
♦ TP9 – Simulations de variables aléatoires liées
à un schéma de Bernoulli

On rappelle que le module random comporte la fonction random() qui renvoie un nombre
flottant au hasard appartenant à l’intervalle [0 ; 1[ et la fonction randint(a,b) qui renvoie un
entier aléatoire entre a et b compris.

Question 1.
1. Quelle instruction doit-on écrire pour importer toutes les fonctions du module random ?
2. Quelle instruction doit-on écrire si on ne souhaite importer que les fonctions random et

randint du module random ?

1. Pour importer toutes les fonctions du module random, on utilise :

from random import *

2. Pour importer seulement les fonctions randint et random du module random, on utilise :

from random import randint , random

I. — Simulation de variables suivant des lois usuelles

1) Loi de Bernoulli
Question 2. On considère la fonction simul suivante :

def simul ():
return random ()

Cette fonction simule une variable aléatoire X. Quelle est le loi de X ?

Solution. X suit une loi uniforme U([0 ; 1]).

Question 3. On considère la variable aléatoire X de la question précédente. Si p ∈ ]0 ; 1[, que
vaut P(X ⩽ p) ?

Solution. P(X ⩽ p) = P(X ∈ [0 ; p]) =
∫ p

0
1 dt = [t]p0 = p.

Question 4. Utiliser ce qui précède pour écrire une fonction bernoulli prenant en argument
un réel p appartenant à ]0 ; 1[ et qui simule une variable aléatoire suivant une loi de Bernoulli de
paramètre p.

Solution.

def bernoulli (p):
if random ()<p:

return 1
else:

return 0



2) Loi binomiale
Question 5. On souhaite écrire une fonction bernoulli_liste qui simule, sous la forme d’une
liste, n variables aléatoires indépendantes X1, X2, ..., Xn suivant toutes la même loi de Bernoulli
de paramètre p.

Parmi les 4 fonctions proposées ci-dessous, certaines conviennent et d’autres non. Identifier
lesquelles et expliquer pourquoi il faut éliminer les autres. On vérifiera ensuite ses réponses à
l’aide de l’ordinateur.

def bernoulli_liste1 (n,p):
L=[ bernoulli (p)]*n
return L

def bernoulli_liste2 (n,p):
L=[ bernoulli (p) for i in range(n)]
return L

def bernoulli_liste3 (n,p):
L=[]
for i in range(n):

L+= bernoulli (p)
return L

def bernoulli_liste4 (n,p):
L=[]
for i in range(n):

L.append( bernoulli (p))
return L

Solution. Il faut éliminer la fonction bernoulli_liste1 car on va créer une liste conte-
nant n fois la même valeur (phénomène d’aliasing). Il faut également élimier la fonction
bernoulli_liste3 car la syntaxe L+=bernoulli(p) est incorrecte : elle tente de concaténer la
liste L et l’entier bernoulli(p). Cela aurait été correct si la syntaxe avait été L+=[bernoulli(p)].

Les deux autres fonctions conviennent.

Question 6. On rappelle que si X1, X2, ..., Xn sont n variables aléatoires indépendantes suivant
toutes la même loi de Bernoulli de paramètre p alors la variable aléatoire S = X1 +X2 + · · ·+Xn

suit une loi binomiale de paramètres n et p.
En utilisant une des fonctions bernoulli_liste convenables de la question précédente,

écrire une fonction binomiale prenant en argument un entier naturel non nul n et un nombre
réel p appartenant à ]0 ; 1[ et qui simule une variable aléatoire suivant une loi binomiale de
paramètres n et p.

Solution.

def binomiale (n,p):
S=0
for e in bernoulli_liste (n,p):

S += e
return S

3) Loi géométrique
Question 7. Rappeler l’interprétation d’une loi géométrique de paramètre p dans le cadre d’un
schéma de Bernoulli infini où le succès a une probabilité p.

En déduire une fonction geometrique prenant en argument un réel p compris entre 0 et 1 et
qui simule une variable aléatoire suivant une loi géométrique de paramètre p. On utilisera la
fonction bernoulli.

Solution. La loi géométrique est la loi de la variable égale au rang du premier succès dans
le schéma de Bernoulli.



def geometrique (p):
c=1
while bernoulli (p) == 0:

c+=1
return c

4) Approximation de la loi de Poisson par une loi binomiale
On fixe un réel λ > 0. Pour tout n ∈ N∗, on considère une variable aléatoire Xn suivant une

loi binomiale de paramètres n et λ

n
. On désigne, de plus, par Y une variable aléatoire suivant

une loi de Poisson de paramètre λ.
On peut démontrer (c’est le but de l’exercice 4) que lorsque n devient grand, la variable

aléatoire Xn est une bonne approximation de Y . Autrement dit, lorsque n devient grand, on

peut approcher la loi de Poisson P(λ) par la loi binomiale B

(
n,

λ

n

)
.

Question 8. Écrire une fonction approx_Poisson qui prend en arguments un réel lamb stricte-
ment positif et un entier naturel n et qui simule une variable aléatoire dont la loi est approxima-
tivement une loi de Poisson pour n assez grand.

Solution.

def approx_Poisson (lamb ,n):
return binomiale (n,lamb/n)

Question 9. Écrire une fonction liste_approx_Poisson qui prend en arguments un entier
naturel N non nul, un réel strictement positif lamb et un entier naturel n et qui renvoie une liste
de N résultats renvoyés par approx_Poisson(lamb,n).

Solution.

def liste_approx_Poisson (N,lamb ,n):
return [ approx_Poisson (lamb ,n) for i in range(N) ]

Question 10. Écrire une fonction frequence prenant en arguments un nombre x et une liste
de nombres L et qui renvoie la fréquence d’apparition de x dans L i.e. le nombre d’occurrences
de x dans la liste L divisé par le nombre total d’éléments de la liste.

Solution.

def frequence (x,L):
c = 0
for e in L:

if e == x:
c += 1

return c/len(L)

Question 11. Le tableau ci-dessous donne la valeur arrondie à 10−3 près de P(Y = k) pour
différentes valeurs de λ et de k.



k
λ 0,5 1 1,5 2 2,5 3 4 5 6

0 0,607 0,368 0,223 0,135 0,082 0,050 0,018 0,007 0,002
1 0,303 0,368 0,335 0,271 0,205 0,149 0,073 0,037 0,015
2 0,076 0,184 0,251 0,271 0,257 0,224 0,147 0,084 0,045
3 0,013 0,061 0,126 0,180 0,214 0,224 0,195 0,140 0,089
4 0,002 0,015 0,047 0,090 0,134 0,168 0,195 0,175 0,134
5 0,000 0,003 0,014 0,036 0,067 0,101 0,156 0,175 0,161
10 0,000 0,000 0,000 0,000 0,000 0,001 0,005 0,018 0,041

Pour quelques valeurs de k et de λ, comparer ces valeurs avec les résultats renvoyés, pour
différentes valeurs de n, par frequence(k,liste_approx_Poisson(1000,lamb,n)) lorsque k
prend la valeur k et lamb la valeur λ.

Solution.

print( frequence (3, liste_approx_Poisson (1000 , 2, 100)))
0.189
print( frequence (3, liste_approx_Poisson (1000 , 2, 1000)))
0.182
print( frequence (3, liste_approx_Poisson (1000 , 2, 10000)))
0.177
print( frequence (5, liste_approx_Poisson (1000 , 1, 100)))
0.001
print( frequence (1, liste_approx_Poisson (1000 , 5, 10000)))
0.04
print( frequence (2, liste_approx_Poisson (1000 , 1.5, 10000)))
0.251
print( frequence (4, liste_approx_Poisson (1000 , 6, 10000)))
0.131

Les valeurs sont en effet proches de celles du tableau.

II. — Estimation de l’espérance
D’après la loi des grands nombres, que nous verrons en fin d’année, lorsqu’on fait la moyenne

des valeurs prises par un grand nombre de variables aléatoires indépendantes suivant toutes la
même loi alors on obtient un résultat proche de l’espérance commune à ces variables. On va
utiliser cela pour estimer les espérances de variables suivant l’une des lois précédentes.

Question 12. Écrire une fonction moyenne qui prend en argument une liste L de nombres
(entiers ou flottants) et qui renvoie la moyenne des éléments de L.

Solution.

def moyenne (L):
S=0
for e in L:

S += e
return S/len(L)



Question 13. Écrire une fonction estimation_bernoulli qui prend en argument un entier
naturel non nul N et un réel p compris entre 0 et 1 et qui renvoie une estimation de l’espérance
d’une variable suivant une loi de Bernoulli de paramètre p à partir de N valeurs d’une telle
variable. On utilisera les fonctions bernoulli_liste et moyenne.

Solution.

def estimation_bernoulli (N,p):
return moyenne ( bernoulli_liste (N,p))

Question 14. Afficher le résultat renvoyé par estimation_bernoulli(19000,p) pour diffé-
rentes valeurs de p. Ceci est-il en accord avec la valeur de l’espérance d’une variable aléatoire
suivant une loi de Bernoulli ?

Solution. Voici quelques résultats obtenus :

print( estimation_bernoulli (10000 ,0.8))
print( estimation_bernoulli (10000 ,0.26))
print( estimation_bernoulli (10000 ,0.57))
print( estimation_bernoulli (10000 ,0.98))

0.8003
0.2263
0.5722
0.983

On constate que les valeurs obtenue sont proches du paramètre p donc de l’espérance de la
variable.

Question 15. Reprendre, en adaptant, les deux questions précédentes pour estimer l’espérance
d’une variable aléatoire suivant une loi binomiale puis pour estimer l’espérance d’une variable
aléatoire suivant une loi géométrique.

Solution. Pour la loi binomiale,

def estimation_binomiale (N,n,p):
L=[ binomiale (n,p) for i in range(N)]
return moyenne (L)

print( estimation_binomiale (10000 ,20 ,0.8) ,20*0.8)
print( estimation_binomiale (10000 ,100 , 0.26) ,100*0.26)
print( estimation_binomiale (10000 ,50 ,0.57) ,50*0.57)
print( estimation_binomiale (10000 ,200 ,0.98) ,200*0.98)

16.0153 16.0
25.9384 26.0
28.4911 28.499999999999996
196.0075 196

On constate que les résultats obtenus sont proches de np qui est l’espérance de X ↪→ B(n, p).

Pour la loi géométrique,



def estimation_geometrique (N,p):
L=[ geometrique (p) for i in range(N)]
return moyenne (L)

print( estimation_geometrique (10000 ,0.8) , 1/0.8)
print( estimation_geometrique (10000 ,0.26) , 1/0.26)
print( estimation_geometrique (10000 ,0.57) , 1/0.57)
print( estimation_geometrique (10000 ,0.98) , 1/0.98)

1.2581 1.25
3.8178 3.846153846153846
1.7389 1.7543859649122808
1.0206 1.0204081632653061

On constate que les résultats obtenus sont proches de 1
p

qui est l’espérance de X ↪→ G (p).

III. — Estimation d’un paramètre par intervalle de confiance
On considère un schéma de Bernoulli dont on ne connaît pas le paramètre p. On aimerait

obtenir une estimation de p.
Si on considère la variable aléatoire X égale à 1 en cas de succès et 0 en cas d’échec alors

X ↪→ B(p) et E(X) = p. La question 11 donne une façon d’estimer l’espérance de X et donc
d’estimer p.

Cependant, dans la pratique, il n’est pas toujours possible de procéder de la sorte pour des
raisons de coup financier, de temps disponible ou pour d’autres raisons matérielles. Par exemple,
si on veut tester si des boîtes de conserve sont conformes ou pas et qu’il est nécessaire de les
ouvrir pour cela, on ne va pas tester toute la production, et même faire un test sur un échantillon
de grande taille peut s’avérer extrêmement coûteux.

On va considérer la situation suivante. Une entreprise fabrique des objets. Chaque objet,
indépendamment des autres, a une probabilité p ∈ [0 ; 0,1] d’être défectueux.

On aimerait estimer la probabilité p à partir d’un échantillon, aussi petit que possible,
d’objets prélevés au hasard dans la production.

Question 16. Si on entre l’instruction suivante, à quel intervalle appartient le nombre p ?

p=random () /10

Solution. Par définition, random() est un nombre appartenant à [0 ; 1[ donc p appartient
[0 ; 0,1[.

Question 17. Écrire une fonction production qui prend en argument un entier N et qui renvoie
une liste L de N valeurs d’une variable X ↪→ B(p) où p est un réel inconnu choisi aléatoirement
entre 0 et 0,1. On utilisera la fonction bernoulli_liste.

Solution.

def production (N):
p=random () /10
return bernoulli_liste (N,p)



Cette liste représente la production de l’usine, la valeur 0 signifiant que l’objet n’a pas de
défaut et la valeur 1 signifiant que l’objet possède un défaut.

Question 18. Écrire une fonction echantillon qui prend en arguments une liste L et un entier
k inférieur à la longueur de la liste et qui renvoie une liste de k éléments choisis aléatoirement à
des rangs distincts dans L. On pourra utiliser la méthode de listes .pop() mais on écrira une
fonction sans effet de bord.

Par exemple, si la liste est L est [0,1,1,0,0,0] et si k vaut 4 alors une liste possible est la
liste [1, 0, 0, 0] obtenue en prenant dans L les termes de rangs respectifs 2, 5, 0 et 3.

Solution.

def echantillon (L,k):
M = [e for e in L]
E = []
for i in range(k):

j = randint (0,len(M) -1)
E.append(M.pop(j))

return E

La fonction echantillon permet d’obtenir un échantillon aléatoire de k valeurs de la liste,
ce qui représente donc un échantillon de k objets de la production. Notons f la fréquence de 1
dans cet échantillon, ce qui représente la fréquence d’objets défectueux dans l’échantillon.

Un théorème permet d’affirmer que, dans au moins 95% des cas, la probabilité p appartient
à l’intervalle

[
f − 1√

k
; f + 1√

k

]
. Cet intervalle est appelé intervalle de confiance de p au seuil de

confiance 95%.

Question 19. Soit m ∈ N. Quelle doit-être la taille k d’un échantillon pour obtenir, grâce à
l’intervalle de confiance, un encadrement d’amplitude 10−m de p. (On rappelle que l’amplitude
d’un encadrement du type a ⩽ p ⩽ b est le réel b − a).

Solution. L’amplitude de l’intervalle de confiance est

f + 1√
k

−
(

f − 1√
k

)
= f + 1√

k
− f + 1√

k
= 2√

k

donc cette amplitude est inférieure à 10−m si et seulement si

2√
k

= 10−m ⇐⇒
√

k

2 = 10m ⇐⇒
√

k = 2 · 10m ⇐⇒ k = 4 · 102m.

Ainsi, pour obtenir une intervalle de confiance d’amplitude 10−m, on doit prendre k = 4 · 102m.

Question 20. Compléter le code de la fonction int_conf qui prend en arguments deux entiers
naturels N et m, qui simule, sous forme d’une liste, une production de N objets, sélectionne un
échantillon dans cette liste de sorte à calculer et renvoyer un encadrement d’amplitude 10−m de
la probabilité p.



from math import sqrt

def int_conf (N,m):
L= production (N)
k =4*10**(2* m)
M= echantillon (L,k)
f= frequence (1,M)
return f -1/ sqrt(k) , f+1/ sqrt(k)

Faire différents tests avec la fonction int_conf avec N = 100 000 ou N = 1 000 000 et m = 1
ou m = 2 en prenant garde au faite que la taille de l’échantillon doit rester inférieur à la taille
de la liste.

Question 21. En utilisant certaines des fonctions précédentes, écrire une fonction confiance
qui prend en argument une probabilité p, une taille de production N, une taille d’échantillon k
et un nombre de simulations S et qui renvoie le nombre de points de pourcentage d’intervalles
de confiance qui contiennent effectivement la probabilité p lors de S simulations.

Vérifier, à l’aide de cette fonction, le seuil de confiance de 95% garanti par la théorie.

Solution.

from math import sqrt

def confiance (p,N,k,S):
c = 0
for i in range(S):

L= bernoulli_liste (N,p)
M= echantillon (L,k)
f= frequence (1,M)
if f -1/ sqrt(k) <= p and p <= f+1/ sqrt(k):

c += 1
return c/S*100

print( confiance (0.4 , 10000 , 500, 1000))
print( confiance (0.2 , 10000 , 1000 , 1000))
print( confiance (0.75 , 100000 , 2000 , 100))
print( confiance (0.1 , 10000 , 1000 , 1000))

96.6
98.9
99.0
99.8

On constate que, dans tous les cas, on est bien au-dessus du seuil des 95%.



IV. — Exercices
Exercice 1. Deux personnes disposent chacune d’une pièce de monnaie qui tombe sur « face »
avec une probabilité p ∈ ]0 ; 1[. Ces deux personnes lancent simultanément leur pièce et répètent
les lancers jusqu’à obtenir « face » pour la première fois en même temps. On note X la variable
aléatoire égale au nombre de lancers nécessaires.

1. Écrire une fonction nb_lancers qui prend en argument un réel p compris entre 0 et 1 et
qui simule la variable aléatoire X.

2. Écrire une fonction estimation_esp qui prend en arguments un réel p strictement
compris entre 0 et 1 et un entier N strictement positif et qui permet d’estimer l’espérance
de X à partir de N simulations de X. On utilisera la fonction nb_lancers.

3. En utilisant la fonction précédente avec N égal à 10 000, estimer l’espérance de X pour p
valant 0,3, 0,5 et 0,9.

4. Montrer que X suit une loi géométrique dont on exprimera le paramètre en fonction de p
puis vérifier la pertinence des estimations de la question précédente.

Solution.
1.

def nb_lancers (p):
c = 1
while random ()>p or random ()>p:

c += 1
return c

2.

def estimation_esp (p,N):
S = 0
for i in range(N):

S += nb_lancers (p)
return S/N

3.

print( estimation_esp (0.3 , 10000))
print( estimation_esp (0.5 , 10000))
print( estimation_esp (0.9 , 10000))

11.2652
4.0264
1.2461

4. L’expérience consiste en un schéma de Bernoulli dont le succès est « le deux personnes
obtiennent « face » » et X est la variable aléatoire égale au rang du premier succès
donc X suit une loi géométrique. Les lancers des deux personnes étant indépendants, la
probabilité de succès est p × p = p2. Ainsi, X ↪→ G (p2). On en déduit que E(X) = 1

p2 .

Ainsi, pour p = 0,3, E(X) = 1
0,32 ≈ 11,11, pour p = 0,5, E(X) = 1

0,52 = 4 et, pour

p = 0,9, E(X) = 1
0,92 ≈ 1,23. Ainsi, les résultats trouvés à la question précédente sont

cohérents.



Exercice 2. On considère une urne qui contient initialement 1 boule blanche et 1 boule noire.
On effectue des tirages successifs dans cette urne de la manière suivante :

• si la boule tirée est noire, on s’arrête ;
• si la boule tirée est blanche, on la remet dans l’urne accompagnée d’une autre boule

blanche.
On note X la variable aléatoire égale au nombre de tirages effectués i.e. au nombre de tirages
nécessaires pour obtenir la boule noire.

1. Écrire une fonction simul_X (sans argument) qui simule la variable aléatoire X.
2. Écrire une fonction loi_X qui prend en arguments deux entiers n et N et qui permet

d’obtenir une estimation de la probabilité de l’évènement {X = n} à partir de N simulations
de X.

3. En prenant N égal à 10 000, estimer les probabilités que X soit égale à 1, à 2, à 3 et à 4.

4. a. Démontrer que, pour tout n ∈ N∗, P(X = n) = 1
n(n + 1).

b. Vérifier la pertinence des estimations précédentes.
c. La variable aléatoire X admet-elle une espérance ? Si oui, la calculer.

Solution.
1. On simule le tirage de boules par un tirage d’entiers, en supposant que le boule noire

correspond au nombre 1.

def simul_X ():
nb_boules = 2
while randint (1, nb_boules ) > 1:

nb_boules += 1
return nb_boules - 1

2.

def loi_X(n,N):
c = 0
for i in range(N):

if simul_X () == n:
c += 1

return c/N

3.

for k in range (1 ,4):
print(loi_X(k, 10000))

0.4968
0.166
0.087

4. a. Notons, pour tout n ∈ N∗, Ak : « Tirer une boule blanche au k-ième tirage ». Alors,
pour tout n ∈ N∗,

{X = n} = A1 ∩ A2 ∩ · · · ∩ An−1 ∩ An



donc, d’après la formule des probabilités composées,

P(X = n) = P(A1)P(A2 | A1)P(A3 | A1 ∩ A2) · · · P(An−1 |
n−2
∩

i=1
Ai)P(An |

n−1
∩

i=1
Ai)

= 1
2 × 2

3 × 3
4 × · · · × n − 1

n
× 1

n + 1

Le dénominateur d’un terme se simplifie avec le numérateur du suivant du premier à
l’avant-dernier terme donc P(X = n) = 1

n
× 1

n + 1 = 1
n(n + 1).

b. On en déduit que P(X = 1) = 1
2 = 0,5, P(X = 2) = 1

6 ≈ 0,167 et P(X = 3) = 1
12 ≈

0,083. Ces valeurs sont cohérentes avec les estimations de la question 3..

c. Comme nP(X = n) = 1
n + 1 ∼

n→+∞

1
n

et comme
∑ 1

n
diverge, par équivalence,∑

nP(X = n) diverge. Ainsi, X n’admet pas d’espérance.

Exercice 3. Soit n ∈ N∗. On considère une urne contenant n boules numérotées de 1 à n. On
tire successivement et avec remise deux boules dans l’urne et on note Y le plus grand des deux
numéros obtenus.

1. Écrire une fonction simul_Y qui prend en argument un entier non nul n et qui simule Y .
2. Écrire une fonction loi_Y qui prend en arguments deux entiers n et N, qui simule N

réalisations de Y et qui renvoie une liste de longueur n contenant les fréquences des
évènements {Y = 1}, {Y = 2}, ..., {Y = n}.

3. Déterminer la loi de Y .
4. Vérifier la pertinence des résultats renvoyés par la fonction loi_Y pour différentes valeurs

de n et de N.

Solution.
1.

def simul_Y (n):
a = randint (1,n)
b = randint (1,n)
if a > b:

return a
else:

return b

2.

def loi_Y(n,N):
L = [0 for i in range(n)]
for i in range(N):

L[ simul_Y (n) -1] += 1
for i in range(n):

L[i] = L[i]/N
return L

3. Notons Z1 le numéro de la première boule tirée et Z2 celui de la seconde. Alors, pour
tout k ∈ J0, nK,

{Y ⩽ k} = {Z1 ⩽ k} ∩ {Z2 ⩽ k}.



Comme il y a remise, les tirages sont indépendants dont Z1 et Z2 sont indépendantes et
ainsi, pour tout k ∈ J0, nK,

P(Y ⩽ k) = P(Z1 ⩽ k)P(Z2 ⩽ k) =
(

k

n

)2

= k2

n2 .

On en déduit que, pour tout k ∈ J1, nK,

P(Y = k) = P(Y ⩽ k) − P(Y ⩽ k − 1) = k2

n2 − (k − 1)2

n2 = k2 − (k2 − 2k + 1)
n2

donc P(Z ⩽ k) = 2k − 1
n2 .

4.

print(loi_Y (5 ,10000) , [(2*k -1) /5**2 for k in range (1 ,6) ])
print(loi_Y (7 ,1000) , [(2*k -1) /7**2 for k in range (1 ,8) ])
print(loi_Y (10 ,100000) , [(2*k -1) /10**2 for k in range (1 ,11) ])
print(loi_Y (3 ,1000000) , [(2*k -1) /3**2 for k in range (1 ,4) ])

[0.042 , 0.113 , 0.2042 , 0.2852 , 0.3556] [0.04 , 0.12 , 0.2,
0.28 , 0.36]

[0.028 , 0.051 , 0.102 , 0.144 , 0.151 , 0.24 , 0.284]
[0.02040816326530612 , 0.061224489795918366 ,
0.10204081632653061 , 0.14285714285714285 ,
0.1836734693877551 , 0.22448979591836735 ,
0.2653061224489796]

[0.01062 , 0.02971 , 0.04971 , 0.07014 , 0.09206 , 0.10953 ,
0.13181 , 0.14963 , 0.16831 , 0.18848] [0.01 , 0.03 , 0.05 ,
0.07 , 0.09 , 0.11 , 0.13 , 0.15 , 0.17 , 0.19]

[0.111139 , 0.333525 , 0.555336] [0.1111111111111111 ,
0.3333333333333333 , 0.5555555555555556]

On constate que les résultats sont cohérents et qu’ils sont d’autant plus précis que N
est grand.

Exercice 4. On fixe un réel λ > 0 et un entier k ∈ N. Pour tout n ⩾ k, on considère une
variable aléatoire Xn suivant une loi binomiale de paramètres n et λ

n
. On désigne, de plus, par

Y une variable aléatoire suivant une loi de Poisson de paramètre λ.
1. Soit un entier n ⩾ k. Rappeler les valeurs de P(Xn = k) et P(Y = k).

Solution. Par définition, P(Xn = k) =
(

n

k

)(
λ

n

)k (
1 − λ

n

)n−k

et P(Y = k) =

λk

k! e−λ.

2. Soit un entier n ⩾ k. Rappeler les valeurs de E(Xn), V(Xn), E(Y ) et V(Y ) puis vérifier
que E(Xn) −−−−→

n→+∞
E(Y ) et V(Xn) −−−−→

n→+∞
V(Y ).

Solution. Par propriété, E(Xn) = n × λ

n
= λ et E(Y ) = λ donc E(Xn) −−−−→

n→+∞
E(Y ).

De même, V(Xn) = n

(
λ

n

)(
1 − λ

n

)
= λ

(
1 − λ

n

)
−−−−→
n→+∞

λ et V(Y ) = λ donc

V(Xn) −−−−→
n→+∞

V(Y ).



3. Montrer que, lorsque n tend vers +∞,
(

n

k

)
∼ nk

k! .

Solution. Par définition,(
n

k

)
= n!

k!(n − k)! = n(n − 1)(n − 2) · · · (n − k + 1)
k! .

Or, pour tout i ∈ J0, k−1K, n−i ∼ n donc, par produit, n(n−1)(n−2) · · · (n−k+1) ∼ nk

et finalement
(

n

k

)
∼ nk

k! .

4. Soit un entier n ⩾ k. Écrire
(

1 − λ

n

)n−k

à l’aide de la fonction exponentielle.

Solution. Par propriété,
(

1 − λ

n

)n−k

= e(n−k) ln(1− λ
n

).

5. Déduire de la question précédente que lim
n→+∞

(
1 − λ

n

)n−k

= e−λ.

Solution. Comme lim
n→+∞

λ

n
= 0, ln

(
1 − λ

n

)
∼ −λ

n
donc

(n − k) ln
(

1 − λ

n

)
∼ −(n − k)λ

n
∼ −n

λ

n
∼ −λ.

Ainsi, lim
n→+∞

(n−k) ln
(
1 − λ

n

)
= −λ donc, par continuité de exp sur R, lim

n→+∞

(
1 − λ

n

)n−k

=

e−λ.
6. Conclure que P(Xn = k) −−−−→

n→+∞
P(Y = k).

Solution. Comme lim
n→+∞

(
1 − λ

n

)n−k

= e−λ ̸= 0,
(

1 − λ

n

)n−k

∼ e−λ donc

P(Xn = k) =
(

n

k

)(
λ

k

)n (
1 − λ

n

)n−k

∼ nk

k! × λk

nk
× e−λ ∼ λk

k! e−k = P(Y = k)

donc P(Xn = k) −−−−→
n→+∞

P(Y = k).


