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Devoir à la maison n°2
À rendre le mercredi 8 octobre 2025

1. On considère la fonction f définie, pour tout réel x ∈ [0 ; +∞[, par la relation :

f(x) =
x

(x+ 1)2
.

a. On admet que f est dérivable sur [0 ; +∞[ et on note f ′ sa dérivée.
Calculer, pour tout réel x positif, f ′(x).

b. Étudier, pour tout réel x ∈ [0 ; +∞[, le signe de f ′(x) en fonction des valeurs de x.
c. Déterminer la limite de f en +∞.
d. Dresser le tableau de variation de f .

2. On définit la suite (un) par u0 = 1 et la relation : pour tout n ∈ N, un+1 = f(un).
a. Calculer, sous forme de fractions irréductibles, u1 et u2.

b. Montrer par récurrence que, pour tout entier n ⩾ 1, 0 < un ⩽
1

n
.

c. Montrer que la suite (un) converge et déterminer sa limite.

3. On pose, pour tout n ∈ N, vn =
1

un+1

− 1

un

.

a. Exprimer, pour tout n ∈ N, vn en fonction de un.
b. En déduire que, pour tout n ∈ N∗, on a l’encadrement suivant :

2 ⩽ vn ⩽ 2 +
1

n
.

c. Montrer que, pour tout entier n ⩾ 2,

2(n+ 1) ⩽
1

un

⩽ 2(n+ 1) +
n−1∑
k=1

1

k
.

4. a. Soit un entier k ⩾ 2. Comparer
1

k
et

∫ k

k−1

1

t
dt.

b. En déduire que, pour tout entier n ⩾ 3,

n−1∑
k=2

1

k
⩽ ln(n− 1).

5. Déduire des questions précédentes que un ∼ 1

2n
.

6. Déterminer la nature de la série
∑

un.



Solution.
1. a. Pour tout x ⩾ 0,

f ′(x) =
1× (x+ 1)2 − x× 2(x+ 1)

((x+ 1)2)2
=

x2 + 2x+ 1− (2x2 + 2x)

(x+ 1)4
=

1− x2

(1 + x)4
.

Ainsi, pour tout réel x ⩾ 0, f ′(x) =
1− x2

(1 + x)4
.

b. Pour tout réel x ⩾ 0, (1 + x)4 > 0 donc le signe de f ′(x) est le signe de 1− x2. Or,
pour tout réel x ⩾ 0, 1− x2 = (1− x)(1 + x) et 1 + x > 0 donc le signe de 1− x2 est
le signe de 1− x.
Ainsi, f ′(x) ⩾ 0 pour tout x ∈ [0 ; 1] et f ′(x) ⩽ 0 pour tout x ∈ [1 ; +∞[ .

c. Pour tout réel x ⩾ 0, f(x) =
x

x2 + 2x+ 1
donc

lim
x→+∞

f(x) = lim
x→+∞

x

x2
= lim

x→+∞

1

x
= 0.

Ainsi, f(x) −−−−→
x→+∞

0 .

d. On aboutit donc au tableau de variations suivant :

x

Signe
de f ′(x)

Variation
de f

0 1 +∞

+ 0 −

00

1
4
1
4

00

2. a. Par définition, u1 = f(u0) = f(1) donc u1 =
1

4
et u2 =

1
4

(1
4
+ 1)2

=
1
4
25
16

=
1

4
× 16

25
i.e.

u2 =
4

25
.

b. Considérons, pour tout n ∈ N∗, la proposition P(n) : « 0 < un ⩽
1

n
».

• Initialisation. On a vu que u1 =
1

4
donc 0 < u1 ⩽

1

1
i.e. P(0) est vraie.

• Hérédité. Soit n ∈ N∗. On suppose que P(n) est vraie. Ainsi, 0 < un ⩽
1

n
⩽ 1 donc,

comme f est strictement croissante sur [0 ; 1], f(0) < f(un) ⩽ f

(
1

n

)
. Or, f(0) = 0 et

f

(
1

n

)
=

1
n

( 1
n
+ 1)2

=
1

(1+n
n
)2

× 1

n
=

n2

(n+ 1)2
× 1

n
=

n

(n+ 1)2
=

n

n+ 1
× 1

n+ 1
.

Or,
n

n+ 1
⩽ 1 donc

n

n+ 1
× 1

n+1
⩽

1

n+ 1
i.e. f

(
1

n

)
⩽

1

n+ 1
. Ainsi, 0 < un ⩽

1

n+ 1
donc P(n+ 1) est vraie.
• Conclusion. Par le principe de récurrence, on a montré que :

∀n ∈ N∗, 0 < un ⩽
1

n
.



c. Comme lim
n→+∞

1

n
= 0, d’après le théorème d’encadrement, (un) converge et que un −−−−→

n→+∞
0 .

3. a. Soit n ∈ N. Alors,

vn =
1
un

(un+1)2

− 1

un

=
(un + 1)2

un

− 1

un

=
u2
n + 2un + 1− 1

un

=
un(un + 2)

un

= un + 2.

Ainsi, pour tout n ∈ N, vn = un + 2 .

b. On a montré que, pour tout n ∈ N∗, 0 < un ⩽
1

n
donc 2 < un + 2 ⩽

1

n
+ 2 et donc

pour tout n ∈ N∗, 2 ⩽ vn ⩽ 2 +
1

n
.

c. Soit un entier n ⩾ 2. Ainsi, pour tout k ∈ N∗, 2 ⩽ vn ⩽ 2 +
1

k
donc, en sommant ces

inégalités pour k allant de 1 à n− 1, on en déduit que

n−1∑
k=1

2 ⩽
n−1∑
k=1

vk ⩽
n−1∑
k=1

(
2 +

1

k

)
i.e. par linéarité,

2(n− 1) ⩽
n−1∑
k=1

(
1

uk+1

− 1

uk

)
⩽

n−1∑
k=1

2 +
n−1∑
k=1

1

k
.

En reconnaissant un téléscopage, il s’ensuit que

2(n− 1) ⩽
1

un

− 1

u1

⩽ 2(n− 1) +
n−1∑
k=1

1

k
.

Or, u1 =
1

4
donc

1

u1

= 4. Dès lors,

2(n− 1) ⩽
1

un

− 4 ⩽ 2(n− 1) +
n−1∑
k=1

1

k

donc

2(n− 1) + 4 ⩽
1

un

⩽ 2(n− 1) + 4 +
n−1∑
k=1

1

k

ce qui permet de conclure que

2(n+ 1) ⩽
1

un

⩽ 2(n+ 1) +
n−1∑
k=1

1

k
.

4. a. Pour tout t ∈ [k − 1 ; k], 0 <⩽ t ⩽ k donc, par décroissance de la fonction inverse sur

]0 ; +∞[,
1

t
⩾

1

k
. Par croissance de l’intégrale, il s’ensuit que∫ k

k−1

1

t
dt ⩾

∫ k

k−1

1

k
dt.



Or, comme k ne dépend pas de t,∫ k

k−1

1

k
dt =

1

k
(k − (k − 1)) =

1

k

et on conclut que ∫ k

k−1

1

t
dt ⩾

1

k
.

b. Soit un entier n ⩾ 3. En sommant les inégalités précédentes pour k allant de 2 à n− 1,
il vient

n−1∑
k=2

1

k
⩽

n−1∑
k=2

∫ k

k−1

1

t
dt

donc, par la relation de Chasles,

n−1∑
k=2

1

k
⩽

∫ n−1

1

1

t
dt.

Or, ∫ n−1

1

1

t
dt = [ln(t)]n−1

1 = ln(n− 1)− ln(1) = ln(n− 1)

donc
n−1∑
k=2

1

k
⩽ ln(n− 1) .

5. Soit un entier n ⩾ 3. On déduit de la question précédent que

n−1∑
k=1

1

k
= 1 +

n−1∑
k=2

1

k
⩽ 1 + ln(n− 1).

Ainsi, par le résultat de la question 3.c.,

2(n+ 1) ⩽
1

un

⩽ 2(n+ 1) + 1 + ln(n− 1)

et, en divisant par 2n > 0, on en déduit que

n+ 1

n
⩽

1

2nun

⩽
2n+ 3

2n
+

ln(n− 1)

2n
.

Or, d’une part,
n+ 1

n
∼ n

n
∼ 1 donc

n+ 1

n
−−−−→
n→+∞

1. D’autre part,
2n+ 1

2n
∼ 2n

2n
∼ 1

donc
2n+ 3

2n
−−−−→
n→+∞

1 et

ln(n− 1)

2n
=

n− 1

2n
× ln(n− 1)

n− 1

avec
n− 1

2n
∼ n

2n
∼ 1

2
et, par croissances comparées, lim

n→+∞

ln(n− 1)

n− 1
= 0 donc

2n+ 3

2n
+

ln(n− 1)

2n
−−−−→
n→+∞

1.



Par le théorème d’encadrement, on en déduit que
1

2nun

−−−−→
n→+∞

1 i.e.
1
2n

un

−−−−→
n→+∞

1 donc,

par définition, un ∼ 1

2n
.

6. Par théorème,
∑ 1

n
diverge donc, par linéarité,

∑ 1

2n
et ainsi, finalement, par équiva-

lence,
∑

un diverge .


