
♦ Révisions – Avril 2025 – Corrigés

Algèbre (2020)

Si a est un nombre réel, on note Ma =
(

cos(a) − sin(a)
sin(a) cos(a)

)
. On note fa l’endomorphisme de

R2 canoniquement associé à la matrice Ma.
Par ailleurs, on rappelle que (x ; y) est un élément de R2, la nombre réel ∥(x ; y)∥ =

√
x2 + y2

est la norme du vecteur (x ; y).
1. Exemples.

a. Calculer M0, Mπ
2

et Mπ. (Autrement dit, calculer Ma dans les cas a = 0, a = π
2 et

a = π.)

b. On considère la matrice A =
(√

2
2 −

√
2

2√
2

2

√
2

2

)
. Donner un réel a ∈ [0 ; 2π[ tel que A = Ma.

2. Premières propriétés. Soit a ∈ R.
a. Calculer le déterminant de Ma. L’application fa est-elle bijective ? Que dire du noyau

de fa ?
b. Calculer fa((1 ; 0)) et fa((0 ; 1)). En déduire ∥fa((1 ; 0))∥ et ∥fa((0 ; 1))∥.
c. Soit (x ; y) ∈ R2. Prouver que le vecteur fa((x ; y)) et le vecteur (x ; y) ont la même

norme.
d. Soit λ ∈ R une valeur propre de fa et u ∈ R2 un vecteur propre associé.

Montrer que ∥fa(u)∥ = |λ| × ∥u∥. En déduire que λ vaut soit 1, soit une autre valeur
réelle que l’on précisera.

3. On s’intéresse aux valeurs propres complexes de Ma.
a. Fixons a ∈ R. Trouver des coefficients α et β réels, que l’on exprimera en fonction

de a, et vérifiant, pour tout nombre complexe z :(
z − eia

) (
z − e−ia

)
= z2 − 2αz + β.

b. Soit λ ∈ C. Montrer que le déterminant de Ma − λI2 vaut (λ − eia) (λ − e−ia).
c. Pour quelles valeurs de λ, la matrice Ma − λI2 est-elle non inversible ?
d. Expliquer pourquoi les valeurs propres (complexes) de Ma sont eia et e−ia.

4. Application. Existe-t-il un réel a et une base de R2 dans laquelle la matrice de fa est

la matrice
(

5 2
0 -4

)
? Indication : chercher d’abord les valeurs propres de cette matrice.

Sont-elles de la forme eia et e−ia ?
5. Si a et b sont deux nombres réels, montrer que Ma+b = MaMb.
6. Soit n un entier naturel supérieur ou égal à 2. Montrer qu’il existe un réel a ∈ ]0 ; 2π[ tel

que Mn
a = I2. On exprimera un tel réel a en fonction de n et de π.



Solution.

1. a. Par définition, M0 = cos(0) − sin(0)
sin(0) cos(0) =

(
1 0
0 1

)
c’est-à-dire M0 = I2 , Mπ

2
=(

cos(π
2 ) − sin(π

2 )
sin(π

2 ) cos(π
2 )

)
c’est-à-dire Mπ

2
=
(

0 −1
1 0

)
et Mπ = cos(π) − sin(π)

sin(π) cos(π) =
(

−1 0
0 −1

)
c’est-à-dire Mπ = −I2 .

b. On cherche un réel a tel que cos(a) =
√

2
2 et sin(a) =

√
2

2 . Ainsi, a = π
4 convient donc

A = Mπ
4

.

2. a. det(Ma) = cos2(a) − (− sin2(a)) = cos2(a) + sin2(a) = 1. Comme det(Ma) ̸= 0, fa est
bijective. Elle est en particulier injective donc ker fa = {(0 ; 0)} .

b. fa((1 ; 0)) = (cos(a) ; sin(a)) et fa((0 ; 1)) = (− sin(a) ; cos(a)). On en déduit que
∥fa((1 ; 0))∥ =

√
cos2(a) + sin2(a) =

√
1 = 1 et ∥fa((0 ; 1))∥ =

√
sin2(a) + cos2(a) =√

1 = 1.
c. Par définition,

fa((x ; y)) = (cos(a)x − sin(a)y ; sin(a)x + cos(a)y)

donc

∥fa(x)∥ =
√

(cos(a)x − sin(a)y)2 + (sin(a)x + cos(a)y)2

=
√

cos2(a)x2 − 2 cos(a) sin(a)xy + sin2(a)y2 + sin2(a)x2 + 2 sin(a) cos(a)xy + cos2(a)y2

=
√

(cos2(a) + sin2(a))(x2 + y2)

=
√

x2 + y2

Or, ∥(x ; y)∥ =
√

x2 + y2 donc ∥fa((x ; y))∥ = ∥(x ; y)∥ .

d. Par définition, fa(u) = λu donc ∥fa(u)∥ = ∥λu∥ = |λ| × ∥u∥ . Or, d’après la question
précédente, ∥fa(u)∥ = ∥u∥ donc ∥u∥ = |λ| × ∥u∥. De plus, u ̸= 0 donc ∥u∥ ≠ 0 et
ainsi, en divisant par ∥u∥, on conclut que |λ| = 1 donc λ = 1 ou λ = −1 .

3. a. Soit z ∈ C. Alors,(
z − eia

) (
z − e−ia

)
= z2 − ze−ia − eiaz + eiae−ia = z2 −

(
eia + e−ia

)
z + ei0

Or, ei0 = 1 et, par le formule d’Euler, eia + e−ia = 2 cos(a) donc(
z − eia

) (
z − e−ia

)
= z2 − 2 cos(a)z + 1.

Ainsi, α = cos(a) et β = 1 .
b. Par définition,

det(Ma − λI2) =
∣∣∣∣∣cos(a) − λ − sin(a)

sin(a) cos(a) − λ

∣∣∣∣∣ = (cos(a) − λ)2 + sin2(a)

= cos2(a) − 2 cos(a)λ + λ2 + sin2(a)
= λ2 − 2 cos(a)λ + 1

donc, d’après la question précédente, det(Ma − λI2) = (λ − eia) (λ − e−ia) .



c. La matrice Ma − λI2 n’est pas inversible si et seulement si son déterminant est nul.
Or,

det(Ma − λI2) = 0 ⇐⇒
(
λ − eia

) (
λ − e−ia

)
= 0 ⇐⇒ λ − eia = 0 ou λ − e−ia = 0

⇐⇒ λ = eia ou λ = e−ia.

Ainsi, Ma − λI2 n’est pas inversible si et seulement si λ = eia ou λ = e−ia.
d. Par définition, λ est valeur propre de Ma si et seulement si Ma −λI2 n’est pas injective,

comme il s’agit d’une matrice carré, si et seulement si Ma − λI2 n’est pas inversible.
Ainsi, par la question précédente, les valeurs propres complexes de Ma sont eia et e−ia.

4. Posons N =
(

5 2
0 −4

)
. Comme N est triangulaire, ses valeurs propres sont ses termes

diagonaux, c’est-à-dire 5 et −4. Or, |5| = 5 et, pour tout réel a, |eia| = |e−ia| = 1 donc,
quelle que soit la valeur de a, 5 n’est pas valeur propre de Ma et donc 5 n’est pas valeur
propre de fa. Ainsi, il n’existe pas de réel a et de base B de R2 tels que la matrice de fa

dans B est N .
5. Par les formules d’addition,

MaMb =
(

cos(a) − sin(a)
sin(a) cos(a)

)(
cos(b) − sin(b)
sin(b) cos(b)

)

=
(

cos(a) cos(b) − sin(a) sin(b) − cos(a) sin(b) − sin(a) cos(b)
sin(a) cos(b) + cos(a) sin(b) − sin(a) sin(b) + cos(a) cos(b)

)

=
(

cos(a) cos(b) − sin(a) sin(b) − (sin(a) cos(b) + sin(b) cos(a))
sin(a) cos(b) + sin(b) cos(a) cos(a) cos(b) − sin(a) sin(b)

)

b =
(

cos(a + b) − sin(a + b)
sin(a + b) cos(a + b)

)

donc MaMb = Ma+b .
6. Soit a ∈ R. Montrons par récurrence que, pour tout n ∈ N, Mn

a = Mna. Comme M0
a = I2

et M0a = M0 = I2, l’égalité est vraie au rang n = 0.
Soit k ∈ N. Supposons l’égalité vraie au rang n = k. Alors, d’après la question précédente,

Mk+1
a = Mk

a Ma = MkaMa = Mka+a = M(k+1)a

donc l’égalité est vraie au rang n = k + 1.
Ainsi, par le principe de récurrence, pour tout n ∈ N, Mn

a = Mna.
Dès lors, comme cos et sin sont 2π-périodiques, M2π = M0 = I2 donc Mn

2π
n

= M 2π
n

×n =

M2π = I2. Comme 2π
n

∈ ]0 ; 2π[, on conclut que a = 2π
n

convient .



Algèbre (2024)
On considère la matrice

A =

−1 0 1
0 −1 0

−2 1 2

 .

1. On considère le vecteur U =

1
2
0

. Vérifier que U est un vecteur propre de A, associé à

une valeur propre que l’on précisera.
2. Déterminer un vecteur propre V de A associé à la valeur propre 0, de première coordonnée

égale à 1.

3. Déterminer le réel α tel que le vecteur W =

1
0
α

 soit un vecteur propre de A, associé à

la valeur propre 1.
4. Justifier qu’il existe une matrice diagonale D et une matrice inversible P telles que

A = PDP −1. On précisera D, (on écrira ses coefficients diagonaux dans l’ordre croissant),
ainsi que P , mais on ne calculera pas P −1.

Dans la suite de l’exercice, on s’intéresse au sous-ensemble FA suivant de M3(R) :

FA = {M ∈ M3(R), AM = M}.

On rappelle que M3(R) est l’ensemble des matrices de taille 3 × 3 à coefficients réels.

5. On note O3 la matrice nulle de M3(R) et I3 la matrice identité.
a. La matrice O3 appartient-elle à FA ?
b. La matrice I3 appartient-elle à FA ?

6. Soit M ∈ M3(R). On pose N = P −1M , où P −1 est l’inverse de la matrice P déterminée
précédemment. Démontrer l’équivalence :

AM = M ⇐⇒ DN = N.

7. On pose N =

a b c
d e f
g h i

, où a, b, c, d, e, f , g, h et i sont des nombres réels.

a. Calculer le produit DN .

b. On suppose que la matrice N vérifie l’égalité DN = N . Montrer que N =

0 0 0
0 0 0
g h i

.

c. La réciproque de la propriété démontrée à la question précédente est-elle vraie ?
8. En déduire les matrices M appartenant à FA.



Solution.

1. Commençons par remarquer que le vecteur U est non nul. De plus,

AU =

−1 0 1
0 −1 0

−2 1 2


1

2
0

 =

−1
−2
0

 = −U

donc U est un vecteur propre de A associé à la valeur propre −1 .

2. Soit (x, y, z) ∈ R3 et X =

x
y
z

. Alors,

AX =

0
0
0

 ⇐⇒


−x + z = 0
−y = 0
−2x + y + 2z = 0

⇐⇒


z = x

y = 0
−2x + 0 + 2x = 0

⇐⇒

z = x

y = 0

Ainsi, en prenant x = 1, V =

1
0
1

 est un vecteur propre de A associé à la valeur propre 0

(puisque V est non nul).

3. Soit α ∈ R et W =

1
0
α

. Alors,

AW = W ⇐⇒


−1 + α = 1
0 = 0
−2 + 2α = α

⇐⇒ α = 2.

Ainsi, comme W est non nul, W =

1
0
2

 est un vecteur propre de A associé à la valeur propre 1 .

4. La matrice A est une matrice carrée d’ordre 3 admettant 3 valeurs propres distinctes :
−1, 0 et 1 donc, par théorème, A est diagonalisable.
Ainsi, il existe une matrice diagonale D et une matrice inversible P telle que A = PDP −1 .
De plus, les éléments diagonaux de D sont les valeurs propres de A et les colonnes de P
sont les coordonnées de vecteurs propres associés donc, en ordonnant les valeurs propres
par ordre croissant sur la diagonale de D, on obtient

D =

−1 0 0
0 0 0
0 0 1

 et P =

1 1 1
2 0 0
0 1 2


.

5. a. Étant donné que AO3 = O3, O3 ∈ FA .

b. Étant donné que AI3 = A ̸= I3, I3 /∈ FA .



6. Rappelons que A = PDP −1. Dès lors, par associativité du produit matriciel,

AM = M ⇐⇒ (PDP −1)M = PD(P −1M) = M ⇐⇒ PDN = M

⇐⇒ P −1(PDN) = P −1M ⇐⇒ (P −1P )DN = N

soit finalement, comme P −1P = I3,

AM = M ⇐⇒ DN = N .

7. a. Le calcul donne

DN =

−1 0 0
0 0 0
0 0 1


a b c

d e f
g h i

 =

−a −b −c
0 0 0
g h i


donc

DN =

−a −b −c
0 0 0
g h i

 .

b. Comme DN = N , −a −b −c
0 0 0
g h i

 =

a b c
d e f
g h i


donc 

−a = a

−b = b

−c = c

0 = d

0 = e

0 = f

g = g

h = h

i = i

c’est-à-dire



2a = 0
2b = 0
2c = 0
d = 0
e = 0
f = 0

et donc



a = 0
b = 0
c = 0
d = 0
e = 0
f = 0

.

On conclut donc que

N =

0 0 0
0 0 0
g h i

 .

c. Réciproquement, supposons que N =

0 0 0
0 0 0
g h i

. Alors, en particulier, a = b = c = 0

donc, d’après le calcul de la question (a), DN =

0 0 0
0 0 0
g h i

 i.e. DN = N . Ainsi,

la réciproque est vraie .
8. Ainsi, d’après les deux questions précédentes, pour toute matrice N ∈ M3(R), DN = N

si et seulement s’il existe des réels g, h et i tels que

0 0 0
0 0 0
g h i

. Or, d’après la question



6., M ∈ FA si et seulement si (P −1M)D = P −1M . Ainsi, on en déduit que M ∈ FA si et

seulement s’il existe des réels g, h et i tels que P −1M =

0 0 0
0 0 0
g h i

 i.e. M = P

0 0 0
0 0 0
g h i

.

Or, pour tous réels g, h et i,

P

0 0 0
0 0 0
g h i

 =

1 1 1
2 0 0
0 1 2


0 0 0

0 0 0
g h i

 =

 g h i
0 0 0
2g 2h 2i

 .

Ainsi,

FA =


 g h i

0 0 0
2g 2h 2i


∣∣∣∣∣∣∣ (g, h, i) ∈ R3

 .

Remarque. On peut constater que

FA =

g

1 0 0
0 0 0
2 0 0

+ h

0 1 0
0 0 0
0 2 0

+ i

0 0 1
0 0 0
0 0 2


∣∣∣∣∣∣∣ (g, h, i) ∈ R3


donc, en posant M1 =

1 0 0
0 0 0
2 0 0

, M2 =

0 1 0
0 0 0
0 2 0

 et M3 =

0 0 1
0 0 0
0 0 2

,

FA = {gM1 + hM2 + iM3 | (g, h, i) ∈ R3} = Vect(M1, M2, M3)

ce qui prouve que FA est le sous-espace vectoriel de M3(R) engendré par M1, M2, M3.

Analyse (2023)
Dans cet exercice, on considère la fonction f : [1 ; +∞[ → R définie, pour tout réel x ⩾ 1,

par la relation :
f(x) =

∫ 2x

x

e−t

t
dt.

1. On rappelle que la fonction exponentielle x 7−→ ex est croissante sur R et positive.
Pour tout x ⩾ 0, montrer alors que l’on a les deux inégalités :

0 ⩽ e−x − e−2x et e−x − e−2x ⩽ e−x.

Ces inégalités pourront être utilisées dans la suite de l’exercice.
2. Donner le signe de la fonction f sur l’intervalle [1 ; +∞[.

On admet que la fonction u : t 7−→ e−t

t
est continue sur [1 ; +∞[, donc admet une

primitive sur [1 ; +∞[. On note U une primitive de u dans la suite de l’exercice.
On ne cherchera pas à calculer U .

3. Notons g la fonction définie sur [1 ; +∞[ par la relation g(x) = U(2x).
Montrer que g est dérivable sur [1 ; +∞[ et prouver que, pour tout x ⩾ 1, on a :

g′(x) = e−2x

x
.



4. Montrer que f est dérivable et que l’on a, pour tout x ⩾ 1,

f ′(x) = e−2x − e−x

x
.

5. Donner le sens de variation de la fonction f .
On pourra utiliser l’une des deux inégalités de la question 1.

Solution.

1. Soit x ⩾ 0. Alors, x + x ⩾ 0 + x c’est-à-dire 2x ⩾ x donc, comme −1 < 0, −2x ⩽ −x.
Par croissance de la fonction exp sur R, on en déduit que e−2x ⩽ e−x c’est-à-dire
0 ⩽ e−x − e−2x .

Comme exp est positive sur R, e−2x ⩾ 0 donc −e−2x ⩽ 0 et, ainsi, e−x − e−2x ⩽ e−x .

2. Soit x ∈ [1 ; +∞[. Alors, pour tout t ∈ [x ; 2x], e−t ⩾ 0 et t > 0 donc e−t

t
⩾ 0. De plus,

comme x > 0, 2x > x donc, par positivité de l’intégrale, f(x) ⩾ 0 .
3. Par définition, la fonction U est dérivable sur [1 ; +∞] et U ′ = u. De plus, x 7−→ 2x est

dérivable sur [1 ; +∞] et, pour tout x ∈ [1 ; +∞[, 2x ∈ [1 ; +∞[ donc, par composition, g
est dérivable sur [1 ; +∞[ et, pour tout réel x ⩾ 1,

g′(x) = 2U ′(2x) = 2u(2x) = 2 × e−2x

2x

c’est-à-dire

g′(x) = e−2x

x
.

4. Comme U est une primitive de u sur [1 ; +∞[, pour tout réel x ⩾ 1,

f(x) =
∫ 2x

x
u(t) dt = U(2x) − U(x) = g(x) − U(x).

Or, les deux fonctions U et g sont dérivables sur [1 ; +∞[ donc, par différence, f est
dérivable sur [1 ; +∞[ et, pour tout réel x ⩾ 1,

f ′(x) = g′(x) − U ′(x) = e−2x

x
− u(x) = e−2x

x
− e−x

x

c’est-à-dire

f ′(x) = e−2x − e−x

x
.

5. Soit x ∈ [1 ; +∞[. D’après le résultat de la question 1., e−x −e−2x ⩾ 0 donc e−2x −e−x ⩽ 0

et, comme x > 0, e−2x − e−x

x
⩽ 0. Ainsi, pour tout x ∈ [1 ; +∞[, f ′(x) ⩽ 0 donc f est

décroissante sur [1 ; +∞[.



Analyse (2024)
Partie A. Étude d’une fonction

Soit f la fonction définie sur ]0 ; +∞[ par f(x) = x + ln(x).
1. Calculer f(1).
2. On admet que f est dérivable sur ]0 ; +∞[.

a. Calculer f ′(x) pour tout x > 0 et donner son signe.
b. En déduire le sens de variation de f sur ]0 ; +∞[.

3. a. Déterminer les limites de f en 0 et en +∞.
b. En déduire que f est une bijection de ]0 ; +∞[ vers un intervalle que l’on précisera.

4. a. Soit n ∈ N∗ un entier strictement positif. Justifier que l’équation x+ln(x) = n possède
une unique solution dans l’intervalle ]0 ; +∞[, que l’on note un.

b. Donner u1.

Dans la suite de l’exercice, on ne cherchera pas à déterminer explicitement un. On notera de
plus que, pour tout n ∈ N∗, un vérifie l’égalité f(un) = n, soit

un + ln(un) = n (∗).

Partie B. Étude de la suite (un)
1. Comparer f(un) et f(un+1), pour tout n ∈ N∗. En déduire le sens de variation de la suite

(un).
2. On admet que, pour tout x > 0, on a l’inégalité ln(x) ⩽ x.

a. En utilisant la relation (∗), montrer que pour tout n ∈ N∗, un ⩾ n
2 .

b. En déduire la limite de la suite (un).

Solution.

Partie A. Étude d’une fonction
1. f(1) = 1 ln(1) = 1 + 0 = 1 d’où f(1) = 1 .
2. On admet que f est dérivable sur ]0 ; +∞[.

a. Pour tout x > 0, f ′(x) = 1 + 1
x

d’où pour tout x > 0, f ′(x) = 1 + 1
x

.
Par stricte positivité de la fonction inverse sur ]0 ; +∞[ et somme de nombres stricte-
ment positifs, on en déduit que pour tout x > 0, f ′(x) > 0 .

b. Comme f ′(x) > 0 pour tout x > 0, la fonction f est strictement croissante sur ]0 ; +∞[ .

3. a. Étant donné que lim
x→0

ln(x) = −∞ et lim
x→+∞

ln(x) = +∞, par somme de limites,

lim
x→0

f(x) = −∞ et lim
x→+∞

f(x) = +∞ .

b. Comme la fonction f est continue (car dérivable) et strictement croissante sur
]0 ; +∞[, par le théorème de la bijection, f réalise une bijection de ]0 ; +∞[ vers R

car f(]0 ; +∞[) =
]
lim
x→0

f(x) ; lim
x→+∞

f(x)
[

= R.

4. a. Soit n ∈ N∗. Comme n ∈ R et comme f réalise une bijection de ]0 ; +∞[ vers R, n
admet un unique antécédent par f dans ]0 ; +∞[.
Autrement dit, l’équation x + ln(x) = n admet une unique solution dans ]0 ; +∞[ .



b. Comme f(1) = 1 d’après A.1, le réel 1 est solution de (∗) dans ]0 ; +∞[ donc, par
l’unicité prouvée en A.4.(a), 1 est l’unique solution de x + ln(x) = 1 d’où u1 = 1 .

Partie B. Étude de la suite (un)
1. Soit n ∈ N∗.

Par définition même de un et un+1, on a f(un) = n et f(un+1) = n + 1 si bien que
f(un) < f(un+1) .

Les nombres un et un+1 sont deux réels appartenant à ]0 ; +∞[ tels que f(un) < f(un+1)
donc, par stricte croissance de f sur ]0 ; +∞[, un < un+1.
Ainsi, la suite (un) est croissante .

2. a. Soit n ∈ N∗.
Par définition même de un, on sait que un > 0 et un + ln(un) = n.
Grâce à l’inégalité admise dans l’énoncé, on en déduit que ln(un) ⩽ un donc un +
ln(un) ⩽ un + un et ainsi n ⩽ 2un c’est-à-dire n

2 ⩽ un.
Ainsi, pour tout n ∈ N∗, un ⩾ n

2 .

b. Comme pour tout n ∈ N∗, un ⩾ n
2 et lim

n→+∞
n
2 = +∞, par le théorème de comparaison,

on a également : lim
n→+∞

un = +∞ .

Probabilités (2020)
Si l’on dispose de k jetons que l’on place dans n urnes, combien d’urnes restent vides ? Plutôt

que de traiter cette question dans un cas général, on s’intéressera ici au cas où l’on dispose de
cinq jetons, dans deux situations : configuration à deux urnes (première partie) puis à trois
urnes (parties suivantes). La partie 1. est indépendante des suivantes.

1) Cas simplifié où il n’y a que deux urnes
On dispose de cinq jetons numérotés 1, 2, 3, 4, 5, et de deux urnes a et b.
Chaque jeton est placé dans l’une des deux urnes, aléatoirement et sans tenir compte du

placement effectué pour les autres jetons. Ainsi, le jeton 1 a une chance sur deux d’être dans
l’urne a, et une chance sur deux d’être dans l’urne b. Il en est de même pour chacun des quatre
autre jetons. On appelle X la variable aléatoire égale au nombre de jetons dans l’urne a.

1. Reconnaître la loi de X.
2. Exprimer, à l’aide de la variable aléatoire réelle X, l’évènement « L’urne a est vide ».

Faire de même avec l’évènement « L’urne b est vide ».
3. En déduire la probabilité de l’évènement « L’un des deux urnes est vide ».

On aborde maintenant le cas général de l’exercice : on dispose toujours de cinq jetons
numérotés 1, 2, 3, 4, 5, et de trois urnes appelées a, b et c.

De même que précédemment, chaque jeton est placé aléatoirement dans l’une des trois urnes,
et sans tenir compte du placement effectué pour les autres jetons. Ainsi, chaque jeton a une
chance sur trois d’être dans l’urne a, un chance sur trois d’être dans l’urne b, et une chance sur
trois d’être dans l’urne c.



2) Probabilité qu’une urne donnée soit vide
1. Soit i ∈ J1, 5K et Ei l’évènement « Le jeton i n’est pas dans l’urne a ». Donner la

probabilité de l’évènement contraire Ei puis celle de l’évènement Ei.
2. Soit Va l’évènement « L’urne a est vide ». Exprimer Va en fonction des fonctions E1, E2,

E3, E4 et E5.

3. En déduire que P (Va) = 25

35 .
Par symétrie du problème, on pourra admette que la probabilité P (Vb) que b soit vide et
que la probabilité P (Vc) que c soit vide ont aussi cette même valeur.

On note désormais N la variable aléatoire égale au nombre d’urnes vides. L’objectif est de
donner la loi de N .

3) Calcul de P (N = 2) et de P (N = 3)
1. Que signifie, en français, l’évènement (N = 3) ? Donner sa probabilité. On rappelle que

chaque jeton doit être contenu dans une urne.
2. Que signifie, en français, l’évènement Va ∩ Vb ∩ Vc ? Calculer P (Va ∩ Vb ∩ Vc).

On admettra que P (Va ∩ Vb ∩ Vc) et P (Va ∩ Vb ∩ Vc) sont aussi égales à cette valeur.
3. Calculer la probabilité de l’évènement (N = 2). On exprimera dans un premier temps

l’évènement (N = 2) en fonction d’évènements tels que Va ∩ Vb ∩ Vc, et d’autres du même
genre.

4) Espérance de N

On va maintenant calculer l’espérance de N .
1. On note Za la variable aléatoire qui vaut 1 si l’évènement Va est réalisé, et 0 s’il ne l’est

pas. On a de même les notations Zb (Zb vaut 1 si Vb est réalisé, et 0 sinon) et Zc (Zc vaut
1 si l’urne c est vide, et 0 sinon) . Reconnaître la loi et donner l’espérance de ces trois
variables aléatoires Za, Zb et Zc.

2. On note toujours N le nombre d’urnes vides. Exprimer N en fonction de Za, Zb et Zc.
3. Calculer alors l’espérance de N .

5) Loi de N

1. Montrer que P (N = 1) + 2P (N = 2) = 25

34 .

2. En déduire la valeur de P (N = 1).
3. Donner enfin le loi de la variable aléatoire N . On répondra sous la forme d’un tableau,

aucune justification n’est attendue.

Solution.

1) Cas simplifié où il n’y a que deux urnes
1. Si on note, pour tout i ∈ J1, 5K, Xi la variable aléatoire égale à 1 si on place le jeton

i dans l’urne a et 0 sinon alors Xi suit une loi de Bernoulli de paramètre 1
2 . De plus,

les variables aléatoires X1, X2, X3, X4 et X5 sont indépendantes et, par définition,
X = X1 + X2 + X3 + X4 + X5 donc X suit une loi binomiale B(5, 1

2) .



2. L’évènement « L’urne a est vide » est l’évènement {X = 0} et l’évènement « L’urne b est
vide » est l’évènement {X = 5}.

3. L’évènement « L’une des deux urnes est vide » est l’évènement {X = 0} ∪ {X = 5} et
cette union est disjointe donc la probabilité de cet évènement est

P (X = 0) + P (X = 5) =
(

5
0

)(1
2

)0 (
1 − 1

2

)5−0
+
(

5
5

)(1
2

)5 (
1 − 1

2

)5−5

= 1
25 + 1

25 = 2
25 = 1

24

soit P (X = 0) + P (X = 5) = 1
16 .

2) Probabilité qu’une urne donnée soit vide

1. Par hypothèse, P (Ei) = 1
3 donc P (Ei) = 1 − P (Ei) = 2

3.
2. Va est réalisé si aucun jeton n’est dans l’urne a donc Va = E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5.
3. Par hypothèse, les évènements Ei sont deux à deux indépendants dons

P (Va) = P (E1)P (E2)P (E3)P (E4)P (E5) =
(2

3

)5

soit P (Va) = 25

35 .

3) Calcul de P (N = 2) et de P (N = 3)
1. (N = 3) signifie que les 3 urnes sont vides ce qui est un évènement impossible puisque

chaque jeton est placé dans une urne. Ainsi, P (N = 3) = 0 .
2. L’évènement Va∩Vb∩Vc signifie que les urnes b et c sont vides mais pas l’urne a, c’est-à-dire

que tous les jetons ont été placés dans l’urne a. On a donc Va∩Vb∩Vc = E1∩E2∩E3∩E4∩E5

et, par indépendance, on en déduit que P (Va ∩ Vb ∩ Vc) =
(1

3

)5
= 1

35 .

3. (N = 2) signifie que deux des trois urnes sont vides donc

(N = 2) = (Va ∩ Vb ∩ Vc)) ∪ (Va ∩ Vb ∩ Vc) ∪ (Va ∩ Vb ∩ Vc).

Il s’agit d’une union de trois évènements incompatibles donc P (N = 2) = 3 × 1
35 = 1

34

c’est-à-dire P (N = 2) = 1
81 .

4) Espérance de N

1. Par définition, Za, Zb et Zc suivent des lois de Bernoulli de paramètres P (Va) = P (Vb) =

P (Vc) = 25

35 . On a donc E(Za) = E(Zb) = E(Zc) = 25

35 .
2. Par définition, N = Za + Zb + Zc.

3. Par linéarité de l’espérance, on en déduit que E(N) = E(Za)+E(Zb)+E(Zc) = 3× 25

35 =
25

34 c’est-à-dire E(N) = 32
81.



5) Loi de N

1. Par définition, l’espérance de N est E(N) =
3∑

i=0
iP (N = i). Or, pour i = 0, iP (N = i) = 0

et, pour i = 3, iP (N = i) = 0 car P (N = 3) = 0. Ainsi, E(N) = P (N = 1) + 2P (N = 2)

et donc, par le résultat de la partie précédente, P (N = 1) + 2P (N = 2) = 25

34 = 32
81.

2. On en déduit que P (N = 1) = 32
81 − 2P (N = 2) = 32

81 − 2 × 1
81 = 30

81 c’est-à-dire

P (N = 1) = 10
27 .

3. En tenant compte du fait que
3∑

i=0
P (N = i) = 1, on aboutit à la loi suivante :

i 0 1 2 3

P (N = i)
50
81

10
27

1
81 0

Probabilités (2024)
Rappels
• On rappelle que la fonction arctangente est dérivable sur R, et que pour tout x ∈ R,

arctan′(x) = 1
1 + x2 .

• On rappelle également les valeurs remarquables suivantes :

arctan(0) = 0 et arctan(1) = π

4 ,

ainsi que la limite :
lim

x→+∞
arctan(x) = π

2 .

Remarque : On admettra que toutes les intégrales généralisées rencontrées dans cet exercice
sont convergentes, sauf à la question 4. En particulier, on ne demande pas de justifier leur
convergence.

1. a. Soit A > 0. Calculer l’intégrale
∫ A

0

1
1 + t2 dt.

b. En déduire la valeur de l’intégrale
∫ +∞

0

1
1 + t2 dt.

c. Soit f la fonction définie sur R par

f(t) =


2
π

1
1 + t2 si t ⩾ 0

0 sinon
.

Montrer que f est une densité de probabilité.

Dans la suite de l’exercice, on considère une variable aléatoire X admettant la fonction f
pour densité.



2. Calculer P (X ⩾ 1) et P (X < −2).
3. Soit FX la fonction de répartition de X.

a. Donner sans calcul la valeur de FX(a) pour tout a < 0.
b. Montrer que pour tout a ⩾ 0, on peut écrire

FX(a) = k arctan(a),

où k est un réel que l’on déterminera.

4. a. Soit A > 0. Calculer l’intégrale
∫ A

0

t

1 + t2 dt. On pourra utiliser le changement de
variable u = 1 + t2.

b. L’intégrale
∫ +∞

0
tf(t)dt est-elle convergente ?

c. Que peut-on en déduire concernant la variable aléatoire X ?

5. On considère la variable aléatoire Y = 1
X

, et on note FY sa fonction de répartition.

a. Soit a > 0. Justifier que P (Y ⩽ a) = P
(

X ⩾
1
a

)
, puis que FY (a) = 1 − FX

(1
a

)
.

b. En déduire que pour tout a > 0, FY (a) = FX(a). On pourra utiliser l’égalité suivante,
vraie pour tout a > 0,

arctan(a) + arctan
(1

a

)
= π

2 .

c. On admet que l’égalité FY (a) = FX(a) est encore vraie pour a ⩽ 0. Que dire de la loi
de Y ?

Solution.

1. a. Comme arctan est une primitive sur R de t 7−→ 1
1 + t2 ,

∫ A

0

1
1 + t2 dt = [arctan(t)]A0 = arctan(A) − arctan(0)

donc, comme arctan(0) = 0, ∫ A

0

1
1 + t2 dt = arctan(A) .

b. On en déduit que

lim
A→+∞

∫ A

0

1
1 + t2 dt = lim

A→+∞
arctan(A) = π

2
donc ∫ +∞

0

1
1 + t2 dt = π

2 .

c. La fonction f est continue sur [0 ; +∞[ car c’est une fonction rationnelle (quotient de
polynômes) dont le dénominateur ne s’annule pas. De plus, f est nulle sur ]−∞ ; 0[
donc f est continue par morceaux sur R. De plus, pour tout réel t < 0, f(t) = 0
et, pour tout réel t ⩾ 0, f(t) = 2

π

1
1 + t2 ⩾ 0 donc f est positive sur R. Enfin, par

linéarité de l’intégrale,∫ +∞

−∞
f(t)dt =

∫ +∞

0

2
π

1
1 + t2 dt = 2

π

∫ +∞

0

1
1 + t2 dt = 2

π
× π

2 = 1.

Ainsi, on conclut que f est une densité de probabilité .



2. Par définition,

P (X ⩾ 1) = 1 − P (X < 1) = 1 −
∫ 1

0

2
π

1
1 + t2 dt = 1 −

[ 2
π

arctan(t)
]1

0

= 1 − 2
π

(arctan(1) − arctan(0)) = 1 − 2
π

× π

4

donc P (X ⩾ 1) = 1
2 .

Comme f est nulle sur ]−∞ ; 0[, P (X < −2) = 0 .
3. a. Par définition, pour tout réel a, FX(a) = P (X ⩽ a) donc, comme f est nulle sur

]−∞ ; 0[, pour tout a < 0, FX(a) = 0 .
b. Soit un réel a ⩾ 0. Alors, par linéarité de l’intégrale et d’après la question 1.a.,

FX(a) = P (X ⩽ a) =
∫ a

0

2
π

1
1 + t2 dt = 2

π

∫ a

0

1
1 + t2 dt = 2

π
arctan(a).

Ainsi, pour tout réel a ⩾ 0, FX(a) = 2
π

arctan(a) .

4. a. Remarque : le changement de variable proposé par l’énoncé est tout à fait inutile. En
effet,∫ A

0

t

1 + t2 dt = 1
2

∫ A

0

2t

1 + t2 dt =
1+t2>0

1
2
[
ln(1 + t2)

]A
0

= 1
2
[
ln(1 + A2) − ln(1)

]

soit
∫ A

0

t

1 + t2 dt = 1
2 ln(1 + A2) .

Si on souhaite utiliser le changement de variable donné par l’énoncé, on pose u = 1+t2

de sorte que du = 2tdt. De plus, si t = 0, u = 1 et si t = A alors u = 1 + A2 donc∫ A

0

t

1 + t2 dt =
∫ A

0

1
1 + t2 × tdt =

∫ 1+A2

1

1
u

× 1
2du =

[1
2 ln(u)

]1+A2

1
= 1

2 ln(1 + A2).

b. On en déduit que, pour tout A ⩾ 0,∫ A

0
tf(t)dt =

∫ A

0

2
π

t

1 + t2 dt = 2
π

∫ A

0

t

1 + t2 dt = 1
π

ln(1 + A2).

Or, lim
A→+∞

1 + A2 = +∞ et lim
x→+∞

ln(x) = +∞ donc, par composition de limites,

lim
A→+∞

ln(1 + A2) = +∞. Par suite, lim
A→+∞

∫ A

0
tf(t)dt = +∞ donc on conclut que

l’intégrale
∫ +∞

0
tf(t)dt est divergente .

Remarque. On pouvait aussi utiliser le fait que, au voisinage de +∞, tf(t) ∼ 2
π

t

t2 ∼ 2
π

1
t
.

Or, l’intégrale de Riemann
∫ +∞

0

1
t
dt est divergente donc, par le théorème sur les

fonctions équivalentes,
∫ +∞

0
tf(t)dt est divergente .

c. Comme f est nulle sur ]−∞ ; 0[, X admet une espérance si et seulement si
∫ +∞

0
tf(t)dt

converge. On déduit donc de la question précédente que X n’admet pas d’espérance .



5. a. Par décroissance de la fonction inverse sur ]0 ; +∞[, pour tout réel a > 0, X ⩾
1
a

si et

seulement si 1
X

⩽ a i.e si et seulement si Y ⩽ a. Ainsi, {Y ⩽ a} =
{

X ⩾
1
a

}
donc

P (Y ⩽ a) = P
(

X ⩾
1
a

)
.

Ainsi, pour tout réel a > 0, FY (a) = P
(

X ⩾
1
a

)
= 1 − P

(
X <

1
a

)
et, comme X est

une variable aléatoire à densité, FY (a) = 1−P
(

X ⩽
1
a

)
. Ainsi, FY (a) = 1 − FX

(1
a

)
.

b. Soit a > 0. On déduit des questions 3.b. et 5.a. que

FY (a) = 1 − 2
π

arctan
(1

a

)
.

Or, arctan(a) + arctan
(1

a

)
= π

2 donc arctan
(1

a

)
= π

2 − arctan(a). Ainsi,

FY (a) = 1 − 2
π

(
π

2 − arctan(a)
)

= 1 − 1 + 2
π

arctan(a) = 2
π

arctan(a) = FX(a).

Ainsi, pour tout réel a > 0, FY (a) = FX(a) .
c. Pour tout réel a, FY (a) = FX(a) donc X et Y ont la même fonction de répartition et

ainsi X et Y ont la même loi .


