¢ Révisions — Avril 2025

Algebre (2020)

Si a est un nombre réel, on note M, = (

cos(a) —sin(a)

sin(a)  cos(a) ) On note f, 'endomorphisme de

R? canoniquement associé a la matrice M,.
Par ailleurs, on rappelle que (z ;) est un élément de R?, la nombre réel ||(z;y)|| = V22 + y2
est la norme du vecteur (z;y).

1.

Exemples.
a. Calculer M, Mz et M. (Autrement dit, calculer M, dans les cas a =0, a = § et
a=m.)
V2o V2
b. On considere la matrice A = <\3§ £22 > Donner un réel a € [0;27] tel que A = M,.
2 2
. Premieres propriétés. Soit a € R.

a. Calculer le déterminant de M,. L’application f, est-elle bijective 7 Que dire du noyau
de f,?
b. Caleuler f,((130)) et £,((0:1)). En déduire | £,((150))]] et [ £u((0:1)].

c. Soit (z;y) € R%. Prouver que le vecteur f,((z;y)) et le vecteur (z;y) ont la méme
norme.
d. Soit A € R une valeur propre de f, et u € R? un vecteur propre associé.

Montrer que || fo(u)|| = || X ||u||. En déduire que A vaut soit 1, soit une autre valeur
réelle que l'on précisera.

. On s’intéresse aux valeurs propres complexes de M,,.

a. Fixons a € R. Trouver des coefficients « et g réels, que 'on exprimera en fonction
de a, et vérifiant, pour tout nombre complexe z :

(z — ei“) (z — e_i‘l) =22 —2az+ 8.

b. Soit A € C. Montrer que le déterminant de M, — Al vaut (A — %) (A —e™%).
c. Pour quelles valeurs de A, la matrice M, — Al est-elle non inversible 7

d. Expliquer pourquoi les valeurs propres (complexes) de M, sont e et e

. Application. Existe-t-il un réel a et une base de R? dans laquelle la matrice de f, est

0 -4

Sont-elles de la forme €'® et e™1¢ ?

2
la matrice o ) ? Indication : chercher d’abord les valeurs propres de cette matrice.

Si a et b sont deux nombres réels, montrer que M, ., = M, M,.

6. Soit n un entier naturel supérieur ou égal a 2. Montrer qu’il existe un réel a € 0; 27| tel

que M} = I,. On exprimera un tel réel a en fonction de n et de 7.



Algebre (2024)

On considere la matrice

-1 0 1
A=[0 -1 0
-2 1 2
1
1. On considere le vecteur U = | 2 |. Vérifier que U est un vecteur propre de A, associé a
0

une valeur propre que l'on précisera.

2. Déterminer un vecteur propre V de A associé a la valeur propre 0, de premiere coordonnée

égale a 1.
1
3. Déterminer le réel a tel que le vecteur W = [ 0 | soit un vecteur propre de A, associé a
a

la valeur propre 1.

4. Justifier qu’il existe une matrice diagonale D et une matrice inversible P telles que
A= PDP~!. On précisera D, (on écrira ses coefficients diagonaux dans I'ordre croissant),
ainsi que P, mais on ne calculera pas P~1.

Dans la suite de 'exercice, on s’intéresse au sous-ensemble F4 suivant de .Z5(R) :
Fy={M € #3(R), AM = M}.

On rappelle que #3(R) est 'ensemble des matrices de taille 3 x 3 & coefficients réels.

5. On note O3 la matrice nulle de .#5(R) et I3 la matrice identité.
a. La matrice O3 appartient-elle a Fa 7
b. La matrice I3 appartient-elle a F4 7

6. Soit M € .#5(R). On pose N = P~'M, o P~! est I'inverse de la matrice P déterminée
précédemment. Démontrer 1’équivalence :

AM =M <= DN = N.

a b c
7. Onpose N=|d e f|,oua,b,cd, e, f, g, hetsont des nombres réels.
g h i
a. Calculer le produit DN.
000
b. On suppose que la matrice N vérifie ’égalité DN = N. Montrer que N =10 0 0
g h 1

c. La réciproque de la propriété démontrée a la question précédente est-elle vraie ?

8. En déduire les matrices M appartenant a Fjy.



Analyse (2023)

Dans cet exercice, on considere la fonction f : [1;+o0c0[ — R définie, pour tout réel x > 1,

par la relation :
2x e_t

1. On rappelle que la fonction exponentielle x — e* est croissante sur R et positive.

Pour tout > 0, montrer alors que 'on a les deux inégalités :
0<e®—e 2 et el —e T L e,

Ces inégalités pourront étre utilisées dans la suite de [’exercice.
2. Donner le signe de la fonction f sur I'intervalle [1; +o0].
ot
On admet que la fonction u : ¢ —> — est continue sur [1;+oo[, donc admet une

primitive sur [1;+4o00[. On note U une primitive de u dans la suite de 'exercice.
On ne cherchera pas da calculer U.

3. Notons g la fonction définie sur [1;4o0[ par la relation g(z) = U(2x).
Montrer que g est dérivable sur [1;+o0[ et prouver que, pour tout > 1, on a :

5. Donner le sens de variation de la fonction f.
On pourra utiliser 'une des deux inégalités de la question 1.

Analyse (2024)

Partie A. Etude d’une fonction
Soit f la fonction définie sur |0 ;+oo[ par f(z) =z + In(x).
1. Calculer f(1).
2. On admet que f est dérivable sur |0; 4o00].
a. Calculer f'(x) pour tout > 0 et donner son signe.
En déduire le sens de variation de f sur ]0;+oo.
Déterminer les limites de f en 0 et en +oc.

En déduire que f est une bijection de |0 ; 400 vers un intervalle que 1'on précisera.

p TP T

Soit n € N* un entier strictement positif. Justifier que ’équation x+1In(x) = n possede
une unique solution dans l'intervalle |0 ; 00|, que 'on note u,,.

&

Donner u;.



Dans la suite de ’exercice, on ne cherchera pas a déterminer explicitement u,,. On notera de
plus que, pour tout n € N* u,, vérifie I'égalité f(u,) = n, soit
n

Uy + In(u,) = ().

Partie B. Etude de la suite (u,)

1. Comparer f(uy) et f(unt1), pour tout n € N*. En déduire le sens de variation de la suite
2. On admet que, pour tout z > 0, on a I'inégalité In(z) < x.
a. En utilisant la relation (*), montrer que pour tout n € N*, u,, > 7.

b. En déduire la limite de la suite (u,).

Probabilités (2020)

Si 'on dispose de k jetons que 'on place dans n urnes, combien d’urnes restent vides ? Plutot
que de traiter cette question dans un cas général, on s’intéressera ici au cas ou 'on dispose de
cinq jetons, dans deux situations : configuration a deux urnes (premiere partie) puis a trois
urnes (parties suivantes). La partie 1. est indépendante des suivantes.

1) Cas simplifié ou il n’y a que deux urnes

On dispose de cing jetons numérotés 1, 2, 3, 4, 5, et de deux urnes a et b.

Chaque jeton est placé dans 'une des deux urnes, aléatoirement et sans tenir compte du
placement effectué pour les autres jetons. Ainsi, le jeton 1 a une chance sur deux d’étre dans
I'urne a, et une chance sur deux d’étre dans I'urne b. Il en est de méme pour chacun des quatre
autre jetons. On appelle X la variable aléatoire égale au nombre de jetons dans I'urne a.

1. Reconnaltre la loi de X.

2. Exprimer, a 'aide de la variable aléatoire réelle X, I’évenement « L’urne a est vide ».
Faire de méme avec I’événement « L’urne b est vide ».

3. En déduire la probabilité de ’évenement « L'un des deux urnes est vide ».

On aborde maintenant le cas général de l'exercice : on dispose toujours de cinq jetons
numérotés 1, 2, 3, 4, 5, et de trois urnes appelées a, b et c.

De méme que précédemment, chaque jeton est placé aléatoirement dans I'une des trois urnes,
et sans tenir compte du placement effectué pour les autres jetons. Ainsi, chaque jeton a une
chance sur trois d’étre dans I'urne a, un chance sur trois d’étre dans 'urne b, et une chance sur
trois d’étre dans I'urne c.

2) Probabilité qu’une urne donnée soit vide

1. Soit i € [1,5] et E; 'évenement « Le jeton i n’est pas dans l'urne a ». Donner la
probabilité de I’évenement contraire F; puis celle de I’évenement Fj;.

2. Soit V, 'évenement « L'urne a est vide ». Exprimer V,, en fonction des fonctions F,, Fs,
Eg, E4 et E5.
25
3. En déduire que P(V,) = 3
Par symétrie du probléme, on pourra admette que la probabilité P(V}) que b soit vide et
que la probabilité P(V,) que ¢ soit vide ont aussi cette méme valeur.

On note désormais N la variable aléatoire égale au nombre d’urnes vides. L’objectif est de
donner la loi de N.



3) Calcul de P(N = 2) et de P(N = 3)
1. Que signifie, en frangais, I’événement (N = 3) ? Donner sa probabilité. On rappelle que
chaque jeton doit étre contenu dans une urne.
2. Que signifie, en frangais, I'’événement V, NV, NV, ? Calculer P(V, NV, N V,.).
On admettra que P(V, NV, NV,) et P(V, NV, NV,) sont aussi égales a cette valeur.

3. Calculer la probabilité de I’événement (N = 2). On exprimera dans un premier temps
I'événement (N = 2) en fonction d’évenements tels que V, NV, NV, et d’autres du méme
genre.

4) Espérance de N

On va maintenant calculer I'espérance de V.

1. On note Z, la variable aléatoire qui vaut 1 si ’évenement V, est réalisé, et 0 s’il ne l'est
pas. On a de méme les notations Z, (Z;, vaut 1 si V, est réalisé, et 0 sinon) et Z. (Z,. vaut
1 si I'urne ¢ est vide, et 0 sinon) . Reconnaitre la loi et donner l'espérance de ces trois
variables aléatoires Z,, Z, et Z..

2. On note toujours N le nombre d’urnes vides. Exprimer N en fonction de Z,, Z, et Z..

3. Calculer alors I'espérance de V.

5) Loi de N
25

1. Montrer que P(N = 1)+ 2P(N =2) = 3

2. En déduire la valeur de P(N =1).

3. Donner enfin le loi de la variable aléatoire N. On répondra sous la forme d’un tableau,
aucune justification n’est attendue.

Probabilités (2024)

Rappels
e On rappelle que la fonction arctangente est dérivable sur R, et que pour tout = € R,
tan/(2) =
arctan’(r) = ——.
1+ a2

e On rappelle également les valeurs remarquables suivantes :
™
arctan(0) = 0 et arctan(l) = T

ainsi que la limite :

1. - .
m arctan(x) 5

Remarque : On admettra que toutes les intégrales généralisées rencontrées dans cet exercice
sont convergentes, sauf a la question 4. En particulier, on ne demande pas de justifier leur
convergence.

A
1. a. Soit A > 0. Calculer I'intégrale / dt.
0

1
1+¢2



b.

C.

1

+0o0
En déduire la valeur de I'intégrale / dt.
o 141
Soit f la fonction définie sur R par
1
— t>0
fy=_4nt+e ™
0 sinon

Montrer que f est une densité de probabilité.

Dans la suite de ’exercice, on considére une variable aléatoire X admettant la fonction f
pour densité.

. Calculer P(X > 1) et P(X < —2).

a.
b.

b.

C.

a.

b.

A
. Soit A > 0. Calculer 'intégrale /
0

3. Soit F'x la fonction de répartition de X.

Donner sans calcul la valeur de Fx(a) pour tout a < 0.

Montrer que pour tout a > 0, on peut écrire
Fx(a) = karctan(a),

ou k est un réel que 'on déterminera.
t
1+¢2

dt. On pourra utiliser le changement de

variable u = 1 + ¢2.
—+00

L’intégrale / tf(t)dt est-elle convergente ?
0

Que peut-on en déduire concernant la variable aléatoire X 7

1
. On considere la variable aléatoire Y = X et on note Fy sa fonction de répartition.

1 1
Soit a > 0. Justifier que P(Y <a) =P <X > ), puis que Fy(a) =1— Fx ()

a a
En déduire que pour tout a > 0, Fy(a) = Fx(a). On pourra utiliser I’égalité suivante,
vraie pour tout a > 0,

tan(a) -+ arct <1) T
arctani{a arctan | — = —.
a 2

On admet que I'égalité Fy (a) = Fx(a) est encore vraie pour a < 0. Que dire de la loi
de Y7



