¢ Révisions — Avril 2025 — Corrigés

Algebre (2020)

Si a est un nombre réel, on note M, = (

cos(a) —sin(a)

sin(a)  cos(a) ) On note f, 'endomorphisme de

R? canoniquement associé a la matrice M,.
Par ailleurs, on rappelle que (z ;) est un élément de R?, la nombre réel ||(z;y)|| = V22 + y2
est la norme du vecteur (z;y).

1.

Exemples.
a. Calculer M, Mz et M. (Autrement dit, calculer M, dans les cas a =0, a = § et
a=m.)
V2o V2
b. On considere la matrice A = <\3§ £22 > Donner un réel a € [0;27] tel que A = M,.
2 2
. Premieres propriétés. Soit a € R.

a. Calculer le déterminant de M,. L’application f, est-elle bijective 7 Que dire du noyau
de f,?
b. Caleuler f,((130)) et £,((0:1)). En déduire | £,((150))]] et [ £u((0:1)].

c. Soit (z;y) € R%. Prouver que le vecteur f,((z;y)) et le vecteur (z;y) ont la méme
norme.
d. Soit A € R une valeur propre de f, et u € R? un vecteur propre associé.

Montrer que || fo(u)|| = || X ||u||. En déduire que A vaut soit 1, soit une autre valeur
réelle que l'on précisera.

. On s’intéresse aux valeurs propres complexes de M,,.

a. Fixons a € R. Trouver des coefficients « et g réels, que 'on exprimera en fonction
de a, et vérifiant, pour tout nombre complexe z :

(z — ei“) (z — e_i‘l) =22 —2az+ 8.

b. Soit A € C. Montrer que le déterminant de M, — Al vaut (A — %) (A —e™%).
c. Pour quelles valeurs de A, la matrice M, — Al est-elle non inversible 7

d. Expliquer pourquoi les valeurs propres (complexes) de M, sont e et e

. Application. Existe-t-il un réel a et une base de R? dans laquelle la matrice de f, est

0 -4

Sont-elles de la forme €'® et e™1¢ ?

2
la matrice o ) ? Indication : chercher d’abord les valeurs propres de cette matrice.

Si a et b sont deux nombres réels, montrer que M, ., = M, M,.

6. Soit n un entier naturel supérieur ou égal a 2. Montrer qu’il existe un réel a € 0; 27| tel

que M} = I,. On exprimera un tel réel a en fonction de n et de 7.



Solution.
cos(0) —sin(0)

1. a. Par définition, M, = sin(0)  cos(0)

cos(%)
sin(%)
c’est-a-dire .

M=
2

) c’est-a-dire

10 s s 1
_ (O 1) Cestandire [Mo = T M;

— sin(m)
cos(m)

-(v )

= g Ainsi, a = § convient donc

M,) #0, f, est

en déduit que

b. On cherche un réel a tel que cos(a) = g et sin(a)

A= M=)
2. a. det(M,) = cos?*(a) — (—sin?(a)) = cos?(a) + sin?(a) = 1. Comme det(

bijective. Elle est en particulier injective donc |ker f, = {(0;0)} |

b. f,((1;0)) = (cos(a);sin(a)) et f.((0;1)) = (—sin(a);cos(a)). On
1£u((1 0D = eos2(a) +sin*(a) = VI = 1 et [|£a((0: 1) ]| = y/sin’(a) + cos?(a) =
Vi=1.

c. Par définition,

fa((x;y)) = (cos(a)z — sin(a)y ;sin(a)x + cos(a)y)

donc

I fa(2)]| = \/ (cos(a)z — sin(a)y)® + (sin(a)z + cos(a)y)?

— Jeolae
J

(cos?(a

:1/x2—|—y

) + sin?(a)) (22 + 42)

— 2cos(a) sin(a)ry + sin?(a)y? + sin?(a)z? + 2sin(a) cos(a)zy + cos?(a)y?

Or, [[(z;y)]| = va* +y? done | | fa((z s y) | = I(z;9)ll }

. Par définition, f,(u) = Au donc | || fo(u)|| = ||Au|| = |A| X ||u|| | Or, d’apres la question
précédente, || f,(u)|| = ||u| donc ||u|| = |A| x ||u||. De plus, u # 0 donc ||u|| # 0 et
ainsi, en divisant par ||u/|, on conclut que |[A| = 1 donc ’ A=1loul=-1 ‘

. Soit z € C. Alors,

(Z o ela) (Z o e—la) — ZQ —zela _glay 4 plagTia 2,2 - (ela + e—la) 2+ elO

Or, e =1 et, par le formule d’Euler, € + e™* = 2 cos(a) donc
(z - ei“) (z - e_i“> = 2% — 2cos(a)z + 1.
Ainsi, |a = cos(a) et f=1|.

. Par définition,

A —sin(a)

cos(a) —

cos(a) —

sin(a) A
= cos(a) — 2cos(a)A + \* + sin?(a)
=\ —2cos(a)\ + 1

det(M, — \I5) = = (cos(a) — \)? + sin®*(a)

donc, d’apres la question précédente, [det(M, — A\o) = (A —e'®) (A —e™19) |




c. La matrice M, — Al5 n’est pas inversible si et seulement si son déterminant est nul.
Or,

det(M, — AL) =04= (A—e") (A= ™) =0«=A—e"=0oul—e =0

A A=¢c¢%oul=¢"

Ainsi, M, — \I, n’est pas inversible si et seulement si A\ = e'® ou \ = e,

d. Par définition, A est valeur propre de M, si et seulement si M, — \I, n’est pas injective,
comme il s’agit d’une matrice carré, si et seulement si M, — Al n’est pas inversible.
Ainsi, par la question précédente, les valeurs propres complexes de M, sont e et e~1%,

2 . .
. Posons N = (8 _4) Comme N est triangulaire, ses valeurs propres sont ses termes
diagonaux, c’est-a~dire 5 et —4. Or, |5| = 5 et, pour tout réel a, |¢| = |e7*| = 1 donc,

quelle que soit la valeur de a, 5 n’est pas valeur propre de M, et donc 5 n’est pas valeur
propre de f,. Ainsi, il n’existe pas de réel a et de base B de R? tels que la matrice de f,
dans B est N.

. Par les formules d’addition,

(
sin(a)  cos(a )
_ (cos(a) cos(b) — sin(a) sin(b) — cos(a) sin(b) — sin(a) cos(b ))
sin(a) cos(b) 4 cos(a)sin(b) — sin(a) sin(b) + cos(a) cos(b)

)
— (sin(a) cos(b) + sin(b) cos( )))
) co n(b)

_ b) — sin(a) sin(b

sin(a) cos(b) + sin(b) cos(a cos(a) cos(b) — sin(a) si
_ [cos(a+0b) —sin(a + b)
n (sin(a +0b) cos(a+b)

donc | M, My, = M, ‘

. Soit @ € R. Montrons par récurrence que, pour tout n € N, M = M,,. Comme M? = I,
et My, = My = I, I'égalité est vraie au rang n = 0.
Soit k € N. Supposons I’égalité vraie au rang n = k. Alors, d’apres la question précédente,

ME = MFM, = MMy = Myara = Mg

donc I’égalité est vraie au rang n = k + 1.
Ainsi, par le principe de récurrence, pour tout n € N, M = M,,.
Des lors, comme cos et sin sont 2r-périodiques, Ms, = My = Iy donc M3, = M2« .,

My, = Is. Comme € ]0; 27|, on conclut que |a = 27” convient |.




Algebre (2024)

On considere la matrice

-1 0 1
A=[0 -1 0
-2 1 2
1
1. On considere le vecteur U = | 2 |. Vérifier que U est un vecteur propre de A, associé a
0

une valeur propre que l'on précisera.

2. Déterminer un vecteur propre V de A associé a la valeur propre 0, de premiere coordonnée

égale a 1.
1
3. Déterminer le réel a tel que le vecteur W = [ 0 | soit un vecteur propre de A, associé a
a

la valeur propre 1.

4. Justifier qu’il existe une matrice diagonale D et une matrice inversible P telles que
A= PDP~!. On précisera D, (on écrira ses coefficients diagonaux dans I'ordre croissant),
ainsi que P, mais on ne calculera pas P~1.

Dans la suite de 'exercice, on s’intéresse au sous-ensemble F4 suivant de .Z5(R) :
Fy={M € #3(R), AM = M}.

On rappelle que #3(R) est 'ensemble des matrices de taille 3 x 3 & coefficients réels.

5. On note O3 la matrice nulle de .#5(R) et I3 la matrice identité.
a. La matrice O3 appartient-elle a Fa 7
b. La matrice I3 appartient-elle a F4 7

6. Soit M € .#5(R). On pose N = P~'M, o P~! est I'inverse de la matrice P déterminée
précédemment. Démontrer 1’équivalence :

AM =M <= DN = N.

a b c
7. Onpose N=|d e f|,oua,b,cd, e, f, g, hetsont des nombres réels.
g h i
a. Calculer le produit DN.
000
b. On suppose que la matrice N vérifie ’égalité DN = N. Montrer que N =10 0 0
g h 1

c. La réciproque de la propriété démontrée a la question précédente est-elle vraie ?

8. En déduire les matrices M appartenant a Fjy.



Solution.

1. Commencons par remarquer que le vecteur U est non nul. De plus,

~1 0 1\ /1 ~1
AuU=[0 -1 0||2|=|-2]|=-U
—2 1 2J\o 0

donc ’ U est un vecteur propre de A associé a la valeur propre —1|.

x
2. Soit (z,y,2) € R® et X = [y |. Alors,
z
0 —x+2=0 z=2
z=x
AX =10 <= q-y=0 < qy=0 <:>{ 0
0 oty 42:=0 2 40422 =0 v=
1
Ainsi, en prenant z = 1,|V = | 0 | est un vecteur propre de A associé a la valeur propre 0
1
(puisque V' est non nul).
1
3. SoitaeRet W=10]. Alors,
a
—1+a=1
AW =W <= <0=0 <= a=2.
—24+20=«
1
Ainsi, comme W est non nul,| W = [ 0 | est un vecteur propre de A associé a la valeur propre 1|
2

4. La matrice A est une matrice carrée d’ordre 3 admettant 3 valeurs propres distinctes :
—1, 0 et 1 donc, par théoreme, A est diagonalisable.

Ainsi, |il existe une matrice diagonale D et une matrice inversible P telle que A = PDP~1|.
De plus, les éléments diagonaux de D sont les valeurs propres de A et les colonnes de P
sont les coordonnées de vecteurs propres associés donc, en ordonnant les valeurs propres
par ordre croissant sur la diagonale de D, on obtient

5. a. Etant donné que AO; = O;, .
b. Btant donné que Aly = A £ I, | Iy ¢ Fa |



6. Rappelons que A = PDP~!. Dés lors, par associativité du produit matriciel,

AM = M <= (PDP Y YM = PD(P™'M) =M <= PDN = M
<= P"Y(PDN)=P'M += (P"'P)DN =N

soit finalement, comme P~!P = I,

|AM = M < DN = N|.

7. a. Le calcul donne

-1 0 0 a b ¢ —a —b —c
DN=|0 00 d e fl=10 0 0
0 0 1)/ \g h 1 g h 1
donc
—a —b —c
DN=[0 0 0
g h i
b. Comme DN = N,
—a —-b —c a b ¢
0 0 0 |=|d e f
g h 1 g h 1
donc
—a=a
—-b=0b
20 =0 a=20
e % = 0 b=
0=d %2 =0 —0
0=c¢e c’est-a-dire €= et donc €=
0= f d= d=0
N e= =0
g=49
=0 =0
L f f
1=1

On conclut donc que

000
N=1|0 00
g h 1
0 0 0
c. Réciproquement, supposons que N = [0 0 0. Alors, en particulier, a =b=c=10
g h 1
000
donc, d’apres le calcul de la question (a), DN = [0 0 0| i.e. DN = N. Ainsi,
g h 1

la réciproque est vraie|.

8. Ainsi, d’apres les deux questions précédentes, pour toute matrice N € M3(R), DN = N
000

si et seulement s’il existe des réels g, h et 7 tels que [0 0 0. Or, d’apres la question
g h 1



6., M € Fy si et seulement si (P~*M)D = P~'M. Ainsi, on en déduit que M € Fy si et

0 00 0 00
seulement s’il existe des réels g, het i telsque P~*M = [0 0 O0|iee M =P|[0 0 0].
g h 1 g h 1
Or, pour tous réels g, h et 1,
0 00 1 1 1\ /0 0 0 g h 1
PlIO O Of=12 0 0[O0 O O]=(0 0 O
g h 1 012/ \g h i 2g 2h 21
Ainsi,
g h 1
Fy = 0 0 0 (g,h,i) € R?
2g 2h 2
Remarque. On peut constater que
100 010 0 01
Fa=<{g|l0 0 0O|+R[0 0 O|+i|0 0 O | (g,h,4) cR?
2 00 020 0 0 2
100 010 001
donc, en posant M1y =10 0 O|,My=10 0 Ofet Mg=|0 0 O,
200 020 0 0 2

Fu = {gM, + hMy +iMy | (g, h,i) € R¥} = Vect(M;, My, My)

ce qui prouve que F) est le sous-espace vectoriel de M3(R) engendré par My, My, Ms.

Analyse (2023)

Dans cet exercice, on considere la fonction f : [1;+o0o[ — R définie, pour tout réel x > 1,

par la relation :
2 eft

fla) = / ¢

t
1. On rappelle que la fonction exponentielle x — e” est croissante sur R et positive.
Pour tout = > 0, montrer alors que 'on a les deux inégalités :

0<e®—e et e — e L e,

Ces inégalités pourront étre utilisées dans la suite de [’exercice.
2. Donner le signe de la fonction f sur Uintervalle [1;+o00].
ot
On admet que la fonction u : ¢ — — est continue sur [1;+oo[, donc admet une

primitive sur [1;+oo[. On note U une primitive de u dans la suite de 'exercice.
On ne cherchera pas da calculer U.

3. Notons g la fonction définie sur [1; +oo[ par la relation g(x) = U(2z).
Montrer que g est dérivable sur [1;+o0[ et prouver que, pour tout > 1, on a :




4. Montrer que f est dérivable et que 'on a, pour tout = > 1,

5. Donner le sens de variation de la fonction f.

On pourra utiliser l'une des deux inégalités de la question 1.
Solution.

1. Soit x > 0. Alors, x +x > 0 + x c’est-a-dire 2x > x donc, comme —1 < 0, —22 < —x.
Par croissance de la fonction exp sur R, on en déduit que e 2* < e % c’est-a-dire
‘0 <e®—e 2|

Comme exp est positive sur R, e72* > 0 donc —e~2* < 0 et, ainsi, ‘e‘x —e 2 Le |

—t
2. Soit z € [1;+o0[. Alors, pour tout t € [x;2z], e* > 0 et t > 0 donc eT > 0. De plus,

comme x > 0, 2x > z donc, par positivité de U'intégrale, | f(z) = 0|

3. Par définition, la fonction U est dérivable sur [1;+oc] et U’ = u. De plus, x — 2z est
dérivable sur [1;+o0] et, pour tout = € [1;+o0[, 22 € [1;+oo[ done, par composition, g
est dérivable sur [1;+oo[ et, pour tout réel z > 1,

—2x
J(z) = 2U"(22) = 2u(2z) = 2 x 62
x
c’est-a-dire
, e—2a:
g (x) = .

4. Comme U est une primitive de u sur [1;+oc[, pour tout réel x > 1,

f) = [ ult)de = U(2r) - Uw) = gla) - Ue).

Or, les deux fonctions U et g sont dérivables sur [1;+4o00[ donc, par différence, f est
dérivable sur [1;+o0o[ et, pour tout réel z > 1,

—2x 2z T
/ — / __[]/ _ € . _ (§] . (]
Fa)=g@) - U) = —ulr) = - &
c’est-a-dire
e—2x_e T
/ —
fay="—

5. Soit z € [1;+0o[. D’apres le résultat de la question 1., e ™ —e™2* > 0 donc e ** —e™* < 0
—2z —x
e~ —e
et, comme x > 0, ——— < 0. Ainsi, pour tout z € [1;+oc[, f/(z) < 0 donc f est

T
décroissante sur [1; +o0.




Analyse (2024)

Partie A. Etude d’une fonction
Soit f la fonction définie sur |0 ; +o0o[ par f(z) = = + In(z).
1. Calculer f(1).
2. On admet que f est dérivable sur |0 ; 4o0l.

a. Calculer f'(x) pour tout z > 0 et donner son signe.

b. En déduire le sens de variation de f sur ]0;+4o0].
3. a. Déterminer les limites de f en 0 et en +oc.

b. En déduire que f est une bijection de |0; 400 vers un intervalle que I'on précisera.
4. a. Soit n € N* un entier strictement positif. Justifier que ’équation z +1In(x) = n possede

une unique solution dans l'intervalle |0 ; +00[, que 'on note u,,.

b. Donner u;.

Dans la suite de ’exercice, on ne cherchera pas a déterminer explicitement u,,. On notera de
plus que, pour tout n € N* w,, vérifie I'égalité f(u,) = n, soit
up + In(u,) =n  (x).
Partie B. Etude de la suite (u,)

1. Comparer f(uy) et f(u,41), pour tout n € N*. En déduire le sens de variation de la suite
2. On admet que, pour tout x > 0, on a l'inégalité In(z) < x.

a. En utilisant la relation (*), montrer que pour tout n € N*, u,, > .
b. En déduire la limite de la suite (u,).

Solution.

Partie A. Etude d’une fonction
1. f(1)=1ln(1)=1+0=1dou|f(1) =1}
2. On admet que f est dérivable sur |0; 4o00].

a. Pour tout z > 0, f'(z) =1+ L d’ou |pour tout = > 0, f'(z) =1+ 1|

Par stricte positivité de la fonction inverse sur |0; 400| et somme de nombres stricte-
ment positifs, on en déduit que |pour tout z > 0, f'(z) > 0|

b. Comme f'(x) > 0 pour tout = > 0, la fonction| f est strictement croissante sur |0 ; +oo[|.

m In(x) = +o0, par somme de limites,

3. a. Etant donné que limIn(z) = —oo et li
z—0 T—>-+00

lim f(z) = —oco|et | lim f(z) =400

r—0 r—400

b. Comme la fonction f est continue (car dérivable) et strictement croissante sur

]0; +00[, par le théoréme de la bijection, | f réalise une bijection de ]0; +oo[ vers R

car £(]0: +oo]) = |lim f(x); lim_f(x)| =R

4. a. Soit n € N*. Comme n € R et comme f réalise une bijection de |0;+oo[ vers R, n
admet un unique antécédent par f dans |0 ;+ool.

Autrement dit, |'équation x + In(z) = n admet une unique solution dans |0 ; +oo[|.




b. Comme f(1) = 1 d’apres A.1, le réel 1 est solution de () dans ]0;+oo[ donc, par
I'unicité prouvée en A.4.(a), 1 est I'unique solution de z + In(z) = 1 d’ou .

Partie B. Etude de la suite (u,)

1. Soit n € N*.

Par définition méme de u,, et u,.1, on a f(u,) = n et f(u,1) = n+ 1 si bien que
f(un) < fups1) |

Les nombres u, et u,,; sont deux réels appartenant a |0; +o00] tels que f(u,) < f(uni1)
donc, par stricte croissance de f sur |0 ;+oo[, u, < U1

Ainsi, |la suite (u,) est croissante |

2. a. Soit n € N*.

Par définition méme de u,, on sait que u, > 0 et u, + In(u,) = n.

Gréce a l'inégalité admise dans 1’énoncé, on en déduit que In(u,) < u, donc wu, +
In(u,) < u, + u, et ainsi n < 2u,, c’est-a-dire 2 < u,,.
2

Ainsi, | pour tout n € N*, u, > 7|
b. Comme pour tout n € N*, u,, > 5 et lirf 5 = +00, par le théoréme de comparaison,
n—-+0oo
on a également :| lim wu, = +oo|

n—-+00

Probabilités (2020)

Si l'on dispose de k jetons que 'on place dans n urnes, combien d’urnes restent vides ? Plutot
que de traiter cette question dans un cas général, on s’intéressera ici au cas ou 'on dispose de
cing jetons, dans deux situations : configuration a deux urnes (premiere partie) puis a trois
urnes (parties suivantes). La partie 1. est indépendante des suivantes.

1) Cas simplifié ou il n’y a que deux urnes

On dispose de cinq jetons numérotés 1, 2, 3, 4, 5, et de deux urnes a et b.

Chaque jeton est placé dans I'une des deux urnes, aléatoirement et sans tenir compte du
placement effectué pour les autres jetons. Ainsi, le jeton 1 a une chance sur deux d’étre dans
I'urne a, et une chance sur deux d’étre dans I'urne b. Il en est de méme pour chacun des quatre
autre jetons. On appelle X la variable aléatoire égale au nombre de jetons dans I'urne a.

1. Reconnaitre la loi de X.

2. Exprimer, a ’aide de la variable aléatoire réelle X, I’événement « L’urne a est vide ».
Faire de méme avec ’évenement « L’urne b est vide ».

3. En déduire la probabilité de I’évenement « L’un des deux urnes est vide ».

On aborde maintenant le cas général de l'exercice : on dispose toujours de cing jetons
numérotés 1, 2, 3, 4, 5, et de trois urnes appelées a, b et c.

De méme que précédemment, chaque jeton est placé aléatoirement dans I'une des trois urnes,
et sans tenir compte du placement effectué pour les autres jetons. Ainsi, chaque jeton a une
chance sur trois d’étre dans I'urne a, un chance sur trois d’étre dans I'urne b, et une chance sur
trois d’étre dans I'urne c.



2) Probabilité qu’une urne donnée soit vide

1.

2.

. En déduire que P(V,)

Soit ¢ € [1,5] et E; I'événement « Le jeton i n’est pas dans l'urne a ». Donner la
probabilité de I’événement contraire E; puis celle de I’événement E;.
Soit V, I’évenement « L'urne a est vide ». Exprimer V, en fonction des fonctions E;, Ej,
Eg, E4 et E5.

25
=35
Par symétrie du probléme, on pourra admette que la probabilité P(V}) que b soit vide et
que la probabilité P(V,) que c soit vide ont aussi cette méme valeur.

On note désormais N la variable aléatoire égale au nombre d’urnes vides. L’objectif est de
donner la loi de N.

3) Calcul de P(N =2) et de P(N = 3)

1.

2.

Que signifie, en frangais, I’évenement (N = 3) ? Donner sa probabilité. On rappelle que
chaque jeton doit étre contenu dans une urne.

Que signifie, en francais, I'événement V, NV, NV, ? Calculer P(V, NV, NV.).

On admettra que P(V, NV, NV,) et P(V, NV, NV,) sont aussi égales & cette valeur.

. Calculer la probabilité de I’événement (N = 2). On exprimera dans un premier temps

I'événement (N = 2) en fonction d’événements tels que VoNVyNV,, et d’autres du méme
genre.

4) Espérance de N

On va maintenant calculer ’espérance de N.

1.

On note Z, la variable aléatoire qui vaut 1 si I’évenement V, est réalisé, et 0 s’il ne 1'est
pas. On a de méme les notations Z, (Z;, vaut 1 si V, est réalisé, et 0 sinon) et Z. (Z,. vaut
1 si 'urne ¢ est vide, et 0 sinon) . Reconnaitre la loi et donner 1'espérance de ces trois
variables aléatoires Z,, Z;, et Z..

2. On note toujours N le nombre d'urnes vides. Exprimer N en fonction de Z,, Z, et Z..
3. Calculer alors I'espérance de N.
5) Loi de N
25
1. Montrer que P(N =1) 4+ 2P(N =2) = 3
2. En déduire la valeur de P(N =1).
3. Donner enfin le loi de la variable aléatoire N. On répondra sous la forme d’un tableau,
aucune justification n’est attendue.
Solution.

1) Cas simplifié ou il n’y a que deux urnes

1.

Si on note, pour tout ¢ € [[1,5], X; la variable aléatoire égale a 1 si on place le jeton
1 dans 'urne a et 0 sinon alors X; suit une loi de Bernoulli de parametre % De plus,
les variables aléatoires Xp, X5, X3, Xy et X5 sont indépendantes et, par définition,

X =X+ Xo+ X3+ Xy + X5 donc | X suit une loi binomiale %(5, %) )




2. L’évenement « L'urne a est vide » est 'événement {X = 0} et 'évéenement « L'urne b est
vide » est I’événement {X = 5}.

3. L’évenement « L'une des deux urnes est vide » est 'événement {X = 0} U{X =5} et
cette union est disjointe donc la probabilité de cet évenement est

roc=orerec=a=(0)(5) 0-3) "+ () () (-3)

1 1 2 1

ST T

1
soit P(X:O)+P(X:5):1—6.

2) Probabilité qu’une urne donnée soit vide

_ 1 — 2
1. Par hypothese, P(FE;) = 3 donc P(E;) =1— P(E;) = 3
2. V, est réalisé si aucun jeton n’est dans I'urne a donc V, = F4 N Ey N B3N Ey N Es.

3. Par hypothese, les événements FE; sont deux a deux indépendants dons

P(Va) = P(E1)P(E2) P(E3) P(Eq) P(Es) = @)5

25

soit | P(V,)

3) Calcul de P(N =2) et de P(N = 3)

1. (N = 3) signifie que les 3 urnes sont vides ce qui est un événement impossible puisque

chaque jeton est placé dans une urne. Ainsi, | P(N =3) =0

2. L’évenement V,NV,NV, signifie que les urnes b et ¢ sont vides mais pas I'urne a, c’est-a-dire

— 1\° 1
et, par indépendance, on en déduit que | P(V, NV, NV,) = (3) =5

3. (N = 2) signifie que deux des trois urnes sont vides donc

(N=2)=V,nV,nV)HU VNV, NV IU(V,NV,NV,).

1
Il s’agit d’une union de trois éveénements incompatibles donc P(N = 2) = 3 x ¥ = a0
1
‘est-a-dire | P(N =2) = —|.
c’est-a-dire | P( ) a1

4) Espérance de N

1. Par définition, Z,, Z;, et Z. suivent des lois de Bernoulli de parametres P(V,) = P(V,) =
925 25
P(V,) = 3 On a donc E(Z,) = E(Z,) = E(Z,) = 3
2. Par définition, N = Z, + Z, + Z,..
5
3. Par linéarité de 'espérance, on en déduit que E(N) = E(Z,)+ E(Z,) + E(Z.) = 3 x 3=
25 32

3 c’est-a-dire F(N) = 31



5) Loi de N

3
1. Par définition, 'espérance de N est E(N) = > iP(N =i). Or, pouri = 0, iP(N = i) = 0

i=0
et, pour i = 3, iP(N = i) =0 car P(N =3) =0. Ainsi, E(N) = P(N =1)+2P(N = 2)

25 32
et donc, par le résultat de la partie précédente, P(N = 1) +2P(N = 2) = Frialerl
1 32 32 1 .
2. On en déduit que P(N = 1) = — —2P(N =2) = — —2 x — = — clest-a-dire
81 81 81 81
10
P(N=1)=—|
27

3
3. En tenant compte du fait que Y ' P(N =) = 1, on aboutit & la loi suivante :

=0
1 0 1 2 3
50 10

Probabilités (2024)

Rappels
e On rappelle que la fonction arctangente est dérivable sur R, et que pour tout = € R,
arctan’(z) = ;
1+ 22

e On rappelle également les valeurs remarquables suivantes :
70
arctan(0) = 0 et arctan(l) = T

ainsi que la limite :
lim arctan(z) = i
T—+00 2°

Remarque : On admettra que toutes les intégrales généralisées rencontrées dans cet exercice
sont convergentes, sauf a la question 4. En particulier, on ne demande pas de justifier leur
convergence.

A 1]
1. a. Soit A > 0. Calculer I'intégrale / —dt.
o 1+1¢2

+o00 1

b. En déduire la valeur de I'intégrale / dt.
o 1+t
c. Soit f la fonction définie sur R par
L t>0
— si
ft) = 1+t -
0 sinon

Montrer que f est une densité de probabilité.

Dans la suite de I'exercice, on considere une variable aléatoire X admettant la fonction f
pour densité.



2. Calculer P(X > 1) et P(X < —2).
3. Soit Fx la fonction de répartition de X.
a. Donner sans calcul la valeur de Fx(a) pour tout a < 0.
b. Montrer que pour tout a > 0, on peut écrire
Fx(a) = karctan(a),
ou k est un réel que 'on déterminera.
At
4. a. Soit A > 0. Calculer I'intégrale / mdt. On pourra utiliser le changement de
0
variable u = 1 + t2.
+o00
b. L’intégrale / tf(t)dt est-elle convergente ?
0

c. Que peut-on en déduire concernant la variable aléatoire X ?

1
5. On considere la variable aléatoire Y = X et on note Fy sa fonction de répartition.

1 1
a. Soit a > 0. Justifier que P(Y <a) =P <X > ), puis que Fy(a) =1— Fx ()
a a

b. En déduire que pour tout a > 0, Fy(a) = Fx(a). On pourra utiliser 1'égalité suivante,
vraie pour tout a > 0,

tan(a) +arctan (1) = 2
arctan(a) 4+ arctan [ — | = —.
a 2
c. On admet que I'égalité Fy(a) = Fx(a) est encore vraie pour a < 0. Que dire de la loi
de Y?
Solution.
o 1
1. a. Comme arctan est une primitive sur R de ¢t — T3¢

A1 .
/0 T dt = [arctan(t)], = arctan(A) — arctan(0)

donc, comme arctan(0) = 0,

A 1
/0 e dt = arctan(A) |.

b. On en déduit que
A

lim dt = lim arctan(A) = T
A-+oo Jo 14 12 A—+o00 2

+00 1
/ —a =T
o 1412 2

c. La fonction f est continue sur [0;+o00] car c’est une fonction rationnelle (quotient de
polynémes) dont le dénominateur ne s’annule pas. De plus, f est nulle sur |—oo; 0]
donc f est continue par morceaux sur R. De plus, pour tout réel t < 0, f(t) = 0

¢, pour tout réel £ > 0, f(t) = 2—
et, pour tout réel t > 0, = —

P w1+ 2
linéarité de I'intégrale,

+oo too 2 1 2 [t ] 2
tdt:/ *7dt:*/ —dt=—x — = 1.
\/—oo f(#) o w1412 7w Jo 14 ¢2 7T><2

donc

> 0 donc f est positive sur R. Enfin, par

Ainsi, on conclut que ’ f est une densité de probabilité ‘




2. Par définition,

1

12 1 2
P(X}l)zl—P(X<1):1—/ ———dt = {arctan(t)]
o w14+ ¢? T 0
2 2 7
= 1— “(arctan(1) — arctan(0)) =1 — = x
7T(arcan() arctan(0)) — X7
1
donc P(X}l)zi.

Comme f est nulle sur |—o0;0[, | P(X < =2) =0/
3. a.

b.

Par définition, pour tout réel a, Fx(a) = P(X < a) donc, comme f est nulle sur
]—00;0[, [ pour tout a < 0, Fx(a) =0]|.

Soit un réel a > 0. Alors, par linéarité de I'intégrale et d’apres la question 1.a.,

FX(a):P(Xga):/0a2 L g 2/;

2
o dt = — arctan(a).
7T

1+ ¢2 T

2
Ainsi, | pour tout réel a > 0, Fx(a) = — arctan(a) |.
7r

. Remarque : le changement de variable proposé par I’énoncé est tout a fait inutile. En

effet,

A A 9 1
= —|In(1+¢#
/0 1+t2 “2)y 1122 1+tz>02[n< + )]

A 1
it dt = = In(1 + A?)|.
soit | [t = 5 n(1 + 4

In(1 + A%) — In(1)]

[\DM—‘

Si on souhaite utiliser le changement de variable donné par 1’énoncé, on pose u = 1 +¢2
de sorte que du = 2tdt. De plus, sit =0, u =1 et si t = A alors u = 1 + A? donc

A t A 1 1+A2% q 1 1
/ dt:/ 7><tdt:/ xdu:{ln(u)
o 142 o 1-41¢2 1 u 2 2

On en déduit que, pour tout A > 0

A A A
/ tf(t)dt:/ Qtdt:2/ gt = L a2,
0 0 0

w14 t2 T 1+ ¢2 T

1+ A2

= ;111(1 + A?).

1

Or, hrf 1+ A% = +oo et 1_1)15{1 In(z) = 400 donc, par composition de limites,
A—+oo €T (e.9]

A
lim In(1 + A?) = +oo. Par suite, lim tf(t)dt = 400 donc on conclut que

A—+oo A—+00 )0

+oo
I'intégrale / tf(t)dt est divergente|.
0

2t 21

o 1 T2 Tt

Or, l'intégrale de Riemann / —dt est divergente donc, par le théoréme sur les
0

Remarque. On pouvait aussi utiliser le fait que, au voisinage de 400, t f(t) ~

+oo
fonctions équivalentes, / tf(t)dt est divergente |
0

+o0o
. Comme f est nulle sur |—oo; 0[, X admet une espérance si et seulement si / tf(t)de
0

converge. On déduit donc de la question précédente que | X n’admet pas d’espérance ‘




1
5. a. Par décroissance de la fonction inverse sur |0 ; +oo[, pour tout réel a > 0, X > — si et

a
1 1
seulement si e < a i.e si et seulement si Y < a. Ainsi, {Y < a} = {X > } donc
a
1
p(y<a)zp<x>> .
a
. , 1 1
Ainsi, pour tout réel a > 0, Fy(a) = P (X > ) =1-P (X < ) et, comme X est
a a

1 1
une variable aléatoire a densité, Fy (a) = 1—P (X < ) Ainsi, | Fy(a) =1 — Fx ( ) :

a a

b. Soit a > 0. On déduit des questions 3.b. et 5.a. que

2 1
Fy(a) =1 — —arctan () .

™ a

1 1
Or, arctan(a) + arctan () = g donc arctan () = g — arctan(a). Ainsi,
a a

2 2 2
Fy(a)=1- - <72T - arctan(a)) =1-1+ - arctan(a) = - arctan(a) = Fx(a).

Ainsi, | pour tout réel a > 0, Fy(a) = Fx(a)|.

c. Pour tout réel a, Fy(a) = Fx(a) donc X et Y ont la méme fonction de répartition et

ainsi ‘X et Y ont la méme loi ‘




