♦ Chapitre 1. Rappels et compléments sur les sommes et les suites

I. — Somme simple : notation et exemples

1) Notation Σ

Définition 1

Soit m et n deux entiers naturels tels que $m \leq n$. Pour tous nombres complexes a_m , a_{m+1} , ..., a_n ,

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n.$$

Remarque 2. Dans l'écriture $\sum_{k=m}^{n} a_k$,

- 1. on dit que a_k est le terme général de la somme et que k est l'indice de sommation. Cet indice est une variable muette : la valeur de la somme dépend de m et n mais elle ne dépend pas de k;
- **2.** par convention, si m > n, la somme est nulle;
- **3.** cette somme contient n m + 1 termes.

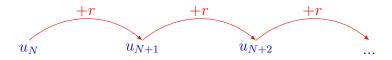
Exemple 3.

- **1.** Calculer les sommes suivantes : $S_1 = \sum_{k=1}^4 \frac{k}{k+1}$, $S_2 = \sum_{i=1}^3 j^3 S_i = \sum_{k=1}^7 i^k$ (où $i^2 = -1$).
- **2.** Écrire à l'aide du symbole Σ les sommes suivantes : $S_4 = 3^3 + 4^4 + 5^5 + 6^6 + 7^7$, $S_5 = 1 + 4 + 7 + 10 + 13 + 16 + 19$ et $S_6 = 1 + 3 + 9 + 27 + 81 + 243$.

2) Suites arithmétiques

Définition 4

On dit qu'une suite $(u_n)_{n\geqslant N}$ est arithmétique s'il existe un réel r tel que, pour tout $n\geqslant N$, $u_{n+1}=u_n+r$. Dans ce cas, le nombre r est appelé la raison de la suite (u_n) .



Propriété 5

Soit $r \in \mathbb{R}$. Une suite $(u_n)_{n \geq N}$ est arithmétique de raison r si et seulement si, pour tous entiers p et n supérieurs ou égaux à N,

$$u_n = u_p + (n - p)r.$$

Propriété 6. — Somme des termes d'une suite constante

Soit a un réel et m et n deux entiers tels que $m \leq n$. Alors,

$$\sum_{k=m}^{n} a = (n-m+1)a.$$

Remarque 7. En particulier, si $m \le n$ alors $\sum_{k=m}^{n} 1 = n - m + 1$.

Propriété 8

Pour tout $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

Exemple 9. Calculer la somme des entiers de 1 à 100.

Théorème 10. — Somme de termes consécutifs d'une suite arithmétique

Soit $(u_n)_{n\geqslant N}$ une suite arithmétique. Alors, pour tous entiers m et n tels que $n\geqslant m\geqslant N$,

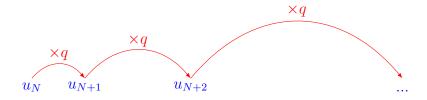
$$u_m + u_{m+1} + u_{m+2} + \dots + u_n = (n - m + 1) \frac{u_m + u_n}{2}$$

Exemple 11. Calculer $\sum_{k=5}^{15} (2k+1)$.

3) Suites géométriques

Définition 12

On dit qu'une suite $(u_n)_{n\geqslant N}$ est géométrique s'il existe un réel q tel que, pour tout $n\geqslant N$, $u_{n+1}=q\times u_n$. Dans ce cas, le nombre q est appelé la raison de la suite $(u_n)_{n\geqslant N}$.



Propriété 13

Soit $q \in \mathbb{R}^*$. Une suite $(u_n)_{n \geq N}$ est géométrique de raison q si et seulement si, pour tous entiers p et n supérieurs ou égaux à N,

$$u_n = q^{n-p}u_p.$$

Propriété 14

Soit $q \in \mathbb{C}$ et $n \in \mathbb{N}$. On pose $S_n = \sum_{k=0}^n q^k$.

1. Si $q \neq 1$ alors

$$S_n = \frac{1 - q^{n+1}}{1 - q}.$$

2. Si q = 1 alors $S_n = n + 1$.

Exemple 15. Calculer $\sum_{k=0}^{10} i^k$ et $\sum_{k=0}^{n} 2^k$ où $n \in \mathbb{N}^*$.

Théorème 16. — Somme de termes consécutifs d'une suite géométrique

Soit $(u_n)_{n\geqslant N}$ une suite géométrique de raison q. Soit m et n des entiers tels que $n\geqslant m\geqslant N$.

1. Si $q \neq 1$ alors

$$\sum_{k=m}^{n} u_k = u_m \frac{1 - q^{n-m+1}}{1 - q}.$$

2. Si q = 1 alors

$$\sum_{k=m}^{n} u_k = (n - m + 1)u_m.$$

Remarque 17. Un moyen mnémotechnique pour retenir la formule générale est : la somme de termes consécutifs d'une suite géométrique de raison $q \neq 1$ est donnée par

$$(1^{\text{er} \text{ terme}}) \times \frac{1 - q^{\text{nombre de termes}}}{1 - q}.$$

Attention!! de u_m à u_n , il y a n-m+1 termes et non pas n-m.

Exemple 18. Soit (u_n) une suite géométrique de premier terme $u_0 = 5$ et de raison $q = \frac{1}{2}$. Calculer $\sum_{k=3}^{10} u_k$.

4) Sommes de premiers carrés d'entiers

Propriété 19

Soit n un entier naturel. Alors,

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Exemple 20. Calculer $\sum_{k=5}^{10} k^2$.

5) Formule du binôme de Newton

Propriété 21. — Formule du binôme de Newton

Soit a et b deux nombres complexes. Alors, pour tout entier $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Exemple 22. Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^n \binom{n}{k}$ et $\sum_{k=0}^{2023} \binom{2023}{k}$ \mathbf{i}^k .

II. — Propriétés et techniques de calcul

Propriété 23. — Linéarité

La somme est linéaire, c'est-à-dire que pour tous entiers naturels m et n, tels que $m \le n$, pour tous nombres complexes λ et μ et pour tous nombres complexes a_m , a_{m+1} , ..., a_n , b_m , b_{m+1} , ..., b_n ,

$$\sum_{k=m}^{n} (\lambda a_k + \mu b_k) = \lambda \sum_{k=m}^{n} a_k + \mu \sum_{k=m}^{n} b_k.$$

Exemple 24. Soit $n \in \mathbb{N}$. Calculer $S_7 = \sum_{k=1}^n (6k^2 + k)$.

Propriété 25. — Relation de Chasles

Pour tous entiers naturels m, n et p tels que $m \le p < n$ et pour tous nombres complexes $a_m, a_{m+1}, ..., a_n$,

$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{p} a_k + \sum_{k=p+1}^{n} a_k.$$

Propriété 26. — Changement d'indice par translation

Pour tous entiers naturels m, n et p tels que $m \leq n$ et pour tous nombres complexes a_m , $a_{m+1}, ..., a_n$,

$$\sum_{k=m}^{n} a_k = \sum_{k=m+p}^{n+p} a_{k-p} \qquad \text{et} \qquad \sum_{k=m}^{n} a_k = \sum_{k=m-p}^{n-p} a_{k+p}.$$

Exemple 27. Soit $n \in \mathbb{N}$. Calculer

$$S_8 = \sum_{k=0}^{n} (k+1)^2$$
 $S_9 = \sum_{k=0}^{n} 3^{k+4}$ $S_{10} = \sum_{j=0}^{n} {n+1 \choose j+1}$.

Propriété 28. — Changement d'indice par symétrie

Soit m et n des entiers naturels tels que $m \leq n$. Alors, pour tous complexes $a_0, a_1, ..., a_{n-m}$

$$\sum_{k=m}^{n} a_{n-k} = \sum_{k=0}^{n-m} a_k.$$

Exemple 29. Soit $n \in \mathbb{N}$. Calculer de 2 façons différentes la somme $S_{11} = \sum_{k=0}^{n} 2^{n-k}$.

Propriété 30. — Somme téléscopique

Soit m et n deux entiers naturels tels que $m \leq n$ et $a_m, a_{m+1}, ..., a_{n+1}$ des complexes. Alors,

$$\sum_{k=m}^{n} (a_{k+1} - a_k) = a_{n+1} - a_m \qquad \text{et} \qquad \sum_{k=m}^{n} (a_k - a_{k+1}) = a_m - a_{n+1}.$$

Exemple 31.

- 1. Calculer, pour tout entier k > 0, $\frac{1}{k} \frac{1}{k+1}$.
- 2. Soit $n \in \mathbb{N}^*$. Déduire de la question précédente une expression simplifiée de $\sum_{k=1}^n \frac{1}{k(k+1)}$.

III. — Sommes doubles

On considère une matrice A à coefficients complexes ayant n lignes et m colonnes (donc $n \times m$ éléments en tout) :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & & & & a_{1,m} \\ a_{2,1} & a_{2,2} & \ddots & & & & a_{2,m} \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & a_{n-1,m-1} & a_{n-1,m} \\ a_{n,1} & \cdots & \cdots & a_{n,m-1} & a_{n,m} \end{pmatrix}$$

On peut s'intéresser à la somme de tous les coefficients de A qu'on note :

$$\sum_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}} a_{i,j}$$

Cette somme peut être obtenue en sommant d'abord sur les lignes, puis sur les colonnes, ou l'inverse, donc

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} a_{i,j} = \sum_{i=1}^n \left(\sum_{j=1}^m a_{i,j} \right) = \sum_{j=1}^m \left(\sum_{i=1}^n a_{i,j} \right).$$

Le but est de pouvoir « séparer » $a_{i,j}$ par exemple en un terme qui dépend de i et un autre qui ne dépend pas de i.

Exemple 32. Soit m et n deux entiers strictement positifs. Calcul de $S_{12} = \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} (i+ij)$.

Propriété 33

Pour tous entiers naturels non nuls n et m et pour tous nombres complexes $a_1, a_2, ..., a_n, b_1, b_2, ..., b_m$,

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j = \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{j=1}^{m} b_j\right).$$

Exemple 34. Retrouver le résultat de l'exemple 32.

IV. — Exercices

Exercice 1. Soit (u_n) la suite arithmétique de premier terme $u_0 = 3$ et de raison r = -2.

- 1. Donner, pour tout $n \in \mathbb{N}$, l'expression de u_n en fonction de n et en déduire la valeur de u_{100} .
- **2.** Calculer $\sum_{k=0}^{100} u_k$.

Exercice 2. Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 1$. On note (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = u_n + 1$.

- 1. Démontrer que (v_n) est une suite géométrique dont on précisera la raison.
- **2.** En déduire, pour tout $n \in \mathbb{N}$, l'expression de v_n puis celle de u_n en fonction de n.
- **3.** Exprimer, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} u_k$ en fonction de n.

Exercice 3. On considère la suite (u_n) définie par $u_0 = 3$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{-1}{u_n + 2}$.

- 1. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n > -1$.
- **2.** On considère la suite (v_n) définie par : pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{u_n + 1}$.
 - **a.** Justifier que (v_n) est bien définie et qu'il s'agit d'une suite arithmétique.
 - **b.** En déduire, pour tout $n \in \mathbb{N}$, une expression de v_n puis une expression de u_n en fonction de n.

Exercice 4. On considère la suite (u_n) définie par $u_0 = 2$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = -\frac{1}{2}u_n + 2$.

- 1. On considère la suite (v_n) définie par : pour tout $n \in \mathbb{N}$, $v_n = u_n \frac{4}{3}$. Montrer que (v_n) est une suite géométrique et en déduire, pour tout $n \in \mathbb{N}$, une expression de v_n en fonction de n.
- **2.** Déterminer, pour tout $n \in \mathbb{N}$, une expression de u_n en fonction de n.
- **3.** Calculer, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} u_k$.

Exercice 5.

- 1. Démontrer que, pour tout entier $k \ge 2$, $\ln\left(1 \frac{1}{k}\right) = \ln(k 1) \ln(k)$.
- **2.** En déduire, pour tout entier $n \ge 2$, la valeur de $\sum_{k=2}^{n} \ln \left(1 \frac{1}{k}\right)$ en fonction de n.

Exercice 6.

- **1.** Démontrer que, pour tout entier $k \ge 1$, $\frac{1}{4k^2 1} = \frac{1}{2} \left(\frac{1}{2k 1} \frac{1}{2k + 1} \right)$.
- 2. En déduire, pour tout entier $n \ge 1$, la valeur de $\sum_{k=1}^{n} \frac{1}{4k^2 1}$ en fonction de n.

Exercice 7.

- **1.** Vérifier que, pour tout $\alpha \in \left]0; \frac{\pi}{4}\right[, \tan(\alpha) = \frac{1}{\tan(\alpha)} \frac{2}{\tan(2\alpha)}.$
- **2.** En déduire, pour tout entier $n \ge 1$, la valeur de $\sum_{k=1}^{n} \frac{1}{2^k} \tan\left(\frac{\pi}{2^{k+2}}\right)$ en fonction de n.

Exercice 8. On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 2n + 2$.

- 1. Calculer u_1 et u_2 . La suite (u_n) est-elle arithmétique? géométrique?
- **2.** Soit $n \in \mathbb{N}$.
 - a. En utilisant la relation de récurrence vérifiée par (u_n) , calculer $\sum_{k=0}^{n-1} u_{k+1} u_k$.
 - **b.** En déduire une expression de u_n en fonction de n.

Exercice 9. On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{u_n}{1 + nu_n}.$$

- 1. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n > 0$.
- **2.** On considère la suite (v_n) définie par : pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{u_{n+1}} \frac{1}{u_n}$. Déterminer, pour tout $n \in \mathbb{N}$, une expression de v_n en fonction de n.
- 3. Soit $n \in \mathbb{N}$. En considérant $\sum_{k=0}^{n-1} v_k$, déterminer une expression de u_n en fonction de n.

Exercice 10. Soit n et m deux entiers naturels non nuls. Calculer les sommes suivantes

$$S_1 = \sum_{i=1}^n \sum_{j=1}^m i2^j$$
 $S_2 = \sum_{i=1}^n \sum_{j=1}^m ij^2$ $S_3 = \sum_{i=0}^n \sum_{j=0}^n (i+j)^2$.

Exercice 11. Soit n un entier naturel non nul. Calculer la somme $\sum_{i=1}^{n} \sum_{j=0}^{i} \frac{j}{i+1}$.

Exercice 12. Soit
$$n \in \mathbb{N}^*$$
. Calculer $S = \sum_{k=0}^n \sum_{j=0}^k \binom{n}{k} \binom{k}{j}$.

Exercice 13. Soit un entier $n \ge 2$. Calculer $\sum_{k=2}^{n} \ln \left(\frac{k^3}{(k+1)(k-1)^2} \right)$.

Exercice 14. On considère la suite (F_n) définie par $F_0=0,\ F_1=1$ et, pour tout $n\in\mathbb{N},\ F_{n+2}=F_{n+1}+F_n.$

Montrer que, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} F_k = F_{n+2} - 1$ et $\sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$.