Devoir surveillé n°4

Durée : 2 heures

L'utilisation d'une calculatrice ou de tout document est interdite.

Toute sortie anticipée est interdite.

Exercice 1 (Algèbre – d'après le sujet du concours Agro/Véto – voie A-TB – 2019).

Dans tout ce qui suit, on pourra identifier, selon la convention habituelle, un élément de \mathbb{R}^n avec la matrice colonne qui lui est canoniquement associée.

On se donne les matrices J et P suivantes :

$$J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}.$$

Enfin, I_3 désignera la matrice identité : $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

1. Montrer que la matrice P est inversible et que son inverse vérifie :

$$P^{-1} = \alpha \begin{pmatrix} 2 & -1 & -1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

où α est un nombre réel non nul que l'on précisera.

- 2. Montrer que 0 est valeur propre de la matrice J; on note E_0 le sous-espace propre associé.
- **3.** Déterminer une base de E_0 .
- 4. Montrer que (1,1,1) est vecteur propre de J. Déterminer la valeur propre associée.
- 5. Calculer le rang de $J 3I_3$. En déduire la dimension du sous-espace propre E_3 (E_3 est le sous-espace propre associé à la valeur propre 3).
- **6.** Montrer que J est diagonalisable : en particulier, donner une matrice D diagonale telle que PD = JP.
- 7. Calculer aussi $P^{-1}J^nP$ pour tout entier naturel n non nul (on attend le résultat sous la forme d'une matrice 3×3 dont on donnera les coefficients).
- 8. Grâce à ce qui précède, et sans effectuer de récurrence, prouver que pour tout entier naturel $n \ge 1$, on a $J^n = 3^{n-1}J$.

Exercice 2 (Probabilités – d'après le sujet du concours de l'Institut National d'Agronomie – voie TB – 1991).

Dans tout cet exercice, r et α sont des réels strictement positifs

- 1. Montrer que f est une densité de probabilité sur \mathbb{R} . Dans toute la suite, on note X une variable aléatoire admettant f comme densité.
- **2.** On note F_X la fonction de répartition de X. Montrer que, pour tout réel x,

$$F_X(x) = \begin{cases} 1 - \left(\frac{r}{x}\right)^{\alpha} & \text{si } x \geqslant r \\ 0 & \text{sinon} \end{cases}.$$

3. Démontrer que X admet une espérance si et seulement si $\alpha > 1$ et que, dans ce cas,

$$\mathbf{E}(X) = \frac{\alpha r}{\alpha - 1}.$$

4. a. Démontrer que X^2 admet une espérance si et seulement si $\alpha > 2$ et que, dans ce cas,

$$\mathbf{E}(X^2) = \frac{\alpha r^2}{\alpha - 2}.$$

- **b.** En déduire que X admet une variance si et seulement si $\alpha > 2$ et calculer, dans ce cas, $\mathbf{V}(X)$.
- 5. On considère la variable aléatoire $Y = \ln\left(\frac{X}{r}\right)$ et on note F_Y sa fonction de répartition.
 - a. Démontrer que, pour tout réel x, $F_Y(x) = F_X(re^x)$ et déduire alors de la question 2. que, pour tout réel x,

$$F_Y(x) = \begin{cases} 1 - e^{-\alpha x} & \text{si } x \geqslant 0\\ 0 & \text{sinon} \end{cases}.$$

- **b.** Calculer, pour tout $x \neq 0$, $F'_{V}(x)$.
- ${\bf c}$. En déduire la loi de Y. On reconnaîtra une loi usuelle.

Exercice 3 (Analyse – d'après le sujet du concours Agro/Véto – voie A-TB – 2007).

- 1. On considère la fonction f définie sur]-1; $+\infty[$, par $f(x) = \ln(1+x)$. Déterminer les variations de f ainsi que ses limites en -1 et en $+\infty$.
- 2. On considère la fonction q définie sur]-1; $+\infty[$ par q(x)=f(x)-x. Étudier les variations de g et en déduire le signe de f(x) - x pour tout $x \in [-1; +\infty[$.
- **3.** On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - **a.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, u_n est bien défini et $0 \leq u_n \leq 1$.
 - **b.** Démontrer que la suite (u_n) est décroissante.
 - c. En déduire que (u_n) converge puis déterminer sa limite.
 - **d.** Déterminer la limite de $\frac{u_{n+1}}{u_n}$ lorsque n tend vers $+\infty$.