X = k))ken est un systéme complet d’événements donc

(X:Y):(X:Y)rm:(xzy)m(U(X:k))

~Ux =vn@ =0 = U (=10 (x =b)
ot ainsi (X:Y):k@o((X:k)ﬂ(Y:k)).

Comme il s’agit d’une union d’événements incompatibles (puisque les évenements
(X = k) sont incompatibles pour k& € N), il s’ensuit que

PX=Y)=P <k00((X:k)ﬂ(Y:k))> zg:oP((X:k)ﬂ(Y:k)).
Or, Xet Y sont indépendantes donc
P(X=Y)= +g_ojop(x — B)P(Y = k) = f %e—a x p(1 — p)* = pe@ +§_°jo W.

donc, en reconnaissant la somme d’une série géométrique, P(X =Y) = pe~%el7P)* e,

P(X=Y)=pe?|

231



I1I. Matrices
a. i. Soit A € Ret (z,y,2) € R3. Alors,

x T —ar + ay = A\x —(a+ Nz +ay=0
Mlyl=Ay| = (2ax=M\y = 2axr — Ay =0
“ < bz = Az b—XN)z=0

1 cas. Supposons que a = 0. Alors, le systeme s’écrit

—Ar =0
—Ay =20
(b—XN)z=0

donc il n’est pas de rang 3 si et seulement si A =0 ou A = b.
2¢ cas. Supposons que a # 0. Alors,

—(a+Nzx+ay=0 I, 2ax — Ay =0 Ly < Lo
2ax — Ay =0 Ly <= {—(a+Nz+ay=0 Ly Ly
2ac — Ay =0 Ly
A A
— (a—(a;—)>y:0 Ly Ly+ %21,
a
(b—XN)z=0 L
A A
Comme a # 0, le systéme n’est pas de rang 3 si et seulement sia—(a;_) =0
a
oub—A=01ie A=b. Or,
A A
a—(a;):0<:>2a2—)\(a+)\):0<:>>\2+a/\—2a2:0.
a

Le discriminant du trindme X? + aX —2a? est A = a> —4 x 1 x (—2a) = 9a*> > 0
(car a # 0) donc ce trindéme posseéde deux racines réelles :

—a—+V9? —a—|3d| —a++V9? —a+|3a
5 = 5 = —2a et Ty = 5 = 5 =a

I =

car a > 0.
Dans ce cas, les valeurs propres de M sont donc —2a, a et b.
On conclut que [Sp(M) = {0;b} sia=0et Sp(M) = {—2a;a;b} sia> 0|
b. La matrice M est inversible si et seulement si 0 n’est pas valeur propre de M i.e. si et
seulement si a # 0 et b # 0.
On conclut que ‘M est inversible si et seulement si a # 0 et b # 0 ‘

232



. Sia =0, M possede au plus 2 valeurs propres. Si a > 0 alors —2a # 0 donc M
possede 3 valeurs propres distincts si et seulement si b # —2a et b # a. Or, dans ce
cas, —2a < 0 et b > 0 donc —2a # b. Ainsi, M possede 3 valeurs propres distinctes si
et seulement si a # b.

On conclut done que | M possede 3 valeurs propres distinctes si et seulement si a ¢ {0;b}|.

. La matrice M (w) est nulle si et seulement si X (w) =0 et Y (w) = 0. Or, on a vu dans
la question L.2. que P((X =0N (Y =0)) = pe™®.

Ainsi, |la probabilité que la matrice M (w) soit nulle est pe™

«

. D’apres les résultats de la question 1., M (w) est inversible si et seulement si X (w) # 0
et Y(w) #0.0r, (X #0)N(Y #0) = (X =0) U (Y = 0) donc, d’apres les résultats de

(67

la premiere partie, [la probabilité que M (w) soit inversible est 1 —e™* — p + pe~

. D’apres les résultats de la question 1., M (w) possede 3 valeurs propres distinctes si et
seulement si X (w) # 0et X(w) # Y(w). Or, X #0O)NX #Y)= (X =0)U(X =Y)
et

P(X=0)U(X=Y))=P(X
=P(X

)+PX =Y)-P((

0
0)+P(X =Y)—P((

donc, d’apres les résultats de la premiere partie,
P(X=0)UX=Y))=e*+pe?*—pe®

on conclut donc que la probabilité que M (w) possede 3 valeurs propres distinctes est

«

1—e % —pe P4 pe”
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Sujet 54. Tirages successivement dans k urnes (C10)

Soit k € N*.

On considere k urnes disposées les unes a la suite des autres.

La premicre contient b boules blanches et n boules noires, avec (b,n) € (N)? et b +n > 0.
Toutes les autres contiennent une boule blanche et une boule noire.

On pioche une boule dans la premiere urne pour la placer dans la deuxiéme, puis une boule
dans la deuxieme que I'on place dans la troisiéme, et ainsi de suite.

On note, pour tout k£ € N*, X} la variable aléatoire égale a 1 si la boule piochée dans I'urne
k est blanche et & 0 sinon.

1.
2. A quelle condition les variables aléatoires X; et X, suivent-elles la méme loi?
3.

4. On note, pour tout k € N*, p, = P(X, =1) et ¢, = P(X} =0).

. SoitA:<

Donner les lois de X et X5, leurs espérances et variances respectives.

A quelle condition sur n les variables aléatoires X; et X5 sont-elles indépendantes ?

Exprimer, pour tout £ € N*, pr.1 et qx41 en fonction de py et g et en déduire une matrice

M telle que :
qk+1 qk

Exprimer ensuite, pour tout k € N*| p et ¢ en fonction de M, k, p; et ¢.

1

1 1). Calculer les puissances de la matrice A.

. On admet que la formule du binéme de Newton est vraie pour deux matrices M et N

qui commutent.
Exprimer M en fonction de A et de I, et en déduire, pour tout k € N*, M*.

Exprimer, pour tout k£ € N*, pi et g en fonction de k.
Etudier et interpréter leur comportement asymptotique.
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Solution.

1. Par définition, | X; suit une loi de Bernoulli de parameétre 2| donc |E(X;) = ;2| et

+n b+n
V(X)) = 2 (1= 525 soit | V(X)) = 525
De méme, X5 suit une loi de Bernoulli dont le succes est « Tirer une boule blanche dans

la seconde urne ». Comme ((X; = 0),(X; = 1)) est un systéme complet d’événements,
d’apres la formule de probabilités totales,

n 1 b 2 2b+n

b0 3 ben 3 30tn)

Ainsi, | Xy < B(2pE) | done | B(Xs) = 2025 ot V(Xp) = 202 (1 — 202) clest-a-dire

2b+n)(b+2n
V(X;) = St

2. Les variables aléatoires X et Xo suivent la méme loi si et seulement si Hin = 3%212) Or,

b 2b+n

RTINS s +n<=b=n

Ainsi, | X; et X, suivent la méme loi si et seulement b = n ‘

3. On a vu dans la question 1. que P(Xo =1| X; =1) =
pour que X; et X5 soient indépendantes est que

% donc une condition nécessaire

2 2b+n
P, =1)=
3~ P =1) 3(b+n)
Or,
2 2b+n

3 3(b—|—n)<:> (b+n) +n<=n=0

Réciproquement, si n = 0 alors X; est une variable aléatoire certaine égale a 1 donc,
pour tout k € {0;1}, P(X;=0,Xo=k) =0=P(X; =0)P(Xy = k) car (X; =0) =
et P(X;=1,Xo=k)=P(Xo=k)=P(X; =0)P(Xy=k) car (X; =1)=Q.
Ainsi, on conclut que ‘Xl et X5 sont indépendantes si et seulement si n =0 ‘

4. Soit k € N*.
Comme ((Xj =0), (X = 1)) est un systeme complet d’événements, d’apres la formule
de probabilités totales,

1 2 2 1
:CIkxg‘i‘kag:gpk‘i‘g%
et
2 1 1 2
ZQkxg‘FPng:ng‘l‘ng'
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2 1

. . =3 + 3
Ainsi, |pour tout k € N*¥, Phet fpk S’Qk
Qe+1 = 3Pk + 3k

Des lors, pour tout k& € N*,

DPr+1) _ %pk + %% _
Qk+1 3Pk + 34k

LW

) ()

oo |

2
donc | M = (%
3

)

. Posons, pour tout £ € N*, X = zk> Alors, pour tout k € N*, X;1 = M X}, donc (Xj)
k

SN

est une suite géométrique de matrices colonnes de raison M donc, pour tout k£ € N*,

X, = M’“”Xl i.e.
(Pk) — Akt <p1> .
gk q1
2 2

5 o = 2A donc A® = A?A = (2A)A = 2A% = 2(2A) = 4A et

At = A3A = (4A)A = 4A% = 4(2A) = 8A.,

Considérons, pour tout n € N*, la proposition P(n) : « A" = 2" 1A,
Initialisation. Comme 2'7'4 =294 = A = A', P(1) est vraie.
Hérédité. Soit n € N*. Supposons que P(n) est vraie. Alors,

A= A"A = (2"TA)A=2"1A? = 271 (24) = 2" 12A = 2" A

. On vérifie que A? =

donc P(n) est vraie.
Conclusion. Par le principe de récurrence, on conclut que

VneN' A" =2""14|

)l

Soit k € N*. Comme M = (A + L), M* = [é(AHQ)]’“ = (%)k(A + LI,)*. Or, les

matrices A et I, commutent donc, par le formule du binéme de Newton,

(A+ L)k =j§kjo (l;)AJI - <k>A0 + Z ( )2] TA=1,+ (Jil (’;) 2j—1) A

505 0 -a B0 B L)
1
2

Wi O

)done M:%IQ‘I_%A.

O Wl
QO [0 | =
QO =00 | =

. On remarque que M = (

Or,

3k —1
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donc on conclut que

1\* 31
M"‘:<> I All
3 [ﬁ 9 ]

On remarque, de plus, que cette égalité est encore vraie pour k = 0.

. On en déduit que, pour tout entier £ € N*,
e\ _ et (Pr) <1>’“ L 3] () - (1)“ n), 3 -1 (mta)]
Qk q 3 2 q1 3 q1 2 P1t i

Or, p1 = b%l et 1 = 335, donc p; +¢1 = 1 et ainsi, pour tout k € N,

k—1 b 3k—1_1
R)-67 (25
qk 3 T

b+n

On conclut donc que

VEeN* p =

3k-1 b—i—njL 2

1 b +3k_1—1
k=1 | b+n 2

1 [n 3k—1—11

] et qr =

Il s’ensuit que, pour tout k£ € N*,

b 1
Pr= )31 T2 T 2 gkt

D=

et, comme 3 > 1, 3~ — 400 donc, par quotients et somme, | p, —
k—+o00 k—+o00

De méme, pour tout k£ € N*,

n 1 1

L T T B B RV T

et, comme 3 > 1, 38! ——— 400 donc, par quotients et somme, | g, — % .

k—4o00 k—+o0

Ainsi, apres un grand nombre de tirages, on se rapproche de I’équiprobabilité ente les
boules noires et blanches, et ce, quelle que soit la composition de I'urne de départ.
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Sujet 55. Mouvement d’une particule (O3)

Une particule se déplace entre trois points A, B et C. On ne connait pas sa position initiale.
Lorsque la particule est située en :

e A, elle va en B avec une probabilité de % et en C avec une probabilité de i ;
e B, elle va en A avec une probabilité % et en C avec une proba i ;

e C, elle va en B.

Pour tout n € N, on note a,, b, et ¢, les probabilités respectives que la particule soit en A,
en B et en C apres n déplacements.

1. Démontrer que, pour tout entier naturel n,

_ 3
Ap1 = an
_ 3
bn+1 - Zan + Cn

_ 1 1
Cpn+1 = Zan + an

2. Déterminer une matrice M telle que, pour tout n € N,

An+1 Qp,
bpi1 | =M x | b,
Cn+1 Cn
0 30
3. Soit A= (3 0 4. Exprimer M en fonction de A.
110
4. Montrer que, pour tout entier naturel n,
(7% ao
b, | = M™ x | by
Cp, Co

5. Déterminer les valeurs propres de la matrice A.

=2

. En déduire les valeurs propres de M, en utilisant la relation de la question 3..

7. Justifier qu’il existe une matrice inversible P et une matrice diagonale D telles que
M = PDP!

8. On note, pour tout entier naturel n,

Un an

v | = Pt x | b,

W, Cn
Montrer que, pour tout n € N,

U, Ug

v, | = D" x| vy

Wp, Wo
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Solution.

1. Notons, pour tout n € N, A,, : « la particulier se trouve en A apres n déplacements »,
B, : «la particulier se trouve en B apres n déplacements » et (), : « la particulier se
trouve en C apres n déplacements ».

Soit n € N. Comme A,,, B, et C,, forment un systeme complet d’évenements, d’apres
la formule de probabilités totales

an1 = P(Ant1) = P(A4,)P(Ani1 | An) + P(BL)P(Angr | Br) + P(Cr)P(Anga | Cr)

3 3
:anxO—kban—kcnxO:zbn.

De la méme facon,
b1 = P(Bni1) = P(Ay)P(Buiy | An) + P(Bn)P(Buya | Bn) + P(Co)P (B | Co)
:anxi+bn><0—l—cn>< 1:ian—|—cn
et
tn1 = P(Crp1) = P(An)P(Cria | An) + P(B,)P(Acya | Bn) + P(Co)P(Cria | Cn)

1 1 1 1
= Unp - bn - n = —0np 7bn‘
a><4—|— ><4+c x 0 4a —1—4

Ainsi, pour tout n € N,

Apy1 = bn

bn+1 = 30n + cn

W s w

1 1
Cpt1 = Zan + an

2. Pour tout n € N,

An+1 %bn 0 % 0 Ay,
bpy1 | = %an+cn = % 0 1 b,
Cn+1 %an—i_ibn i % 0 Cn
0320
donc | M = % 0 1
119
1 1
1 030
3'M:Z 3 0 4] donc M:iA.
110
(7% ao
4. Considérons, pour tout n € N, la proposition P(n) : « | b, | = M™ | by | ».
Cn Co
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ap ag ap
Initialisation. Comme M° = I3, M° [ by | =13 [ by | = [ bo | donc P(0) est vraie.
Co Co Co

Hérédité. Soit n € N. Supposons que P(n) est vraie. Alors, grace au résultat de la
question 2.,

Qn+1 an agp agp
bpir | =M [ by | =M x M™ | by | = M | b
Cn+1 Cn Co Co
donc P(n + 1) est vraie.
Gy, ag
Conclusion. Par le principe de récurrence, |pour tout n € N, | b, | = M™ | by
Cn Co
. 1 méthode : détermination par le calcul
Soit A € R. Considérons le systeme
3y = \x
(S)$3x+4z= Xy
rT+y=Az
Alors,
- +3y=0 Ly r+y—Az=0 Ly + Ls
(S)<=3x—Ay+42=0 Ly <= 3z—Ay+42=0 Ly
r4+y—Az=0 Ls A +3y=0 Ly L,
r+y—Az=0 Ly
= —(A+3)y+ (4 +3N)z2=0 Lo« Ly—3L,4
B+ Ny —A2z=0 Ly Ls+ M4
r+y—Az=0 L,
= —-A+3)y+A+3N)z2=0 Ly
(=X\2+3\+4)2=0 L3 < L3+ ALy

Ainsi, (S) n’est pas de rang 2 si et seulement si A+3 = 0 ou —A\*+3A+4 = 0. La premicre
équation équivaut & A = —3. Pour la seconde, le discriminant est A = 32—4x (—1) x4 = 25
donc celle-ci possede deux solutions réelles :

_3_\/%_
2x (—=1)

-3+ V25

AL = 2 x (—1)

4 et )\2 = —1.

Ainsi, on conclut que

Sp(A) = {-3;4; -1} |

2de méthode : détermination a 1’aide de Python
Grace au code suivant,
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import numpy as np

A = np.array([[0,3,0], [3,0,4], [1,1,0]])
print (np.linalg.eig(A))

qui affiche

(array ([ 4., -3., -1.1),

array ([[-5.66315014e-01, -7.07106781e-01, -8.01783726e-01],
[-7.55086685e-01, 7.07106781e-01, 2.67261242e¢-01],
[-3.30350425e-01, 3.43839982e-17, 5.34522484e¢-01]]))

on conjecture Sp(A) = {4;—3;—1}. On peut le vérifier en déterminant E,(A), E_3(A)

x
et E_1(A). Soit (x,y,2) e R¥et X = |y
z
3y =4z 4
=z
X e Ey(A) <=3 +4z=4y <= {y 2
2 =L
r+y =4z 12
12
Ainsi, | 16 | est un vecteur non nul de E;(A) donc 4 est bien valeur propre de A.
7
3y = —3x
=—x
XeFE 3(A)<=3r+4:=-3y <= {
z =
r+y=-32
1
Ainsi, | —1| est un vecteur non nul de E_3(A) donc —3 est bien valeur propre de A.
0
3y =—x
T =—3Yy
XeFE (A) = 3r+4dr=—y <= {
z =12y
r+y=—z2
-3
Ainsi, | 1 | est un vecteur non nul de E_;(A) donc —1 est bien valeur propre de A.

2
De plus, comme A est une matrice carrée d’ordre 3, elle possede au maximum 3 valeurs

propres donc on conclut que |Sp(A) = {4;—-3;—1}|.
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6. Soit A € R. Alors, A € Sp(M) si et seulement s'il existe une matrice colonne non nulle
X telle que M X = AX si et seulement s’il existe une matrice colonne non nulle X
telle queiAX = AX si et seulement s’il existe une matrice colonne non nulle X telle
que AX = (4\)X. Ainsi, A € Sp(M) si et seulement si 4\ € Sp(A4). On en déduit que

Sp(M) = (1 -4

474

7. Comme M est une matrice carrée d’ordre 3 admettant 3 valeurs propres distinctes, par
théoreme, M est diagonalisable donc il existe une matrice inversible P et une matrice

diagonale D telles que | M = PDP~!|
8. Par propriété, pour tout n € N, M™ = (PDP~')" = PD"P~! donc, grace a la question
4., pour tout n € N,

Un Uo Up
v, | = PD"P~ vy | = PD" | v
Wy, Wo Wo

donc, en multipliant & gauche par P,

ap, Ugp Up, Ug
P t1b,| =D"| v ie. v, | = D" | vy
Cn Wo W, Wo
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Sujet 56. Sensibilité des grenouilles aux couleurs (O3)

. I-p ¢
Soit p et ¢ dans |0; 1] et A = )
p et g dans J0; 1] ( » 1_q>

1. Une premiére méthode pour déterminer les puissances de A

a. Déterminer deux matrices B et C telles que A= B+ (1 —p—¢q)C et B+ C = L.
b. Calculer B? et C?. En déduire BC et CB.

c. On admet que la formule du binéme de Newton est utilisable pour des matrices M et
N d’ordre 2 qui commutent, c’est-a-dire telles que M N = N M.
Ecrire cette formule du binéme de Newton.

d. Calculer A" pour tout entier n > 2. On pourra noter « =1 —p —q.

2. Afin de tester la sensibilité aux couleurs bleu et rouge des amphibiens, on place une
grenouille adulte (les tétards voient en noir et blanc) dans une boite séparée en deux
compartiments, I'un rouge et 'autre bleu. On observe les déplacements de I’animal et, a
chaque minute, on note ou il se trouve.

S’il était en « zone bleue » a la n-ieme minute, il est passé en « zone rouge » a la
minute n 4+ 1 avec une probabilité ¢q. De méme, s’il était en « zone rouge » a la n-ieme
minute, il est passé en « zone bleue » a la minute n + 1 avec une probabilité p.

Pour tout n € N, on note 7, (resp. b,) la probabilité que la grenouille soit en « zone
rouge » (resp. bleue) a la minute n.

a. Exprimer, pour tout n € N, r,,11 et b,1 en fonction de 7, et b, a ’aide d'une relation
matricielle.

b. En déduire, pour tout n € N, r,, et b, en fonction de ry et by a I'aide d’une relation
matricielle.

c. A Dinstant initial, le grenouille est introduite en « zone bleue ». Déterminer, pour
tout n € N, r, et b, en fonction de n.

1
d. Application numérique : on prend p = 3 et ¢ = 5

Déterminer le comportement a l'infini de r,, et b,,.

3. Une deuziéme méthode pour déterminer les puissances de A

a. Montrer que la matrice A est diagonalisable quelles que soient les valeurs prises par p
et g.
Déterminer ses valeurs propres et des vecteurs propres associés.

b. Exprimer A™ pour tout n € N.
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Solution.

1. a. Soit B et C deux matrices carrées d’ordre 2. Alors,

{B+(1—p—q)C’:A {:){ ,—C+(1l—p—q)C=A

B+C:IQ —IQ C
(:){ p+qC A
B=1I,—
ﬁ{ p+q A)
_[2_ﬁ [2 A)
Ainsi, on conclut que |B = —— 74 = P79 | vérifient A =
p+q\p P p+a\-p 4
B4+ (1-p—q)Cet B+C=1I.
b. On a
52— ¢ +ap ¢ +aqp
(p ) pg+p° pq+p?

_ 1 ((p+qq (p+Q)q> 1 (q q)
p+a: \+ap +9p) pt+qg\p p

donc .

De méme,

= (p—: q)? (—pp _qq> (—pp _qq> N (p+1q)2 (—p;;—qu ;];q+_q22>
1 (p(p+q) —q(p+q)> _ 1 < p —q)

T+ \—plp+a) ap+a) ) ptq\-p 4q

donc .
Comme B+ C = 1I,, B=C —1I,donc BC = C?>?-C =C —-C = 0y et
CB=C?—-C=C-C =0, Ainsi, [ BC = CB =0y},
c. La formule du bindme de Newton pour les matrices carrées d’ordre 2 s’écrit de la
maniere suivante. Soit n € N et soit M et N deux matrices carrées d’ordre 2 telles
que MN = NM. Alors,

(M4 Ny =3 (Z) MENTE |

k=0

d. Posons a =1 — p — q. Comme B et C' commutent, il en est de méme de B et aC
donc on peut appliquer la formule du binéme de Newton pour les matrices. Soit un
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entier n > 2. Alors
n n - n k n—=k - n n—k nk yn—=k
A" = (B + aC) :Z(k)B(aC) :Z<k>a B*C"".
k=0

Sike[l,n—1] alors k> 0et n—k >0 donc
Bkc«nfk — kal(Bc)Cnfkfl — kalozcnfkfl — 02.

Ainsi, dans la somme ci-dessus, tous les termes sont nuls sauf le premier et le dernier.
Ainsi,
n n
= (Do ()= o

Or, comme B% = B et C? = (C, on montre par récurrence que, pour tout n € N*,
B"=Bet C"=(C donc A" = B + oa"C i.e.

g L [a+a’p g—a’q
p+qg\p—a"p p+a’q

. a. Soit n € N. Notons R,, : « la grenouille se trouve dans la zone rouge a la minute n ».
Alors, R, et R, forment un systéme complet d’événements donc, par la formule de
probabilités totales,

T'nt1 = P(Rn+1) - P(Rn)P(Rn+1 | Rn) + P(E)P<Rn+l ’ ]“Tn)
=r, X (1 =p)+b, xq=(1—p)r,+qb,

et

bpy1 = P(Bni1) = P(Ry)P (B | Ry) + P(R,)P(Bpyi | Ry)
=r, Xp+b, x(1—q)=pr,+ (1 —q)b,.

. fraY (A =p)rn+gb,\  (1—p ¢ T
At (an) B (prn a-gb) U p 1-g) b)) 2
Tn+1 o Tn
o) =)
b. La suite ((2")) est donc une suite géométrique de matrices de raison A donc,

T\ _ n (70
e (1) ()
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c. Comme la grenouille se trouve initialement dans la zone bleue, (Z()) = G) donc,
0

pour tout n = 2,

m\_ L fg+a"p qg—a"q) (0} _ (q¢—a"q
bn) ptq\p—a"p pt+a’q)\1 p+a’q

et ainsi r, = g4 et b, = pta q. De plus, on vérifie que ces expressions sont
p+q p+q 0 0 .
encore vraie pour n =0 et n =1 car q_aq:0zro,p+aq:1:b0, -9 _
If‘i‘q p+q p+q
W-0-p=q) _ _ prola_pt(-p-as_pra—p+as_
p+q pt+q p+q pPt+q
l—q:bl
—a” +a”
On conclut donc que, |pour tout n € N, r,, = a=aq et b, = u.
p+q p+q

1 1 1
d. Comme p = 3 et ¢ = e Y=5 donc, comme |a| < 1, " — 0 donc, par produits

et sommes de limites, | lim 7, =

. a. Soit A € R. Alors,
det(A—AL) =P P72 9 (1 —g— N —pg
p l—g—A
=1—q—A=—p+pg+p\—A+gA+ A\ —pq
=X - (a+ DA+«
Le discriminant du polynéme P = X? — (a + 1) X + « est
A=(—(a+1))? —da=a’>+2a+1—-4da=0a”>-2a+1=(a—1)>2

Commep>0etq>0,p+qg>0donca=1—p—qg < 1. Ainsi, A > 0 donc P
possede deux racines distinctes. Ainsi, A posseéde deux valeurs propres distinctes donc,
comme A est d’ordre 2, | A est diagonalisable. ‘ De plus, les valeurs propres de A sont

atl—y/la=1? at+l—ja—1] a+l-(1-aq)
1: = =

2 2 2

=«

at+l+/(a=1? a+l+la—1 a+1+(1-a)
2: = =

2 2 2

=1

Ainsi, |Sp(A) = {1;a} |
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Déterminons des vecteurs propres. Soit (z,y) € R?. Alors,
1— = — =0
A(l’) _ <x> I-pr+a=z P+ qy = "o
Y Y pr+(l—qy=y pr—qy =0 q

Ainsi, (Z) est un vecteur propre associé a la valeur propre 1 |.

De méme,
1— = =0
A<x>:a<$><:> (I=pa+ay=az = @ty = y=—.
y y pr+(1—qy=ay pr+py=0

o 1 N
Ainsi, ( 1 est un vecteur propre associé a la valeur propre « |.

é 2) et P = (Z _11>, on en déduit que A = PDP~!. Par propriété,

il s’ensuit que, pour tout n € N, A" = PD"P~!. Or, comme D est diagonale, pour tout

10 1 (-1 -1
neN, D" = n |- De plus, det(P) = —(p + donc Pl = ——— —
(O Q@ ) p (P) (r+q) Pt <—p ¢ )

. En posant D = (

1
LI R . Il s’ensuit que, pour tout n € N,
ptqg\P —¢

., 1 (¢ 1\/{1 o\/1 1 1 (¢ 1 1 1
A= —— n = n n
p+qg\p —1)\0 a"J\p —q) p+q\p —1)\a"p —a"q

g L [a+a'p g—a’q
p+qg\p—a"p p+a’q

soit
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Sujet 57. Echanges de boules entre deux urnes I (O3)

On dispose de deux urnes A et B ainsi que de deux boules portant respectivement les numéros
0et 1.
Initialement, I'urne A contient les deux boules et I'urne B est vide.

N

A chaque tour, on lance un dé équilibré a 6 faces et on effectue un éventuel déplacement
d’une boule entre les urnes selon les regles suivantes :

e si le résultat du dé est 1 ou 2, on change d’'urne la boule numérotée 0,
e si le résultat du dé est 3 ou 4, on change d’urne la boule numérotée 1,
e si le résultat du dé est 5 ou 6, on ne modifie pas le contenu des urnes.
Pour n € N, on désigne par :
e p, la probabilité que I'urne A contienne les 2 boules apres I'étape n;
e ¢, la probabilité que I'urne A ne contienne que la boule numérotée 0 apres I’étape n ;
e 1, la probabilité que 'urne A ne contienne que la boule numérotée 1 apres I’étape n;

e ¢, la probabilité que 'urne A ne contienne aucune boule apres I'étape n.

Partie 1
1. Donner les valeurs de pg, qo, 7o €t to.

2. Déterminer les valeurs de pq, ¢1, 1 et t;.

Pn+1 Pn

3. Montrer qu’il existe une matrice R telle que pour tout n € N, g”“ =M g”
n+1 n

tn—i—l tn

4. Déterminer, pour tout n € N, une relation entre M, p,, ¢n, s, tn €t po, qo, 7o, to-

Partie 11
On considere les trois matrices suivantes :
1110 1111 00 01
1101 1111 0010
B=11 011 U=11 111 et V=191 00
0111 11 11 1 0 00

1. Calculer UV et VU.

2. Calculer U? puis U3 et émettre une conjecture sur l'expression explicite de U™ en fonction
de n € N*.
Démontrer cette conjecture.

3. Calculer V2 puis V? puis V* et émettre une conjecture sur I'expression explicite de V"
en fonction de n € N.
Démontrer cette conjecture.
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4. Exprimer R en fonction de U et V puis, en admettant que la formule du binéme de
Newton s’applique, donner, pour tout n € N, une expression explicite de R™ en fonction
de n.

5. En déduire alors, pour tout n € N, une expression explicite de p,, ¢, 7s, t, en fonction
de n.
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Solution.

Partie 1
1. Initialement, I'urne A contient les deux boules donc |[pg =1 et gg =19 =t = 0|.
1
2. Les deux boules restent dans I'urne A si on obtient 5 ou 6 avec le dé donc |p; = 3 L’urne
1

A ne contient plus que la boule numérotée 0 si on obtient 3 ou 4 avec le dé donc |¢; = 3

L’urne A ne contient plus que la boule numérotée 1 si on obtient 1 ou 2 avec le dé donc
1
ro= 3 Enfin, il n’est pas possible de déplacer les deux boules en un seul tour donc

t1 =0]|

3. Notons, pour tout n € N, P, (resp. Q,, R, et T},) : « 'urne A contient les deux boules
(resp. uniquement la boule 0, uniquement la boule 1, aucune boule) apres I’étape n ».
Soit n € N. Les évenements FE,,, F,, G, et H, forment un systeme complet d’évene-

ments donc, d’apres la formule de probabilités totales,

Pny1 = P(En+1)
- P(En)PEn(En—i—l) + P(Fn)PFn(En—i—l) + P(Gn)PGn(En—f—l) + P(Hn)PHn(En-i-l)

X1+ ><1+ ><1+t x 0
= Pn = n > T'n = n
Pn 23l 2 g 3
1 +1 +1
= ZPn = 4n =Tn
gbn T3 T3
qn+1 :P(Fn-l-l)

= P(E)Pp, (Fo1) + P(F)PE,(Fua) + P(Gu)Pa, (Fuia) + P(H)Pr, (Fop)

><1+ ><1+ ><O+t><1
= Pn o n 5 Tn n 5
P23 23 3

IS U
Tny1 = P(Gn+1)
- P(En)PEn (Gn-i-l) + P(Fn)PFn (Gn+1) + P(Gn)PGn<Gn+1) + P(Hn)PHn (Gn+1)

><1+ x 0+ ><1+t><1
= Pn > n Tn = n >
P54 3 3
1

EENI
= ZPn -Tn -Tn
gbn T3 T3

tny1 = P(Hn+1)
= P(E,)Pg, (Hnt1) + P(F,)Pp, (Hysr) + P(Go)Pq, (Hot1) + P(Hn) Py, (Hot1)

x 0+ ><1+ ><1+t ><1
= Pn n 5 Tn 5 n a5
b I3 3 3
1 Jr1 +1t
= 54n >Tn 5in
g T3 T3
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Ainsi, on en déduit que

Prnt1 %pn + %qn + %rn % % % 0 Pn
o B R B A A N
bt 30n + 3T + - 0 5 3 3/ \ln
11 1
111
R
donc | M = |} 8 1 1| | convient.
211 d
0 3 5 3
Pn
4. Posons, pour tout n € N, X, = gn . Alors, pour tout n € N, X1 = MX,, donc (X,,)
tn

est une suite géométrique de matrices colonnes de raison M donc, pour tout n € N,
X, = M"™X,. Ainsi,

Pn Po

vneN | =y |

Tn To

t, to

Partie 11
1. Le calcul donne
1111 0001 1111
1111 0010 1111
vV = 1111 0100 1111
11 11 1 000 1 1 11
et
0 0 01 1111 11 11
0010 1111 1111
VU = 0100 1 11 1] 1111
1 0 00 1111 1111
donc | UV =VU =U|
2. Le calcul donne

11 11 11 11 4 4 4 4
e 11 11 11 11 _ 4 4 4 4
1111 1111 4 4 4 4
1111 1111 4 4 4 4
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donc [U? = 4U |, Des lors, U3 = UU = (AU)U = 4U? = 4(4U) donc | U® = 16U |
On conjecture que, pour tout n € N*, U™ = 41U,
Montrons-le par récurrence.
Considérons, pour tout n € N*, la proposition P(n) : « U = 471U ».
Initialisation. 4! 'U = 4°U = U donc P(1) est vraie.
Hérédité. Soit n € N*. Supposons que P(n) est vraie. Alors,

UMt = U™ = (4" '0)U = 4" '0% = 4771 (4U) = 4"U

donc P(n + 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que, | pour tout n € N*, U" = 4"~ 1U |,

. Le calcul donne

000 1\/000 1 1000
2|00 L oj{oo Lol _fo1o00
0100/]0100 0010
1000/ \1000 000 1

donc . Dés lors, V3 = V2V = L,V donc | V3 = V|

On conjecture que, pour tout n € N, V" = [ si n est pair et V" =V si n est impair.

Montrons-le par récurrence.

Considérons, pour tout n € N* la proposition Q(n) : « V" = I si n est pair et
V™ =V sin est impair ».

Initialisation. V° = I, donc Q(0) est vraie.

Hérédité. Soit n € N*. Supposons que Q(n) est vraie. Alors, si n est pair, n + 1 est
impair et V" = V"V = I,V = V. Si n est impair, n + 1 est pair et V" = V"V =
VV =V? =1,. Ainsi, V" =V si n + 1 est impair et V"' = I, si n + 1 est pair donc
Q(n + 1) est vraie.

Conclusion. Par le principe de récurrence, on conclut que, pour tout n € N*, V" = [
si n est pair et V" =V si n est impair.

. On remarque que . On en déduit en appliquant la formule du binéme de

Newton (ce qui est possible ici car U et V' commutent), que, pour tout n € N*|

B V) = O (=3 (F)orevr = S (o

k=0 k=0
Soit k € [1,n]. Si n— k est pair, alors UFV"* = Uk[, = U* et, si n — k est impair, alors
Ukvn=k = kv = UF1(UV) = U*'U = U* donc

D L e i
k=1 -

1

= (-1)"V" + i(—w-k <Z> 4'U) = (-1)"V" + < ) (Z) 4k—1(—1)"—’f> U.
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donc

R = (—1)"V" +

On conclut donc que, pour tout n € N,

et

donc

3"+3 3"—-1 3"—-1 3" -1
. . n 3*—1_ 1[3"—-1 3"+3 3"—-1 3"—-1
51nestpa1r,R —]4+ A U—Z 3n -1 3" -1 3"+3 3"—1
3—1 3"—-1 3"—1 3"+3
3"+1 3"+1 3"+1 3"—3
o 3°+1, 1[3"4+1 3"+1 3"—3 3" +1
si n est impair, R" = -V + U_Z 3n41 3"—3 3"4+1 3" 4+1
-3 3"+1 3"+1 3"+1
5. Soit n € N. Si n est pair alors
Prn+1 Do 1 1
Gn+1 n | 40 1 )n 0 1 n 0
Tnt1 To <3 0 3" 0
3"+3 3"—-1 3"—1 3"—-1 1
__A}; y }; -1 3"4+3 3"—-1 3"—-1 0
T3 T4 3"=1 3"—1 3"+3 3"—1||0
-1 3"—1 3"—1 3"+3 0
3"+ 3
1 3" —1
4 x3n |3 -1
3" -1
3+ ot = 3" -1
P = 3 I =T == g
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Si n est impair alors

Prn+1 Po 1 1
dn+1 n | 40 1 >n 0 1 n 0
Tn+1 To (3 0 3n 0
b1 to 0 0

3"+1 3"+1 3"+1 3" -3

1
L 13t 3t 41 373 3741 (0
3n T4 |3"—1 3"—3 3"+1 3"4+1]|0
3"—3 3"+1 3"+1 3"4+1/ \0
3" 41
1 [3r 41
S 4x3n|[3"+1
3" — 3
donc
I o, 33
P =0 =Tn =" g0 ° " Ax 3|
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Sujet 58. Echanges de boules entre deux urnes IT (03)

On dispose de deux urnes A et B.

Initialement, I'urne A contient 2 boules noires et I'urne B contient 2 boules blanches.

A chaque tour, on choisit simultanément une boule de 'urne A et une boule de 'urne B, et
on échange ces deux boules.

Pour tout n € N, on note X, la variable aléatoire qui compte le nombre de boules blanches
dans l'urne A apres n échanges.

On a donc Xy = 0 de fagon certaine.

1. Déterminer la loi de X7, son espérance et sa variance.
2. Déterminer la loi de X5, son espérance et sa variance.

3. Déterminer une matrice carrée M telle que pour tout n € N :

P (X1 =0) P (X, =0)
P(X,=1)|=M|P(x,=1)
P (Xpi1 = 2) P (X, =2)

Diagonaliser la matrice M.
En déduire la loi de X,, pour tout n € N*.

Calculer I'espérance de X,, pour tout n € N*.

NS ok

Calculer la variance de X,, pour tout n € N*.

255



Solution.
1. Au premier tirage, on tire nécessairement une boule noire dans 'urne A et une boule
blanche dans I'urne B et on les échange donc X; = 1 de fagon certaine. Ainsi, | E(X;) =1

2. Commengons par remarquer que X5(Q) = {0;1;2}.
Notons As : « tirer une boule blanche dans 'urne A au second tirage » et By : « tirer
une boule blanche dans I'urne B au second tirage ». Alors,
e (X, =0) = Ay N B, donc, par indépendance, P(X; = 0) = P(A)P(By) = 1 x = 1;
e (Xo = 1) = (Ay N By) U (Ay U By) donc, par mcompatlblhte et mdependance
P(X, =0) =P(A)P(By) + P(A)P(Bsy) =5 X 5 +3 X3 =13
e (X3 =2)= Ay N By dong, par indépendance, P(X; = 2) = P(A; N By) =
Ainsi, E(Xo) =0 x 1 + 1 x4 +2x 1 s0it | E(X,) =1}
De plus, le théoréme de transfert, E(X3) = 0°x ;+1*x3+22x 1 = 2 donc V(X,) = 212
soit | V(Xs) = 5

3. Soit n € N. Comme précédemment, X,,(2) = {0;1;2}.
Comme ((X,, =0), (X, = 1), (X,, = 2)) est un systéme complet d’événements,
PX,1=0=PX,=0P(X,,1=0|X,=0+P(X,=1)P(X,1=0]| X,=1)
FP(X, = 2)P(X,y = 0] X, = 2)

X

Y

=

L1
2 72

(X, =0)x0+P(X, = )xiJrP(X 2) x 0

»N»— =d

P(X, = 1)

P(Xpp =1) = P(X, = 0)P(Xpoy = 1] X, = 0) + P(X —D)P(Xp =1] X, =1)
+P(X, = 2)P(Xp1 = 1| X, = 2)

1
= P(X, = 0) x 1+ P(X, = 1) x 5 + P(X, =2) x 1

=P(X,=0)+ ;P(Xn =1)+P(X,=2)

s
3
=

|
>
3
e

I

0)P(Xpp1 =2 | X, = 0) + P(X —D)P(Xpp =2 | X, = 1)
+P(X, =2)P(X,11 =2] X, =2)

1
:P(Xn:O)><O+P(Xn:1)><Z+P(Xn:O)><O

1
=-P(X,=1
Des lors,
P(X,41 = 0) P(X, =0) 0 1 0\ [P(X,=0
PX,p1=1)|=[PX,=0+:PX,=1)+P(X,=2)|=(1 5 1| [P(X,=1
P(X,1=2) P(X,=1) 0 3 0/ \P(X,=2



03 0
Ainsi, [ M = | 1 % 1
03 0
x
4. Soit A e Ret X = |y | € #(R).
z
Alors,
Lo, — -\ 1, _
1Y = T :(:+4y—0
MX = )\X <= x—i—%y—l—z:/\y — x+(%—)\)y+z:O
=Xz W—Az=0
4+ (G -Ny+z2=0 L
= {ly—Az=0 Lo
Az + 3y =0 Ls
4+ (3 -Ny+z2=0 L,
(F+IN=MN)y+Az2=0 Ly« L3+ ALy
4+ (3-ANy+2=0 Ly
= y—4)\Z:0 Lo <+ 4L,

MADG+IN=N)]2=0 Ly Ly— (3 + A= \)L,
4+ (G -Ny+z2=0 L
IAL+A—2\)z=0 Ls

Ainsi, ce systéme n’est pas de Cramer si et seulement si A =0 ou 1 + X — 2)\? = 0. Or,
1 est un racine évidente de 1 + X — 2X? donc ce polynome se factorise par (X — 1) :
1+ X —2X? = (X — 1)(—=1 — 2X). On en déduit que son autre racine est —1 donc
Sp(M) = {0;1;—3}.
De plus,
MX — 0X < {x+§y—|—z=0 PN {z:—x

y:

() 3

1
r—zy+z2z=0 r=2z
Ly g ;{

MX—1X<:>{
y—4z=0
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z 1

donc F4(M) =X [42] | x €R} =Vect | | 4
z 1
1 = 0 =
MX =—-X < Ytz Y
2 y+22=0 y=—2z
z 1
donc Eo(M) =4 | —2z| | x€R}p =Vect | [ -2
z 1
00 O 1 1 1
Ainsi, | M = PDP tavec D=[0 1 0 |etP=|0 4 -2
00 —3 -1 1 1

Remarque. Le code Python suivant :

import numpy as np

A = np.matrix([[0,1/4,0], [1,1/2,1], [0,1/4,0]])
print(np.linalg.eig(A))

qui affiche

(array ([ 1.00000000e+00, 5.61773426e-18, -5.00000000e-01]),
matrix ([[-2.35702260e-01, 7.07106781e-01, 4.08248290e-01],
[-9.42809042e-01, -3.54785098e-16, -8.16496581e-01],
[-2.35702260e-01, -7.07106781e-01, 4.08248290e-01]1]1))

confirme ces valeurs et aurait permis de les déterminer (au moins de fagon conjecturale).

P(X, =0)
. Notons, pour tout n € N, U,, = | P(X,, = 1) |. Alors, d’apres la question 3., pour tout
P(X, =2)
n €N, U,y1 = MU, donc (U,) est une suite géométrique de matrices de raison M et
1
ainsi, pour tout n € N, U, = M"U,. Or, Uy = | 0| et, par propriété, pour tout n € N,
0
M" = (PDP~ Y = PD"P~L.
0" 0 0
Comme D est diagonale, pour tout n € N, D" = | 0 1" 0 donc D° = I et,
0 0 (-
0 0 0
pour tout n e N, D" =10 1 0
00 (~ir

Le code Python suivant :
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import numpy as np

P=np.matrix ([[1,1,1],[0,4,-2],[-1,1,1]])
print (np.linalg.inv(P))

qui affiche

[[ 5.00000000e-01 -2.77555756e-17 -5.00000000e-01]
[ 1.66666667e-01 1.66666667e-01 1.66666667e-01]
[ 3.33333333e-01 -1.66666667e-01 3.33333333e-01]]

permet de conjecturer que P! =

WD N =

multipliant P par ce matrice et en vérifiant qu’on obtient bien I5.
On en déduit que, pour tout n € N*,

et on vérifie que c’est bien le cas en

1 1 1\/00 0 3 0 =3\ /1
Uy=|0 4 =2](0 1 0 i 5 & 110
11 1)\ 0 (=37 \5 =5 35/ \0
1 1. 1\/00 0 3
—10 4 —2|lo1 o0 .
-11 1)\0 0 (=3)") \5
1 1 1 0
=0 4 —2 : :
AU
1 n
<>
=2-2(-3)
1 1 1
1+3(-3)"
On conclut que, pour tout n € N*,

1 1/ 1\ 2 2/ 1\" 1 1/ 1\"
Px, -0 - o (D) e — - 22 (LY apon, g - L L (LD
Xn=0)=5+3(73)  PUa=1=3-3(73) tPu=2)=5F+3(3

6. Soit n € N*. On a alors
1 1/ 1\ 2 2/ 1\" 1 1 n
w0 (1 (4)) 1+ G -3 o2 (4 ()
(Xn) 6 T3\2) )Tt 373 73) )= \g T3 3

ie. |E(X,)=1|

7. Par le théoreme de transfert,

1 1/ 1\" 9 2/ 1\" 1 1/ 1
o< (1)) 1)
X =053 73) )t >33\ 3) )+ >(5t3 3



donc, par le formule de Koénig-Huygens,

V(X,) = E(X;) — E(X,,)?

soit |[V(X,) = 5 + 2 (—l)n :

260



Sujet 59. Tirages avec remplacement (O3)

Une urne contient 2 boules blanches.

N

A chaque étape, on enleve une boule de 'urne et on la remplace par une nouvelle boule,

celle-ci étant blanche avec probabilité % ou noire avec probabilité %

Pour tout k£ € N, on définit les éveénements :
e B, « apres k étapes, I'urne contient 2 boules blanches » ;
e (G, « apres k étapes, I'urne contient 1 boule noire et 1 boule blanche » ;
e N, « apres k étapes, I'urne contient 2 boules noires »,

ainsi que leurs probabilités :

o b, =P(By);
e gv =P(Gi);
o n; = P(NVg).
by,
On définit enfin, pour tout k € N, la matrice colonne X = | gx
N,

1. Donner les matrices X, et Xj.

2. Déterminer la matrice Xs.

3. On donne M =

O NN
[0 [ [ =
== O

Montrer que, pour tout k € N, Xy, = M X;.
4. Etablir, pour tout k& € N, une relation entre X5, M, X, et k.

210
5. On donne A= |2 2 2|. Exprimer A en fonction de M.
01 2

6. Déterminer les valeurs propres de A et montrer que A est diagonalisable.

4 0 0
7. Déterminer une matrice inversible P telle que P7'AP =0 2 0
000

8. Calculer P~ 1.
9. On note D = P~'AP. Donner D* pour tout k£ € N*.
10. Calculer, pour tout k € N*, la premiere colonne de A*.

11. En déduire enfin, pour tout k£ € N*, les probabilités by, gi et ny.
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Solution.

1. Initialement, I'urne contient 2 boules blanches donc By est un évenement certaine et ainsi
1
Xo=10
0

A la premier étape, on tire nécessairement une boule blanche et on la remplace, de

fagon équiprobable par une boule blanche ou une boule noire donc | X; =

O NI

2. Les évenements By, G et N; forment un systéme complet d’évenements donc, par la
formule de probabilités totales,

by = P(By) =P(B1)P(By | By) + P(G1)P(By | G1) + P(N,)P(By | Ny)
1 o1 1 1 3
—§><§+§><1+0><0_§

g2 =P(Gs) =P(B)P(Gy | B1) + P(G1)P(Gy | G1) + P(N,)P(Gs | Ny)
VR S SO RS U |
2 2 2 2 2 2

ny = P(Ny) = P(B1)P(Ny | By) + P(G1)P(N2 | G1) + P(N1)P(Na [ V1)

—1><0+1><1—|—0><1—1
2 27 4 2 8
3
donc | Xy = ;
1
8

3. Soit k € N. De la méme fagon,

b1 = P(Bys1) = P(Br)P (Bt | Bi) + P(Gr)P(Bisr | Gr) + P(Ng)P(Bisa | Ni)

—b><1+ ><1+ x 0
= Ok 9 9k 1 g

—1b +1
—2k 4I]k

gr+1 = P(Gry1) = P(Bi)P(Gri1 | Bi) + P(Gr)P(Grya | Gi) + P(Ng)P(Gria | Ni)

=b ><1+ ><1+ ><1
= O 9 gk B ng 5
1b+1 +1
= — — —N
2k 29k 2k
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ngr1 = P(Niy1) = P(By)P(Niya | Br) + P(Gr)P(Niya | Gi) + P(Ng)P(Niya | Ny

1 1
:bk><0+gk><1+nk><§
1 1
= 49 + ot
donc
br+1 bk + 50k T3 0\ (b
Xemn=|genr | = |3 +3o+5m| =135 2 5| [
Nkt1 19K+ 5 0 3 3/ \m

ie. | Xy = MX,).

. Ainsi, la suite (X}) est une suite géométrique de matrices colonnes de raison M donc,
pour tout k € N, X, = M*X,|.

. Il est clair que .

. A Taide du code Python suivant :

import numpy as np

M=np.matrix([[2,1,0],[2,2,2],[0,1,2]])
print (M)

print (np.linalg.eig(M))

qui affiche

[[2 1 0]

[2 2 2]

[0 1 211

(array ([ 4.00000000e+00, 2.00000000e+00, -2.80761164e-16]),
matrix ([[ 4.08248290e-01, -7.07106781e-01, 4.08248290e-01],
[ 8.16496581e-01, 8.11214661e-16, -8.16496581e-01],

[ 4.08248290e-01, 7.07106781e-01, 4.08248290e-01]11)

)

x
on conjecture que Sp(A) = {4;2;0}. Démontrons-le. Soit (z,y,2) e R3 et X = |y
2
Déterminons Ey(A) :
2v +y =4z Yy =2z B
X €FEA) <= AX =4X <= 22+ 2y + 22 =4y <= y=z+=2 <:>{ B
=2z
Y+ 2z =4z Yy =2z
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T 1

x 1
donc E4(A) = (29@ reRP = Vect | |2
Déterminons Ey(A) :

2r+y =2z Y= _0
XeE)(A) <= AX =2X <= (2r+2y+22=2y <=<Sz+2=0 <:>{y_
Z=—x
x 1
donc Ey(A) = 0 x € Ry = Vect 0
—T -1
Déterminons Ey(A) :
20 +y=20 y=—2z 5
= -2z
XeE(A) <= AX=0X <= (2r+2y+22=0 <=y=-1—2 <:>{y
y+22=0 y=—2z o
x 1
donc Ey(A) = —2z| | zeR) = Vect | | =2 |. Ainsi, 4, 2 et 0 sont des va-
x 1

leurs propres de A et comme A est d’ordre 3, il ne peut y en avoir d’autres et donc
Sp(A) = {4;2;0}| De plus, comme A est une matrice carrée d’ordre 3 ayant 3 valeurs

propres distinctes, | A est diagonalisable |.

7. On déduit de la question précédente que A = PDP~ ' ie. P'AP = D avec D =
4 0 0 1 1 1
0 2 0fleteP=12 0 =2].

000 1 -1 1
L1 1
oA
8. En résolvant un systéme ou en utilisant un logiciel, on détermine | P~ =5 0 —3
r 1 1
4 T4 1

9. Comme D est diagonale, pour tout k € N*

4 0 0
DF=10 28 0
0 0 0
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10. Soit k € N*. Alors, comme A = PDP~' A* = (PDP~1)k = PD*P~! donc

11.

1 1 1\ /4 0 0\ /3 1 3
AF = |2 -1](0 2" of|5 0O —3
1 -1 1)\0 0 0/ \3 -1 3
1 1 1 41y %
=12 0 -1 k=1 4 %
1 -1 1 0 * %
4k:71_|_2k71 * %
= 2x41 %
4k—1_2k—1
4k—1+2k)—1
donc | la premiere colonne de AF est 2 x 4k-1
4k—1_2k—1

k
Comme A = 4M, M = ;A donc, pour tout k € N*, M* = (i) Ak Des lors, pour tout
k e N*,

Lok (AR Aot
Xp=M*X, = () 2x 4w x| 0] = [ 2
4 4k—1_2k—1 % % 0 4k717€2k—1

4

De plus, pour tout k£ € N*,

4k71_|_2k71 B 1 y 4k71_{_2k71 B 1 - <1>k1 B 1 N <1)2 y (1)k1 _1+ <1)k+1
4k 4 4k=1 4 2 40 \2 2 40 \2

2><4"7_1_2><4’“_1 1

4k T 4 x 4kl 2

4k—1 _ 9k-1 1 4k=1 _ 9k-1 1 (1>k—1 1 <1)2 (1>k—1 1 (1)k+1
4k 4 4k—1 4 2 4 2 2 4 2

donc on conclut que, pour tout k£ € N*,

1 1k+1 1 1 1k+1
E B ek 0]
k=g =5 Ty \3

_2_
— < -
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Sujet 60. Marche aléatoire sur un tétraédre (O3)

On considere un tétraedre de sommets A, B, C et D.

A

C

Un petit mobile se déplace sur les arétes de ce tétraedre, pour se rendre d’un sommet a un

autre.

A Dinstant t = 0, il part du sommet A. Si & un instant donné il se trouve en A, B ou C, alors
a l'instant suivant il se rend de fagon équiprobable sur I'un des trois autres sommets. S’il arrive
en D, alors il s’arréte.

On définit les événements A, (respectivement B,, C,, D,) : « le mobile se trouve en A
(respectivement B, C, D) a l'instant n », ainsi que les probabilités respectives a,, b,, ¢, d,, de
ces événements.

1. a.
b.

Calculer a,, b,, c,, d, pour n € {0,1,2}.

Donner, pour tout n € N, a,.1, b,+1 et ¢,1 en fonction de a,, b, et c,.
an

Pour tout n € N, on note X,, = | b,, |. Trouver une matrice carrée A telle que pour
cn

tout € N, X, = AX,,.

Exprimer, pour tout n € N, X,, en fonction de n, A, Xj.

. Montrer qu’il existe une matrice inversible P de la forme de la forme

1
-1 0

telle que D = P~'AP avec D = | 0
0

wvn O O

Montrer que, pour tout n € N,

T e O e )

G- G - 6 +2=)

3. Exprimer, pour tout n € N, a,, b,, ¢, puis d, en fonction de n.

4. Déterminer la limite de la suite (d,,) et interpréter le résultat obtenu.
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Solution.

1. a. Initialement, le mobile est sur le sommet A donc ‘ao =letby=cHp=dy=0 ‘

Partant du sommet A, le mobile se déplace de facon équiprobable vers B, C ou D

donc aleetblzclzdlzé.

Comme (A;, By, C1, D;) est un systéeme complet d’évenements, d’apres la formule
des probabilités totales,

ay = P(As) = P(A)P(Ay | A)) + P(B)P(As | By) + P(C)P(As | Cy) + P(D))P(A, | D)
1 1 1 1

1
—OXO—Fng‘i‘ng‘i‘gXo

by = P(B,) = P(A)P (B | Ay) + P(B)P(B, | By) + P(C)P(Bs | Cy) + P(D1)P(B, | D)

x1+1x0+1x1+1x0
3 3 3 3 3

2 =P(Cy) = P(A1)P(Cy | A1) + P(B)P(Cy | Br) + P(C1)P(Cy | C1) + P(D1)P(Cy | Dy)
x}+1x1+}x0+1x0
3 3 3 3 3

donc @z%,bgz@zéetdg:

5
5|

b. Soit n € N. Comme (A,,, B,, C,, D,) est un systéeme complet d’événements, d’apres
la formule des probabilités totales,

ant1 = P(Ant1) = P(Ap)P(Apy1 [ An) + P(BL)P(Ania | By) + P(Cr)P(Anta | Cn)
+ P(DH)P(An+1 ’ Dn)
x0+b ><1+ ><1+d x 0
=a -4c —
1

1
:*bn 56n
g0 T3¢
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bn+l = P(Bn-i-l) = P<An)P(Bn+l | An) + P(BH)P(BM-I ‘ Bn) + P(Cn)P(Bn-H ’ Cn)
+ P(DR)P(Bn—H | Dn)
1 1
:anx§+bnx0+cnxg+dnx0
1 1

= ga/n + gcn

Cny1 = P(Cn+1) = P(AH)P(Cn—H | An) + P<BH)P(Cn+1 | Bn) + P(Cn)P(Cn+1 | Cn)
£ P(D,)P(Cois | Dy)
= ><1+b ><1+ x0+d, x0
1 1

= 5 Un *bn
50 T3

dn-l—l = P(Dn—i-l) = P(ATL)P(Dn-H | An) + P(Bn)P(Dn-i-l | Bn) + P(Cn)P(Dn-i-l | Cn)
+P(Dn)P(Dn+1 | Dn)

1 1 1
=, X —+b, X =4+¢c, X =+d, x1

3 3 3
1 1 1
= 5 Un *bn 5Cn dn
3@ + 3 + 30 +
donc
Ap41 = ébn + %CTL bn+1 = éan + %Cn
Cn+1 = %a'n + §bn dn+1 = %CL” + %bn + %cn + dn

c. On en déduit que, pour tout n € N,

1 1 1 1
An+1 §bn + gcn 0 3 3 Qp,
1 1 1 1
Xn+1 - anrl =1 30n + 3Cn | = | 3 0 3 bn
1 1 1 1
Cn+1 gan + gbn 3 3 0 Cn
11
Y3
donc X, 41 = AX,, avec|A= (3 0 3
119
3 3

d. Ainsi, (X,) est une suite géométrique de matrices colonnes de raison A donc,
‘pour tout n € N, X,, = A" X, ‘

. La matrice A est symétrique réelle donc elle est diagonalisable.

L’énoncé laisse entendre que Sp(A) = {—1;:2}. Démontrons-le. Soit (x,y) € R? et

373
Yy

Déterminons E_1 (A) :

1 3Y T 32= —37
AX:—§X<:> %x+%z:—%y =S r=—-y-— 2.
ST+ 3y =—32



-y —Z 1 1

Ainsi, E_1(A) = Yy (y,2) ER?) = —y|-1]|—2]0 (y,2) € R?
z 0 -1
1 1
donc E_%(A) = Vect 01],[-1
—1 0
Déterminons £z (A) :
y+lz=2x 20 +y+z2=0 L
9 3 3 3
AX:§X<:> %x+%z:§y < r—-2y+2=0 Ly
ST+ iy =32z r+y—2:=0 L
$+y—2Z:O L1<—>L3
—qr—2y+2=0 Lo
T + Yy — 22=0 L1
<~ —3y+3Z:0 Lo+ Ly— 14
3y—32=0 Ly« L3+ 2L,
{x =z
—
y==z
z 1 1
Ainsi, Ex(A) ={ | z| | z€R z|1] | z€ R donc Ez(A) = Vect | | 1
z 1 1
Comme dim(E_1(A)) + dim(Ez(A)) = 3, on conclut que A = PDP™! cest-a-dire
-3 0 0 1 1
D=P'APavece D= 0 —3 O|letP=1|0 —1 1
0 0 2 -1 0 1
3. On en déduit que, pour tout n € N, A" = PDP PD"P~1. Or, comme D est
(=3)
diagonale, pour tout n € N, D" = 0 %
0 0 (2

1

d’un logiciel ou en résolvant un systéme) que P~! = 3 — 1 donc, pour tout

) De plus, on vérifie (a 'aide
1
1
1 1 1
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n € N,

-1 ] (1) 111 (_é)n (1" 8 1 12 _12
A"=PD"P" =5 oo ; (—03) (g)")(l B 1)
(11 (—é): (—%)nn —2(—%)n
O LT
AN
R v N
=[-8+ () 2(=5)+ () —(=3)+()
—(3) + () -9+ () 2(=3)"+ ()

donc a,, = Kg)”

|

1 n
3 \3 +2<_§H’b”:
De plus, pour tout n € N, a,, + b, + ¢,

) ]-

d,=1-a,—0b,—c,

5 [G) +2(

3
2

_1_(3)@

Ainsi, pour tout n € N,

1

=1
3

B (T = R O |
(Al -1 A
5. Comme —1 < 2 <1, nl_l)I_{loo(%)n = 0 donc |d,, — 1

Ainsi, le mobile finit presque stirement par atteindre le sommet D.
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