Devoir à la maison n°2

À rendre le vendredi 04 octobre 2024

Exercice 1. On considère l'ensemble $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}.$

- 1. Démontrer que F est un sous-espace vectoriel de \mathbb{R}^4 .
- **2.** Déterminer une base (e_1, e_2, e_3) de F et en déduire sa dimension.
- **3.** On note n = (1, 1, 1, 1) et G = Vect(n).
 - **a.** Démontrer que $F \cap G = \{(0,0,0,0)\}$ et en déduire que (e_1,e_2,e_3,n) est une base de \mathbb{R}^4 .
 - **b.** Démontrer que, pour tout $v \in \mathbb{R}^4$, il existe un unique couple $(f,g) \in F \times G$ tel que v = f + g.

Exercice 2. Le but de cet exercice est de démontrer le théorème 37 du chapitre 3 i.e. de démontrer que, pour tout réel $x \ge 0$, la série $\sum \frac{x^n}{n!}$ converge et $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$.

Dans toute la suite, on considère un réel x positif.

Pour tout $n \in \mathbb{N}$, on pose

$$u_n = \frac{x^n}{n!}$$
 et $I_n = \frac{1}{n!} \int_0^x (x-t)^n e^t dt$.

- 1. a. Déterminer la limite de (u_n) dans le cas où x = 0. On suppose, dans les questions **b.**, **c.** et **d.** que $x \neq 0$.
 - **b.** Calculer, pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n}$ et en déduire qu'il existe $N \in \mathbb{N}$ tel que, pour tout entier $n \geq N$, $u_{n+1} \leq \frac{u_n}{2}$.
 - c. En déduire, en utilisant un raisonnement par récurrence, que, pour tout entier $n \ge N$,

$$u_n \leqslant \frac{2^N u_N}{2^n}.$$

- **d.** En déduire que $\lim_{n\to+\infty}u_n=0$.
- 2. Soit $k \in \mathbb{N}$. En utilisant une intégration par parties, démontrer que

$$I_k = \frac{x^{k+1}}{(k+1)!} + I_{k+1}.$$

3. Soit $n \in \mathbb{N}$. En déduire que

$$\sum_{k=0}^{n} \frac{x^k}{k!} = e^x - I_n.$$

- **4. a.** Démontrer que, pour tout $n \in \mathbb{N}$, $0 \leqslant I_n \leqslant \frac{x^n}{n!} (e^x 1)$.
 - **b.** En déduire la limite de I_n lorsque n tend vers $+\infty$.
 - c. Conclure.