¢ TP9 — Simulations de variables aléatoires liées
a un schéma de Bernoulli

On rappelle que le module random comporte la fonction random() qui renvoie un nombre
flottant au hasard appartenant a I'intervalle [0; 1] et la fonction randint (a,b) qui renvoie un
entier aléatoire entre a et b compris.

Question 1.
1. Quelle instruction doit-on écrire pour importer toutes les fonctions du module random ?

2. Quelle instruction doit-on écrire si on ne souhaite importer que les fonctions random et
randint du module random ?

1. Pour importer toutes les fonctions du module random, on utilise :

from random import

2. Pour importer seulement les fonctions randint et random du module random, on utilise :

from random import randint, random

I. — Simulation de variables suivant des lois usuelles

1) Loi de Bernoulli

Question 2. On consideére la fonction simul suivante :

def simul ():
return random ()

Cette fonction simule une variable aléatoire X. Quelle est le loi de X 7
Solution. X suit une loi uniforme U([0;1]).

Question 3. On considére la variable aléatoire X de la question précédente. Si p € |0;1[, que
vaut P(X <p)?

Solution. P(X < p) =P(X € [0;p]) = /pldt = [t]o = p.
JO

Question 4. Utiliser ce qui précede pour écrire une fonction bernoulli prenant en argument
un réel p appartenant & ]0; 1[ et qui simule une variable aléatoire suivant une loi de Bernoulli de
parametre p.

Solution.

def bernoulli(p):
if random()<p:
return 1
else:
return O




2) Loi binomiale

Question 5. On souhaite écrire une fonction bernoulli_liste qui simule, sous la forme d’une
liste, n variables aléatoires indépendantes X7, Xs, ..., X,, suivant toutes la méme loi de Bernoulli

de parametre p.
Parmi les 4 fonctions proposées ci-dessous, certaines conviennent et d’autres non. Identifier

lesquelles et expliquer pourquoi il faut éliminer les autres. On vérifiera ensuite ses réponses a
I’aide de 'ordinateur.

def bernoulli_listel(n,p): def bernoulli_liste2(n,p):
L=[bernoulli(p)]*n L=[bernoulli(p) for i in range(n)]
return L return L
def bernoulli_liste3(n,p): def bernoulli_listed4(n,p):
L=[] L=[]
for i in range(n): for i in range(n):
L+=bernoulli (p) L.append (bernoulli (p))
return L return L

Solution. Il faut éliminer la fonction bernoulli listel car on va créer une liste conte-
nant n fois la méme valeur (phénomeéne d’aliasing). Il faut également élimier la fonction
bernoulli_liste3 car la syntaxe L+=bernoulli(p) est incorrecte : elle tente de concaténer la
liste L et '’entier bernoulli (p). Cela aurait été correct si la syntaxe avait été L+=[bernoulli(p)].

Les deux autres fonctions conviennent.

Question 6. On rappelle que si X;, Xs, ..., X,, sont n variables aléatoires indépendantes suivant
toutes la méme loi de Bernoulli de parametre p alors la variable aléatoire S = X; 4+ Xo+---+ X,
suit une loi binomiale de parametres n et p.

En utilisant une des fonctions bernoulli liste convenables de la question précédente,
écrire une fonction binomiale prenant en argument un entier naturel non nul n et un nombre
réel p appartenant a ]0;1[ et qui simule une variable aléatoire suivant une loi binomiale de
parametres n et p.

Solution.

def binomiale(n,p):

S5=0
for e in bernoulli liste(n,p):
S += e

return S

3) Loi géométrique

Question 7. Rappeler l'interprétation d’une loi géométrique de parametre p dans le cadre d'un
schéma de Bernoulli infini ou le succeés a une probabilité p.

En déduire une fonction geometrique prenant en argument un réel p compris entre 0 et 1 et
qui simule une variable aléatoire suivant une loi géométrique de parametre p. On utilisera la
fonction bernoulli.

Solution. La loi géométrique est la loi de la variable égale au rang du premier succes dans
le schéma de Bernoulli.




def geometrique (p):
e=il
while bernoulli(p) == O0:
c+=1
return c

4) Approximation de la loi de Poisson par une loi binomiale

On fixe un réel A > 0. Pour tout n € N*, on considére une variable aléatoire X,, suivant une
)

A
loi binomiale de parametres n et —. On désigne, de plus, par Y une variable aléatoire suivant

une loi de Poisson de parametre .
On peut démontrer (c’est le but de 'exercice 4) que lorsque n devient grand, la variable
aléatoire X,, est une bonne approximation de Y. Autrement dit, lorsque n devient grand, on

A
peut approcher la loi de Poisson Z(\) par la loi binomiale % (n, >
n

Question 8. Ecrire une fonction approx_Poisson qui prend en arguments un réel lamb stricte-
ment positif et un entier naturel n et qui simule une variable aléatoire dont la loi est approxima-
tivement une loi de Poisson pour n assez grand.

Solution.

def approx_Poisson(lamb,n):
return binomiale(n,lamb/n)

Question 9. Ecrire une fonction liste_approx_Poisson qui prend en arguments un entier
naturel N non nul, un réel strictement positif lamb et un entier naturel n et qui renvoie une liste
de N résultats renvoyés par approx_Poisson(lamb,n).

Solution.

def liste_approx_Poisson(N,lamb,n):
return [ approx_Poisson(lamb,n) for i in range(N) ]

Question 10. Ecrire une fonction frequence prenant en arguments un nombre x et une liste
de nombres L et qui renvoie la fréquence d’apparition de x dans L i.e. le nombre d’occurrences
de x dans la liste L divisé par le nombre total d’éléments de la liste.

Solution.

def frequence(x,L):

c =0
for e in L:
if e == x:
c += 1

return c/len(L)

Question 11. Le tableau ci-dessous donne la valeur arrondie a 1072 pres de P(Y = k) pour
différentes valeurs de \ et de k.



0,5 1 1,5 2 2,5 3 4 5 6

0,607 | 0,368 | 0,223 | 0,135 | 0,082 | 0,050 | 0,018 | 0,007 | 0,002
0,303 | 0,368 | 0,335 | 0,271 | 0,205 | 0,149 | 0,073 | 0,037 | 0,015
0,076 | 0,184 | 0,251 | 0,271 | 0,257 | 0,224 | 0,147 | 0,084 | 0,045
0,013 | 0,061 | 0,126 | 0,180 | 0,214 | 0,224 | 0,195 | 0,140 | 0,089
0,002 | 0,015 | 0,047 | 0,090 | 0,134 | 0,168 | 0,195 | 0,175 | 0,134
0,000 | 0,003 | 0,014 | 0,036 | 0,067 | 0,101 | 0,156 | 0,175 | 0,161
10 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,001 | 0,005 | 0,018 | 0,041

QY =W N = O

Pour quelques valeurs de k et de A, comparer ces valeurs avec les résultats renvoyés, pour
différentes valeurs de n, par frequence(k,liste_approx_Poisson(1000,lamb,n)) lorsque k
prend la valeur k et lamb la valeur A.

Solution.

print (frequence(3,liste_approx_Poisson (1000, 2, 100)))
0.189

print (frequence(3,1liste_approx_Poisson (1000, 2, 1000)))
0.182

print (frequence(3,liste_approx_Poisson (1000, 2, 10000)))
0.177

print (frequence(5,liste_approx_Poisson (1000, 1, 100)))
0.001

print (frequence(1,liste_approx_Poisson (1000, 5, 10000)))
0.04

print (frequence(2,liste_approx_Poisson (1000, 1.5, 10000)))
0.251

print (frequence(4,liste_approx_Poisson (1000, 6, 10000)))
0.131

Les valeurs sont en effet proches de celles du tableau.

I1I. — Estimation de ’espérance

D’apres la loi des grands nombres, que nous verrons en fin d’année, lorsqu’on fait la moyenne
des valeurs prises par un grand nombre de variables aléatoires indépendantes suivant toutes la
méme loi alors on obtient un résultat proche de I'espérance commune a ces variables. On va
utiliser cela pour estimer les espérances de variables suivant 'une des lois précédentes.

Question 12. Ecrire une fonction moyenne qui prend en argument une liste L de nombres
(entiers ou flottants) et qui renvoie la moyenne des éléments de L.

Solution.

def moyenne (L) :

S=0
for e in L:
S += e

return S/len(L)




Question 13. Ecrire une fonction estimation_bernoulli qui prend en argument un entier
naturel non nul N et un réel p compris entre 0 et 1 et qui renvoie une estimation de I’espérance
d’une variable suivant une loi de Bernoulli de parametre p a partir de N valeurs d’une telle
variable. On utilisera les fonctions bernoulli_liste et moyenne.

Solution.

def estimation_bernoulli(N,p):
return moyenne (bernoulli liste(N,p))

Question 14. Afficher le résultat renvoyé par estimation_bernoulli(19000,p) pour diffé-
rentes valeurs de p. Ceci est-il en accord avec la valeur de ’espérance d'une variable aléatoire
suivant une loi de Bernoulli ?

Solution. Voici quelques résultats obtenus :

print (estimation_bernoulli (10000,0.8))

print (estimation_bernoulli (10000,0.26))
print (estimation_bernoulli (10000,0.57))
print (estimation_bernoulli (10000,0.98))

.8003
.2263
.5722
.983

O O O O

On constate que les valeurs obtenue sont proches du parametre p donc de ’espérance de la
variable.

Question 15. Reprendre, en adaptant, les deux questions précédentes pour estimer I'espérance
d’une variable aléatoire suivant une loi binomiale puis pour estimer I’espérance d’une variable
aléatoire suivant une loi géométrique.

Solution. Pour la loi binomiale,

def estimation _binomiale(N,n,p):
L=[binomiale(n,p) for i in range(N)]
return moyenne (L)

print (estimation _binomiale (10000,20,0.8) ,20%0.8)
print (estimation_binomiale (10000,100, 0.26) ,100%0.26)
print (estimation binomiale (10000,50,0.57) ,50*0.57)
print (estimation_binomiale (10000,200,0.98) ,200%0.98)

16.0153 16.0
25.9384 26.0
28.4911 28.499999999999996
196.0075 196

On constate que les résultats obtenus sont proches de np qui est I'espérance de X — Z(n,p).

Pour la loi géométrique,



def estimation_geometrique(N,p):
L=[geometrique(p) for i in range (N)]
return moyenne (L)

print (estimation_geometrique (10000,0.8), 1/0.8)

print (estimation_geometrique (10000,0.26), 1/0.26)
print(estimation_geometrique (10000,0.57), 1/0.57)
print (estimation_geometrique (10000,0.98), 1/0.98)

1.2581 1.25

3.8178 3.846153846153846
1.7389 1.7543859649122808
1.0206 1.0204081632653061

On constate que les résultats obtenus sont proches de % qui est l'espérance de X — ¥(p).

III. — Estimation d’un parametre par intervalle de confiance

On consideére un schéma de Bernoulli dont on ne connait pas le parametre p. On aimerait
obtenir une estimation de p.

Si on considere la variable aléatoire X égale a 1 en cas de succes et 0 en cas d’échec alors
X — AB(p) et E(X) = p. La question 11 donne une fagon d’estimer ’espérance de X et donc
d’estimer p.

Cependant, dans la pratique, il n’est pas toujours possible de procéder de la sorte pour des
raisons de coup financier, de temps disponible ou pour d’autres raisons matérielles. Par exemple,
si on veut tester si des boites de conserve sont conformes ou pas et qu’il est nécessaire de les
ouvrir pour cela, on ne va pas tester toute la production, et méme faire un test sur un échantillon
de grande taille peut s’avérer extrémement cotiteux.

On va considérer la situation suivante. Une entreprise fabrique des objets. Chaque objet,
indépendamment des autres, a une probabilité p € [0;0,1] d’étre défectueux.

On aimerait estimer la probabilité p a partir d’'un échantillon, aussi petit que possible,
d’objets prélevés au hasard dans la production.

Question 16. Si on entre I'instruction suivante, a quel intervalle appartient le nombre p?

p=random () /10

Solution. Par définition, random() est un nombre appartenant a [0; 1[ donc p appartient
[0;0,1].

Question 17. Ecrire une fonction production qui prend en argument un entier N et qui renvoie
une liste L de N valeurs d’une variable X < Z(p) ou p est un réel inconnu choisi aléatoirement
entre 0 et 0,1. On utilisera la fonction bernoulli liste.

Solution.

def production(N):
p=random () /10
return bernoulli liste(N,p)




Cette liste représente la production de 1'usine, la valeur 0 signifiant que l'objet n’a pas de
défaut et la valeur 1 signifiant que I'objet possede un défaut.

Question 18. Ecrire une fonction echantillon qui prend en arguments une liste L et un entier
k inférieur a la longueur de la liste et qui renvoie une liste de k éléments choisis aléatoirement a
des rangs distincts dans L. On pourra utiliser la méthode de listes .pop () mais on écrira une
fonction sans effet de bord.

Par exemple, si la liste est L est [0,1,1,0,0,0] et si k vaut 4 alors une liste possible est la
liste [1, 0, 0, 0] obtenue en prenant dans L les termes de rangs respectifs 2, 5, 0 et 3.

Solution.

def echantillon(L,k):
M = [e for e in L]
E = []
for i in range(k):
j = randint (0,len(M)-1)
E.append (M.pop(j))
return E

La fonction echantillon permet d’obtenir un échantillon aléatoire de k valeurs de la liste,
ce qui représente donc un échantillon de k objets de la production. Notons f la fréquence de 1
dans cet échantillon, ce qui représente la fréquence d’objets défectueux dans I’échantillon.

Un théoreme permet d’affirmer que, dans au moins 95% des cas, la probabilité p appartient
a l'intervalle [ f— ﬁ i f + ﬁ} Cet intervalle est appelé intervalle de confiance de p au seuil de
confiance 95%.

Question 19. Soit m € N. Quelle doit-étre la taille k& d’un échantillon pour obtenir, grace a
'intervalle de confiance, un encadrement d’amplitude 10~™ de p. (On rappelle que 'amplitude
d’un encadrement du type a < p < b est le réel b — a).

Solution. L’amplitude de 'intervalle de confiance est

I 1 ( f 1 ) . 1 I 2
vk Vi vk Vi VE
donc cette amplitude est inférieure a 107 si et seulement si

2 Vk

—:10‘m<:>7:10m<:> E=2-10" < k =4-10>".

VEk
Ainsi, pour obtenir une intervalle de confiance d’amplitude 10~™, on doit prendre k = 4 - 10?™.

Question 20. Compléter le code de la fonction int_conf qui prend en arguments deux entiers
naturels N et m, qui simule, sous forme d’une liste, une production de N objets, sélectionne un
échantillon dans cette liste de sorte a calculer et renvoyer un encadrement d’amplitude 10™ de
la probabilité p.



from math import sqrt

def int_conf(N,m):
L=production (N)
k=4%10%* (2%m)
M=echantillon (L, k)
f=frequence (1,M)
return f-1/sqrt(k) , f+1/sqrt (k)

Faire différents tests avec la fonction int_conf avec N = 100000 ou N = 1000000 et m =1
ou m = 2 en prenant garde au faite que la taille de I’échantillon doit rester inférieur a la taille
de la liste.

Question 21. En utilisant certaines des fonctions précédentes, écrire une fonction confiance
qui prend en argument une probabilité p, une taille de production N, une taille d’échantillon k
et un nombre de simulations S et qui renvoie le nombre de points de pourcentage d’intervalles
de confiance qui contiennent effectivement la probabilité p lors de S simulations.

Vérifier, a 1'aide de cette fonction, le seuil de confiance de 95% garanti par la théorie.

Solution.

from math import sqrt

def confiance(p,N,k,S):

c =0

for i in range(S):
L=bernoulli_liste(N,p)
M=echantillon (L, k)
f=frequence (1,M)
if f-1/sqrt(k) <= p and p <= f+1/sqrt(k):

c += 1
return c¢/S*100

print (confiance (0.4, 10000, 500, 1000))

print (confiance (0.2, 10000, 1000, 1000))
print (confiance (0.75, 100000, 2000, 100))
print (confiance (0.1, 10000, 1000, 1000))

96.6
98.9
99.0
99.8

On constate que, dans tous les cas, on est bien au-dessus du seuil des 95%.



IV.

— Exercices

Exercice 1. Deux personnes disposent chacune d’une piéce de monnaie qui tombe sur « face »
avec une probabilité p € ]0;1[. Ces deux personnes lancent simultanément leur piéce et répétent
les lancers jusqu’a obtenir « face » pour la premiere fois en méme temps. On note X la variable
aléatoire égale au nombre de lancers nécessaires.

1.

Ecrire une fonction nb_lancers qui prend en argument un réel p compris entre 0 et 1 et
qui simule la variable aléatoire X.

. Ecrire une fonction estimation_esp qui prend en arguments un réel p strictement

compris entre 0 et 1 et un entier NV strictement positif et qui permet d’estimer 1'espérance
de X a partir de N simulations de X. On utilisera la fonction nb_lancers.

. En utilisant la fonction précédente avec N égal a 10000, estimer I'espérance de X pour p

valant 0,3, 0,5 et 0,9.

. Montrer que X suit une loi géométrique dont on exprimera le parametre en fonction de p

puis vérifier la pertinence des estimations de la question précédente.

Solution.

1.

def nb_lancers(p):

c =1
while random()>p or random()>p:
c += 1

return c

def estimation_esp(p,N):
S =0
for i in range(N):
S += nb_lancers(p)
return S/N

print (estimation_esp (0.3, 10000))
print (estimation_esp (0.5, 10000))
print (estimation_esp (0.9, 10000))

11.2652
4.0264
1.2461

4. L’expérience consiste en un schéma de Bernoulli dont le succes est « le deux personnes

obtiennent « face » » et X est la variable aléatoire égale au rang du premier succes
donc X suit une loi géométrique. Les lancers des deux personnes étant indépendants, la

probabilité de succes est p x p = p?. Ainsi, X — 4(p?). On en déduit que E(X) = —.

P2
1 1
Ainsi, pour p = 0,3, E(X) = 0.3 ~ 11,11, pour p = 0,5, E(X) = 0.5 =4 et, pour
1
p=209 E(X)= 0.2 ~ 1,23. Ainsi, les résultats trouvés a la question précédente sont

cohérents.



Exercice 2. On considere une urne qui contient initialement 1 boule blanche et 1 boule noire.
On effectue des tirages successifs dans cette urne de la maniére suivante :

e si la boule tirée est noire, on s’arréte ;

e si la boule tirée est blanche, on la remet dans I'urne accompagnée d’une autre boule
blanche.

On note X la variable aléatoire égale au nombre de tirages effectués i.e. au nombre de tirages
nécessaires pour obtenir la boule noire.

1. Ecrire une fonction simul X (sans argument) qui simule la variable aléatoire X .

2. Ecrire une fonction loi_X qui prend en arguments deux entiers n et N et qui permet
d’obtenir une estimation de la probabilité de I’évenement { X = n} a partir de N simulations

de X.
3. En prenant N égal a 10000, estimer les probabilités que X soit égale a 1, a 2, a 3 et a 4.
1
4. a. Démontrer que, pour tout n € N*, P(X =n) = ——.
que, p ( ) n(n+1)

b. Vérifier la pertinence des estimations précédentes.

c. La variable aléatoire X admet-elle une espérance ? Si oui, la calculer.

Solution.

1. On simule le tirage de boules par un tirage d’entiers, en supposant que le boule noire
correspond au nombre 1.

def simul XQO):
nb boules = 2
while randint (1,nb_boules) > 1:
nb_boules += 1
return nb_boules - 1

def loi X(n,N):
c =20
for i in range(N):
if simul X(O) ==
c += 1
return c/N

for k in range(1,4):
print (loi_X(k, 10000))

0.4968
.166
0.087

o

4. a. Notons, pour tout n € N*, A, : « Tirer une boule blanche au k-ieme tirage ». Alors,
pour tout n € N*, -
{X:n}:AlﬂAzﬂﬂAn,lﬂAn



donc, d’apres la formule des probabilités composées,

n—2 —  n—1

1 2 3 n—1 1
= - X=X —X-X X
2 3 4 n n+1
Le dénominateur d’un terme se simplifie avec le numérateur du suivant du premier a
1
I'avant-dernier terme donc P(X =n) = — x = .
n n+1 nn+1)
1 1 1
b. On en déduit que P(X =1) = i 0,5, P(X =2) = i 0,167 et P(X =3) = T

0,083. Ces valeurs sont cohérentes avec les estimations de la question 3..

1 1 1
c. Comme nP(X = n) = — et comme Z— diverge, par équivalence,
n

> nP(X =n) diverge. Ainsi, X n’admet pas d’espérance.

Exercice 3. Soit n € N*. On considére une urne contenant n boules numérotées de 1 a n. On
tire successivement et avec remise deux boules dans I'urne et on note Y le plus grand des deux
numéros obtenus.

1. Ecrire une fonction simul Y qui prend en argument un entier non nul n et qui simule Y.

2. Ecrire une fonction loi_Y qui prend en arguments deux entiers n et N, qui simule N
réalisations de Y et qui renvoie une liste de longueur n contenant les fréquences des
évenements {Y =1}, {Y =2}, ..., {Y =n}.

3. Déterminer la loi de Y.

4. Vérifier la pertinence des résultats renvoyés par la fonction 1oi Y pour différentes valeurs

de n et de N.
Solution.
1.
def simul Y (n):
a = randint(1,n)
b = randint (1,n)
if a > b:
return a
else:
return b
2.

def loi Y(n,N):
L = [0 for i in range(n)]
for i in range(N):
Llsimul_Y(n)-1] += 1
for i in range(n):
L[i] = L[i]/N
return L

3. Notons Z; le numéro de la premiere boule tirée et Z5 celui de la seconde. Alors, pour
tout k € [0, n],
{Y <k} ={Z1 <k}n{Zy <k}



Comme il y a remise, les tirages sont indépendants dont Z; et Z, sont indépendantes et
ainsi, pour tout k € [0, n],

P(Y <k)=P(Z <k)P(Z, < k)= (’f)z _ K

n n2’

2k —1
n2

donc P(Z < k) =

print (loi_Y (5,10000), [(2*k-1)/5%*2 for k in range(1,6)])
print (loi Y (7,1000), [(2xk-1)/7**%2 for k in range(1,8)])
print (loi_Y (10,100000), [(2*k-1)/10%%2 for k in range(1l,11)])
print (loi Y (3,1000000), [(2xk-1)/3**2 for k in range(1,4)])

[0.042, 0.113, 0.2042, 0.2852, 0.3556] [0.04, 0.12, 0.2,
0.28, 0.36]

[0.028, 0.051, 0.102, 0.144, 0.151, 0.24, 0.284]
[0.02040816326530612, 0.061224489795918366,
0.10204081632653061, 0.14285714285714285,
0.1836734693877551, 0.22448979591836735,
0.2653061224489796]

[0.01062, 0.02971, 0.04971, 0.07014, 0.09206, 0.10953,
0.13181, 0.14963, 0.16831, 0.18848] [0.01, 0.03, 0.05,
0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19]

[0.111139, 0.333525, 0.555336] [0.1111111111111111,

0. 2888838888888888 , 0.EbbEakbbbbhobiEEE]

On constate que les résultats sont cohérents et qu’ils sont d’autant plus précis que N
est grand.

Exercice 4. On fixe un réel A > 0 et un entier £ € N. Pour tout n > k, on considére une

A
variable aléatoire X,, suivant une loi binomiale de parametres n et —. On désigne, de plus, par
n

Y une variable aléatoire suivant une loi de Poisson de parametre .

1. Soit un entier n > k. Rappeler les valeurs de P(X,, = k) et P(Y = k).
A k \ n—k
Solution. Par définition, P(X, = k) = <Z> <n> (1 - n) ot P(Y = k) =
N
He .
2. Soit un entier n > k. Rappeler les valeurs de E(X,,), V(X,,), E(Y) et V(Y) puis vérifier
que E(X,,)) —— E(Y) et V(X,,) —— V(Y).
n—-+00 n——+00
et E(Y) = A donc E(X,,)) —— E(Y).

. » o
Solution. Par propriété, E(X,) = n x o= A P

. A A A
De méme, V(X,) =n|{—|(l—=|] = A[1l—=] —— Xet V(YY) = X donc

V(X,) —— V(Y). ! !

n—-+00



n
3. Montrer que, lorsque n tend vers 400, (k) ~ar

Solution. Par définition,

n\ n! _nn—-1)n—-2)---(n—k+1)
(k) RICES K

Or, pour tout i € [0, k—1], n—i ~ n donc, par produit, n(n—1)(n—2) - -+ (n—k+1) ~ nk

k
n n
et finalement ( k) ~ R

4. Soit un entier n > k. Ecrire (1 - —
n

n—k
A
) — o(n—k) ln(l—%)'

n—k
A
) a l'aide de la fonction exponentielle.

Solution. Par propriété, (1 - —
n

n—k
A
5. Déduire de la question précédente que 1_1)21 <1 — ) =e
n 00 n

Solution. Comme lim — =0, In (1 — /\> ~ —é donc
n—-+oo n, n n
A A A
—k)n{l——]~—-(n—k)—~—n—~ =\
(n— k) ( n) (n— k)5 ~ —n"

A n—k
A A donc, par continuité de exp sur R, lim (1 — ) =
n—-+00 n

Ainsi, limoo(n—k) In (1 — 5) = —

n——+
e .
6. Conclure que P(X,, = k) — P(Y =k).
\ n—k A n—k
Solution. Comme lim (1 — > =e N£0, (1 — ) ~ e~ donc
n—-+00 n n
n\ (A" D U D U

donc P(X,, = k) —— P(Y = k).



