Devoir surveillé n°2

Durée: 1 heure

L'utilisation d'une calculatrice ou de tout document est interdit.

Exercice 1. Déterminer, en argumentant, les limites suivantes.

a)
$$\lim x^2 \ln(x)$$

b)
$$\lim_{x \to 0} x^2 \ln(x)$$

a)
$$\lim_{x \to +\infty} x^2 \ln(x)$$
 b) $\lim_{x \to 0} x^2 \ln(x)$ c) $\lim_{x \to -\infty} \frac{e^x}{e^x + 1}$ d) $\lim_{x \to +\infty} \frac{e^x}{e^x + 1}$ e) $\lim_{x \to +\infty} x^3 - x^2 + 3$ f) $\lim_{x \to 0} x^3 - x^2 + 3$ g) $\lim_{x \to -\infty} \frac{e^x}{x^2 + 1}$ h) $\lim_{x \to +\infty} \frac{e^x}{x^2 + 1}$

$$\mathbf{d)} \lim_{x \to +\infty} \frac{\mathrm{e}^x}{\mathrm{e}^x + 1}$$

e)
$$\lim x^3 - x^2 + 3$$

f)
$$\lim_{x\to 0} x^3 - x^2 + 3$$

$$\mathbf{g)} \lim_{x \to -\infty} \frac{\mathrm{e}^x}{x^2 + 1}$$

$$h) \lim_{x \to +\infty} \frac{e^x}{x^2 + 1}$$

Exercice 2. Dans chacun des cas suivants, calculer la dérivée de f sur I. On ne demande pas de justifier que les fonctions sont dérivables.

$$\mathbf{a)} \ f: x \longmapsto x^3, \quad I = \mathbb{R}$$

a)
$$f: x \longmapsto x^3$$
, $I = \mathbb{R}$ b) $f: x \longmapsto \sqrt{x}$, $I = \mathbb{R}^*_+$ c) $f: x \longmapsto \cos(x)$, $I = \mathbb{R}$

c)
$$f: x \longmapsto \cos(x), I = \mathbb{R}$$

$$\mathbf{d}) \ f: x \longmapsto \frac{1}{x^2}, \ I = \mathbb{R}_+^*$$

d)
$$f: x \longmapsto \frac{1}{x^2}$$
, $I = \mathbb{R}_+^*$ e) $f: x \longmapsto \ln(x^2 + 1)$, $I = \mathbb{R}$ f) $f: x \longmapsto (2 - 3x)^5$, $I = \mathbb{R}$

$$\mathbf{f)} \ f: x \longmapsto (2 - 3x)^5, \ I = \mathbb{R}$$

$$\mathbf{g)} \ f: x \longmapsto x \, \mathrm{e}^{\,x}, \quad I = \mathbb{R}$$

$$\mathbf{h}) \ f: x \longmapsto \frac{e^{x^2}}{e^{x^2} + 1}, \quad I = \mathbb{I}$$

$$\mathbf{g}) \ f: x \longmapsto x \, \mathrm{e}^{\,x}, \quad I = \mathbb{R} \quad \mathbf{h}) \ f: x \longmapsto \frac{\mathrm{e}^{\,x^2}}{\mathrm{e}^{\,x^2} + 1}, \quad I = \mathbb{R} \qquad \mathbf{k}) \ f: x \longmapsto \frac{2}{(x+1)\ln(x+1)}, \quad I = \mathbb{R}^*_+$$

Exercice 3 (d'après le sujet du Concours A – TB – 2021). On définit deux fonctions f et gen posant, pour tout réel x:

$$f(x) = \frac{e^{x} + e^{-x}}{2}$$
 et $g(x) = \frac{e^{x} - e^{-x}}{2}$.

A. Étude des fonctions f et q

- **1.** Calculer f(0) et g(0).
- **2.** Calculer la dérivée de $x \mapsto e^{-x}$.
- **3.** On admet que les fonctions f et g sont dérivables sur \mathbb{R} . Prouver que g'=f.
- **4.** Exprimer de même f' en fonction de g.
- **5. a.** Si x est un réel, donner le signe de e^x , puis donner le signe de e^{-x} .
 - **b.** Donner le signe de la fonction f sur $]-\infty;+\infty[$.
- **6. a.** Déduire de ce qui précède le sens de variation de la fonction g sur $]-\infty;+\infty[$.
 - **b.** Quel est le signe de g sur $]-\infty$; $+\infty[?]$
- 7. Donner le sens de variation de la fonction f sur $]-\infty$; $+\infty$ [.
- 8. Dresser le tableau des variations de f sur $]-\infty;+\infty[$. On fera en particulier apparaître les limites en $+\infty$ et en $-\infty$, ainsi que la valeur de f(0).

B. Etablissement de formules

On considère la fonction $u: \mathbb{R} \longrightarrow \mathbb{R}$, définie par la relation suivante :

$$u(x) = (f(x))^{2} - (g(x))^{2}$$
.

On admettra que les fonctions $x \mapsto (f(x))^2$ et $x \mapsto (g(x))^2$ sont bien dérivables sur \mathbb{R} .

- 1. Montrer que, pour tout réel x, on a la relation 2f(x)g(x) = g(2x).
- **2.** Calculer la dérivée de la fonction $x \mapsto (f(x))^2$.
- **3.** Pour tout réel x, calculer u'(x).
- **4.** En déduire que, pour tout réel x, on a $(f(x))^2 (g(x))^2 = 1$.