
TB2 samedi 29 mars 2025

Devoir surveillé n°4
Durée : 2 heures

L’utilisation d’une calculatrice ou de tout document est interdite.
Toute sortie anticipée est interdite.

Exercice 1 (Exercice d’analyse). On considère la fonction f définie sur R par :

∀x ∈ R, f(x) = e x− e −x.

On note Cf la courbe représentative de f dans un repère du plan.

A. Étude de f

1. Étudier la parité de f . Que peut-on en déduire pour la courbe Cf ?
2. Déterminer lim

x→−∞
f(x) et lim

x→+∞
f(x).

3. Calculer f ′(x) pour tout x ∈ R.
4. Construire le tableau de variation de f .
5. Justifier que f établit une bijection de R vers R.
6. Après avoir calculé f(0), déterminer le signe de f(x) selon les valeurs du réel x.

B. Résolution d’une équation

Soit n ∈ N. On considère, dans cette partie, l’équation (En) d’inconnue x :

f(x) = n.

1. Montrer que l’équation (En) admet une unique solution notée un (qu’on ne cherchera pas
ici à calculer). Préciser la valeur de u0.

2. Soit n un entier naturel non nul.
a. Calculer f(ln(n)).
b. En déduire que un ⩾ ln(n).
c. Quelle est la limite de un lorsque n tend vers +∞ ?

Solution.

A. Étude de f

1. La fonction f est définie sur R qui est centré en 0 et, pour tout réel x,

f(−x) = e −x− e x= −(e x− e −x) = −f(x)

donc la fonction f est impaire .



2. D’une part, lim
x→−∞

e x= 0. D’autre part, lim
x→−∞

−x = +∞ et lim
X→+∞

eX= +∞ donc, par

différence, lim
x→−∞

f(x) = −∞ .

Comme f est impaire, lim
x→+∞

f(x) = − lim
x→−∞

f(x) donc lim
x→+∞

f(x) = +∞ .

3. La fonction f est dérivable sur R comme somme et composée de fonctions dérivables et,
pour tout réel x, f ′(x) = e x+e −x .

4. Comme la fonction exponentielle est à valeurs strictement positives, on en déduit que
f ′(x) > 0 pour tout réel x donc f est strictement croissante sur R.
On aboutit donc au tableau de variation suivant :

x

Variation de f

−∞ +∞

−∞−∞

+∞+∞

5. La fonction f est continue (car dérivable) et strictement croissante sur R. De plus,
lim

x→−∞
f(x) = −∞ et lim

x→+∞
f(x) = +∞ donc, par le théorème de la bijection continue, on

en déduit que f réalise une bijection de R sur ]−∞ ; +∞[ = R .

6. f(0) = e 0− e 0= 0 donc, comme f est croissante sur R, f(x) ⩽ 0 pour tout x ∈ R− et
f(x) ⩾ 0 pour tout x ∈ R+.

B. Résolution d’une équation

1. Comme f réalise une bijection de R dans R, l’entier n admet un unique antécédent un par
f , ce qui revient à dire que l’équation f(x) = n possède une unique solution un ∈ R .

De plus, on a vu que f(0) = 0 donc u0 = 0 .

2. a. f(ln(n)) = e ln(n)− e − ln(n)= n− e ln( 1
n
) soit f(ln(n)) = n− 1

n
.

b. comme 1
n
> 0, f(ln(n)) ⩽ n i.e. f(ln(n)) ⩽ f(un) et donc, comme f est croissante sur

R, ln(n) ⩽ un .

c. Par propriété, lim
n→+∞

ln(n) = +∞ donc, par le théorème de comparaison, lim
n→+∞

un = +∞ .



Exercice 2 (Exercice d’algèbre). Dans cet exercice, on considère la matrice M suivante :

M =

(
2 1
1 2

)
et on note f l’endomorphisme de R2 canoniquement associé.

On rappelle que si u = (x, y) et v = (x′, y′) sont deux vecteurs de R2, alors on définit le
produit scalaire u · v et la norme ∥u∥ par :

u · v = xx′ + yy′ et ∥u∥ =
√

x2 + y2.

1. Calculer le produit 1√
2
× 1√

2
. On donnera le résultat sous la forme d’une fraction.

2. Montrer, sans faire aucun calcul, que la matrice M est diagonalisable.
3. a. Résoudre l’équation (2− λ)2 − 1 = 0, d’inconnue λ ∈ R.

b. Donner les valeurs propres de f .
4. On définit les vecteurs e1 = ( 1√

2
, 1√

2
) et e2 = ( 1√

2
,− 1√

2
).

a. Calculer f(e1) et f(e2). Que remarque-t-on ?
b. Montrer que les deux vecteurs e1 et e2 sont orthogonaux et calculer leur norme.

Montrer aussi que la famille (e1, e2) est une base de R2.
c. Montrer que la matrice représentative de f dans la base (e1, e2) est :(

3 0
0 1

)
.

5. Soit u = (x, y) un vecteur de R2. Calculer u · e1 et u · e2 et en déduire, en fonction de x
et y, les coordonnées de u dans la base (e1, e2).

Solution.

1. 1√
2
× 1√

2
= 1√

2
2 donc 1√

2
× 1√

2
= 1

2
.

2. La matrice M est une matrice symétrique réelle donc, d’après le théorème spectral,
M est diagonalisable .

3. a. Pour tout réel λ,

(2− λ)2 − 1 = 0 ⇐⇒ (2− λ)2 = 1 ⇐⇒ 2− λ = 1 ou 2− λ = −1 ⇐⇒ λ = 1 ou λ = 3

Ainsi, l’ensemble des solutions dans R de l’équation (2− λ)2 − 1 = 0 est {1 ; 3} .

b. Soit λ ∈ R. Alors,

det(M − λI2) =

∣∣∣∣2− λ 1
1 2− λ

∣∣∣∣ = (2− λ)2 − 1.

Ainsi, det(M − λI2) = 0 si et seulement si (2 − λ)2 − 1 = 0 c’est-à-dire, d’après la
question précédente, si et seulement si λ ∈ {1 ; 3}.
Comme les valeurs propres de M sont les réels λ tels que det(M−λI2) = 0, on conclut
que le spectre de f est Sp(f) = {1 ; 3}.



4. a. Étant donné que

M

(
1√
2
1√
2

)
=

(
2× 1√

2
+ 1× 1√

2

1× 1√
2
+ 2× 1√

2

)
=

(
3× 1√

2

3× 1√
2

)
,

on a f(e1) = (3× 1√
2
, 3× 1√

2
) .

De même,

M

(
1√
2

− 1√
2

)
=

(
2× 1√

2
− 1× 1√

2

1× 1√
2
− 2× 1√

2

)
=

(
− 1√

2

− 1√
2

)
,

on a f(e2) = (− 1√
2
,− 1√

2
) .

On remarque que f(e1) = 3e1 et f(e2) = −e2 donc, comme ces vecteurs sont non nuls,
e1 est un vecteur propre de f associé à la valeur 3 et e2 est un vecteur propre de f
associé à la valeur 1.

b. Comme e1·e2 = 1√
2
× 1√

2
+ 1√

2
×(− 1√

2
) = 1

2
− 1

2
= 0, e1 et e2 sont orthogonaux . De plus,

∥e1∥ =
√
( 1√

2
)2 + ( 1√

2
)2 =

√
1
2
+ 1

2
donc ∥e1∥ = 1 et ∥e2∥ =

√
( 1√

2
)2 + (− 1√

2
)2 =√

1
2
+ 1

2
donc ∥e2∥ = 1 .

Ainsi, (e1, e2) est une famille orthonormée donc, par théorème, (e1, e2) est libre. Ainsi,
(e1, e2) est une famille libre de 2 vecteurs de R2 donc (e1, e2) est une base de R2 .

c. Sachant que f(e1) = 3e1 et f(e2) = e2, la matrice de f dans la base (e1, e2) est(
3 0
0 1

)
.

5. On a u · e1 = x× 1√
2
+ y × 1√

2
donc u · e1 = x+y√

2
et u · e2 = x× 1√

2
+ y × (− 1√

2
) donc

u · e2 = x−y√
2

.

Comme (e1, e2) est une base orthonormée de R2, par propriété, les coordonnées de u dans
la base (e1, e2) sont (x+y√

2
, x−y√

2
).

Exercice 3 (Exercice de probabilité). Dans tout l’énoncé, n désigne un entier naturel non nul.
Une puce se déplace sur une bande formée de cases numérotées ainsi :

0 1 2 3 4 · · ·· · · −4 −3 −2 −1

Case de départ

À chaque seconde, la puce effectue l’une des deux actions suivantes :
— ou bien elle saute d’une case vers la droite (on dira que la puce « va à droite »),
— ou bien elle saute d’une case vers la gauche (on dira que la puce « va à gauche »).



Ces choix s’effectuent aléatoirement. On suppose que la probabilité que la puce aille à gauche
est 1

2
, que la probabilité que la puce aille à droite est 1

2
, et que les différents sauts de la puce

sont indépendants.
Dans tout le problème, on étudie le comportement de la puce sur n secondes, de la première

seconde à la n-ième seconde. Ainsi, la puce effectue n sauts en tout. De plus, on suppose que la
puce, avant les n sauts, part de la case numérotée 0.

Par exemple, sur la figure ci-dessus, la puce a effectué n = 3 sauts : le premier saut est vers
la droite, et les deux suivants sont vers la gauche.

On appelle D la variable aléatoire désignant le numéro de la case sur laquelle la puce se
retrouve au bout des n sauts.

A. Étude de D dans des cas particuliers

1. Quel est le numéro de la case la plus à droite sur laquelle la puce puisse se retrouver ?
On rappelle que la puce part de la case 0 et effectue n sauts.

2. Dans cette question, on suppose que n = 2.
a. Indiquer ce que signifient, en français, chacun des trois événements suivants :

(D = 0), (D = 1), (D = 2).

Donner leurs probabilités.
Remarque : l’un de ces trois événements a une probabilité nulle.

b. Donner aussi P (D = −1) et P (D = −2).
c. Calculer alors, dans le cas n = 2, l’espérance et la variance de D.

3. Lorsque n = 3, donner l’ensemble des valeurs prises par D et la loi de D.

B. Étude de D dans le cas général

On revient au cas général, n est donc un entier naturel non nul quelconque.

1. On appelle X le nombre de fois, parmi les n sauts effectués, où la puce va à droite. En
reconnaissant une loi usuelle, donner la loi de X. (On ne demande pas d’en rappeler la
formule).

2. On appelle Y le nombre de fois, parmi les n sauts, où la puce va à gauche. Exprimer Y
en fonction de X.

3. Expliquer, de façon très claire, pourquoi on a la relation D = 2X − n. On rappelle que la
puce part de la case numérotée 0.

4. Donner l’espérance et la variance de D en fonction de n. Interpréter la valeur trouvée
pour l’espérance.

Solution.

A. Étude de D dans des cas particuliers

1. La puce se déplace le plus à droite possible si elle fait n sauts vers la droite et, dans ce
cas, elle se retrouve sur la case numéro n .

2. a. L’évènement (D = 0) signifie : « la puce se trouve sur la case n°0 après 2 sauts »,
l’évènement (D = 1) signifie : « la puce se trouve sur la case n°1 après deux sauts » et
l’évènement (D = 2) signifie : « la puce se trouve sur la case n°2 après 2 sauts ».

Leurs probabilités sont P(D = 0) =
1

2
, P(D = 1) = 0 et P(D = 2) =

1

4
.



b. De même, P(D = −1) = 0 et P(D = −2) =
1

4
.

c. Ainsi,

E(D) =
2∑

k=−2

kP(D = k) = −2× 1

4
+ 0× 1

2
+ 2× 1

4

donc E(D) = 0 . Par le théorème de transfert,

E(D2) =
2∑

k=−2

k2P(D = k) = (−2)2 × 1

4
+ 02 × 1

2
+ 22 × 1

4
= 2

donc, par la formule de König-Huygens, V(D) = E(D2) − E(D)2 = 2 − 02 i.e.
V(D) = 2 .

3. Si n = 3 alors D(Ω) = {−3,−1, 1, 3} et la loi de D est donnée par le tableau suivant :

k −3 −1 1 3

P(D = k)
1

8

3

8

3

8

1

8

B. Étude de D dans le cas général

1. Chaque saut est une épreuve de Bernoulli de paramètre 1
2

en prenant comme succès « la
puce effectue un saut vers la droite ». Comme les sauts sont indépendants, la variable
aléatoire X qui compte le nombre de succès suit une loi binomiale B(n, 1

2
) .

2. Il y a en tout n sauts donc X + Y = n et ainsi Y = n−X .
3. La puce effectue X saut vers gauche et Y saut vers la droite donc D = X × 1+Y × (−1).

Or, on a vu que Y = n−X donc D = X+(n−X)×(−1) = X−n+X i.e. D = 2X − n .
4. Comme X ↪→ B(n, 1

2
), E(X) = n× 1

2
= n

2
et V(X) = n× 1

2
× 1

2
= n

4
.

Ainsi, par linéarité de l’espérance, E(D) = 2E(X)− n donc E(D) = 0 . Ainsi, la valeur
moyenne de la case finale est 0, ce qui traduit la symétrie de la situation par rapport à
cette case.
Par homogénéité de la variance, V(D) = 22V(X) donc V(D) = n .


