
♦ TP8 – Algorithmes de tri de listes

On s’intéresse ici à des listes de nombres (entiers ou flottants). Le but du TP est de
programmer différents algorithmes pour trier ces listes dans l’ordre croissant. Il existe dans
Python la fonction sorted et la méthode .sort qui réalisent ce type de tris mais l’idée ici est
évidemment de ne pas les utiliser.

I. — Préliminaires

1) Rappels
Question 1. On considère la liste

L = [1.3, 3, -1.4, 5, 6, -7.89, 12, 0, -15]

1. Déterminer ce que renvoient les instructions suivantes puis vérifier à l’aide de l’ordinateur.

L[3] L[9] L[-1] len(L) L[2:5] L[2:] L[:5]

2. Si on exécute le code suivant, la liste L sera-t-elle modifiée et si oui quelle sera sa nouvelle
valeur ? Vérifier à l’aide de l’ordinateur.

L[3], L[7] = L[7], L[3]

3. Déterminer l’affichage obtenu à l’aide du code suivant puis vérifier à l’aide de l’ordinateur.

for k in range(-1, -len(L) -1, -1):
print(L[k])

2) Fonctions auxiliaires
La plupart des algorithmes de tri sont basés sur l’échange de deux termes d’une liste. On

aura donc besoin d’une fonction effectuant ce travail.

Question 2. Écrire une fonction echange qui prend en arguments une liste L et deux entiers
admissibles i et j, qui échange les termes L[i] et L[j] et qui renvoie la nouvelle liste ainsi
obtenue.

Réinitialiser L à la valeur qu’elle avait au début de la question 1 et vérifier ensuite que
echange(L,3,7) renvoie la liste

[1.3, 3, -1.4, 0, 6, -7.89, 12, 5, -15]

Dans l’un des algorithmes suivants, nous aurons également besoin de déterminer le maximum
d’une liste.

Question 3. Écrire une fonction maximum qui prend en argument une liste L de nombres et qui
renvoie le plus grand élément de L.

Vérifier ensuite que maximum(L) renvoie bien 12.



II. — Tri par insertion

1) Principe
Considérons une liste de nombres L de longueur n. Le principe du tri par insertion est de

parcourir la liste et d’insérer chaque élément parmi les éléments de la liste qui le précèdent de
sorte à obtenir une sous-liste triée par ordre croissant. De façon plus détaillée,

• Étape 1. Initialement, on considère seulement l’élément L[0]. Il n’y a pas de comparaison
possible donc il n’y a rien à faire ;

• Étape 2. Ensuite, on considère L[0] et L[1]. Si L[0] est inférieur ou égal à L[1], les
deux premiers éléments de la liste sont dans l’ordre croissant : il n’y a rien à faire. Sinon,
on échange L[0] et L[1] pour les ordonner dans l’ordre croissant.

• On continue ainsi, de sorte qu’à l’issue de l’étape k, les k premiers éléments de la liste
sont triés dans l’ordre croissant.

• Étape k+1. On insère l’élément L[k] dans l’ordre croissant parmi les k premiers éléments
de la liste, de sorte les k + 1 premiers éléments de la liste sont alors triés dans l’ordre
croissant.

L[0] L[i-1] L[i] L[k-1] L[k] L[n-1]· · · · · · · · ·

début de liste triée par ordre croissant

• À l’issue de l’étape n, la liste est triée dans l’ordre croissant.
Appliquons l’algorithme de tri par insertion à la liste [6, 2, 8, 5, 4, 1] :

6 2 8 5 4 1
2 6 8 5 4 1 on insère 2 avant 6
2 6 8 5 4 1 8 est déjà bien placé
2 5 6 8 4 1 on insère 5 entre 2 et 6
2 4 5 6 8 1 on insère 4 entre 2 et 5
1 2 4 5 6 8 on insère 1 avant 2, et la liste est triée

Question 4. En reprenant le modèle de l’exemple ci-dessus (sans la dernière colonne), appliquer
à la main l’algorithme de tri par insertion sur la liste L de la Question 1.

2) Programmation du tri par insertion
Pour programmer le tri par sélection, il faut trouver une façon, à l’étape k + 1, d’insérer

l’élément L[k] à sa place dans l’ordre croissant dans la liste formée par les k éléments précédents.
Pour ce faire, on peut procéder de deux manières différentes.
Première méthode : par échanges successifs
• on compare L[k] et L[k-1] : si le premier est supérieur second, L[k] est déjà bien placé

et il n’y a rien à faire ; sinon, on les échange et on recommence.
• on compare L[k-1] (qui possède à présent la valeur initiale de L[k] qu’on cherche à

placer) et L[k-2] : si le premier est supérieur second, L[k-1] est bien placé et on s’arrête ;
sinon, on les échange et on recommence.



• on continue tant qu’on n’a pas placé correctement la valeur initialement stockée en L[k].

Question 5. Écrire une fonction tri_insertion_echanges qui prend en argument une liste
L et qui renvoie la liste ordonnée par ordre croissant en utilisant la méthode d’insertion par
échanges successifs.

Vérifier ensuite que tri_insertion_echanges(L) renvoie bien

[-15, -7.89, -1.4, 0, 1.3, 3, 5, 6, 12]

Seconde méthode : par décalages successifs
• on détermine le rang i que la valeur de L[k] doit occuper parmi les k + 1 premières

valeurs de la liste ;
• on stocke la valeur de L[k] dans une variable temp ;
• on décale successivement d’un cran vers la droite L[k-1] puis L[k-2] puis L[k-3] et

ainsi de suite jusqu’à L[i] (i.e. on stocke L[k-1] dans L[k], puis L[k-2] dans L[k-1]
et ainsi de suite jusqu’à stocker L[i] dans L[i+1]) ;

• on affecte à L[i] la valeur stockée dans temp.

Question 6. Écrire une fonction tri_insertion_decalages qui prend en argument une liste
L et qui renvoie la liste ordonnée par ordre croissant en utilisant la méthode par décalages
successifs.

Vérifier ensuite que tri_insertion_decalages(L) renvoie bien

[-15, -7.89, -1.4, 0, 1.3, 3, 5, 6, 12]

III. — Tri par sélection

1) Principe
La méthode de tri par sélection consiste à déterminer le plus petit élément de la liste et à le

placer en tête de liste, puis à chercher le second plus petit élément et à le placer en seconde
position de la liste et ainsi de suite.

Plus formellement, si L est une liste de nombres de longueur n alors :
• Étape 1 : on détermine le rang i du plus petit élément de L puis on échange L[i] et

L[0] : ainsi, (le nouveau) L[0] est à présent à sa place ;
• Étape 2 : on détermine le rang j dans la liste L du plus petit élément de L[1:] puis on

échange L[j] et L[1] : ainsi (les nouveaux) L[0] et L[1] sont à présent à leurs places ;
• on recommence ainsi de sorte qu’à l’issue de l’étape k, les k premiers éléments de L sont

à leurs places ;
• Étape k + 1 : on détermine le rang p dans la liste L du plus petit élément de L[k:] puis

on échange L[p] et L[k] : ainsi, les k + 1 premiers éléments de L sont à présent à leurs
places ;

L[0] L[k-1] L[k] L[n-1]· · · · · · · · ·

début de liste triée par ordre croissant

L[p]

élément minimal entre L[k] et L[n-1]

• à l’issue de l’étape n, la liste est triée.



Appliquons l’algorithme de tri par sélection à l’exemple de la liste [6, 2, 8, 5, 4, 1] :

6 2 8 5 4 1 on échange 1 et 6
1 2 8 5 4 6 2 est bien placé
1 2 8 5 4 6 on échange 8 et 4
1 2 4 5 8 6 5 est bien placé
1 2 4 5 8 6 on échange 8 et 6
1 2 4 5 6 8 la liste est triée

Question 7. En reprenant le modèle de l’exemple ci-dessus (sans la dernière colonne), appliquer
à la main le principe d’insertion sur la liste L de la Question 1.

2) Programmation du tri par sélection
Question 8. Écrire une fonction indice_minimum_fin_liste qui prend en arguments une
liste de nombres L et un indice admissible k et qui renvoie l’indice de la première occur-
rence du plus petit élément de L parmi ceux dont l’indice est supérieur ou égal à k. Ainsi,
indice_minimum_fin_liste([3, -2, 4, 7, 1, 3, 1], 2) doit renvoyer 4 car le plus petit
élément de [4, 7, 1, 3, 1] est 1 et sa première occurrence dans L est au rang 4.

Question 9. Écrire une fonction tri_selection qui prend en argument une liste de nombres
L et qui renvoie la liste triée par ordre croissant en utilisant la méthode du tri par sélection.

Vérifier ensuite que tri_selection(L) renvoie bien

[-15, -7.89, -1.4, 0, 1.3, 3, 5, 6, 12]

IV. — Tri par comptage

1) Principe
Ici, on ne va s’intéresser qu’à des listes contenant des entiers naturels. Considérons une telle

liste L et notons m la valeur du maximum de ses éléments. Ainsi, tous les éléments de la liste
appartiennent à J0, mK.

Le principe du tri par comptage consiste à construire une liste auxiliaire M de longueur m + 1
telle que, pour tout entier k compris entre 0 et m, M[k] soit égal au nombre d’occurrences de
l’entier k dans la liste L.

Ensuite, on construit une liste P qui contient M[0] fois 0 puis M[1] fois 1 puis M[2] fois 2
et ainsi de suite jusqu’à M[m] fois m. Cette nouvelle liste P est une version triée dans l’ordre
croissant de la liste L.

Prenons par exemple la liste

L = [2, 3, 5, 1, 0, 3, 2, 5, 5, 3, 2, 0, 2].

Le maximum des éléments de L est m = 5. De plus, 0 apparaît 2 fois dans la liste, 1 apparaît 1
fois dans la liste, 2 apparaît 4 fois dans la liste, 3 apparaît 3 fois dans la liste, 4 apparaît 0 fois
dans la liste et 5 apparaît 3 fois dans la liste donc M = [2, 1, 4, 3, 0, 3]. On en déduit que

P = [0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 5, 5, 5].

On remarquera que, contrairement aux autres, cette méthode ne modifie pas la liste L initiale
(ce qui peut être un avantage) mais crée deux autres listes M et P (ce qui peut être un inconvénient
en termes de mémoire pour des listes très longues).



2) Programmation du tri par comptage
Question 10. Écrire une fonction liste_effectifs qui prend en argument une liste d’entiers
naturels L et qui renvoie une liste M telle que, pour tout entier k compris entre 0 et le maximum
m de L, M[k] est égal au nombre d’occurrences de k dans L. Pour cela, on pourra commencer
par créer un liste de longueur m + 1 constituée de 0 puis parcourir la liste L et ajouter 1 à M[k]
à chaque fois qu’on rencontre l’élément k dans L. (On utilisera également la fonction maximum
de la Question 3.)

Vérifier qu’avec la liste L de l’exemple précédent, on obtient bien M = [2, 1, 4, 3, 0, 3].

Question 11. Écrire une fonction tri_comptage qui prend en argument une liste L constituée
d’entiers naturels et qui renvoie la liste triée par ordre croissant obtenue par la méthode de
comptage.

Vérifier qu’avec la liste L de l’exemple précédent, on obtient bien

P = [0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 5, 5, 5].

V. — Prolongements

1) Tri à bulles
Considérons une liste L de longueur n. Le principe de la méthode du tri à bulles est de

parcourir les éléments de la liste n − 1 fois en échangeant à chaque passage deux éléments
consécutifs s’ils ne sont pas dans le bon ordre. Plus précisément,

• Étape 1 :
▶ on compare L[0] avec L[1] et on les échange s’ils ne sont pas dans le bon ordre ;
▶ on compare L[1] (qui a éventuellement été modifié à l’étape précédente) avec L[2]

et on les échange s’ils ne sont pas dans le bon ordre ;
▶ on continue ainsi jusqu’à arriver à L[n-2] et L[n-1].
Lors de ce premier passage, on a nécessairement rencontré le plus grand élément de la
liste et, celui-ci étant toujours supérieur aux termes suivants dans la liste, il a donc été
systématiquement permuté. Ainsi, à la fin de cette première étape, le plus grand élément
se retrouve à la fin de la liste : c’est-à-dire à sa place dans l’ordre croissant.

• Étape 2 : on recommence avec les n − 1 premiers éléments de la liste :
▶ on compare L[0] avec L[1] et on les échange s’ils ne sont pas dans le bon ordre ;
▶ on compare L[1] avec L[2] et on les échange s’ils ne sont pas dans le bon ordre ;
▶ on continue ainsi jusqu’à arriver à L[n-3] et L[n-2].
À l’issue de cette deuxième étape, le plus grand élément figurant parmi les n − 1 premiers
se retrouve au rang n − 1 et ainsi les deux derniers éléments de la liste sont bien rangés.

• On recommence ainsi jusqu’à l’étape n − 1, à laquelle les n − 2 derniers éléments de
la liste seront bien placés et il ne restera plus qu’à comparer L[0] avec L[1] et à les
échanger s’ils ne sont pas dans le bon ordre : la liste sera alors triée.

Ainsi, le principe est de faire « remonter » les éléments les plus grands en fin de liste au fur
et à mesure, comme les plus grosses bulles d’air remontent en premier dans un verre d’eau, ce
qui explique le nom de la méthode.

Appliquons l’algorithme de tri à bulles à l’exemple de la liste [6, 2, 8, 5, 4, 1].



Étape 1 :
6 2 8 5 4 1 on échange 6 et 2
2 6 8 5 4 1 on laisse 6 et 8 en place
2 6 8 5 4 1 on échange 8 et 5
2 6 5 8 4 1 on échange 8 et 4
2 6 5 4 8 1 on échange 8 et 1
2 6 5 4 1 8 8 est à présent bien placé

Étape 2 :
2 6 5 4 1 8 on laisse 2 et 6 en place
2 6 5 4 1 8 on échange 6 et 5
2 5 6 4 1 8 on échange 6 et 4
2 5 4 6 1 8 on échange 6 et 1
2 5 4 1 6 8 6 et 8 sont bien placés

Étape 3 :
2 5 4 1 6 8 on laisse 2 et 5 en place
2 5 4 1 6 8 on échange 5 et 4
2 4 5 1 6 8 on échange 5 et 1
2 4 1 5 6 8 5, 6 et 8 sont bien placés

Étape 4 :
2 4 1 5 6 8 on laisse 2 et 4 en place
2 4 1 5 6 8 on échange 4 et 1
2 1 4 5 6 8 4, 5, 6 et 8 sont bien placés

Étape 5 :
2 1 4 5 6 8 on échange 2 et 1
1 2 4 5 6 8 la liste est triée

Question 12. En utilisant deux boucles imbriquées, écrire une fonction tri_a_bulles qui
prend en argument une liste de nombres L et qui renvoie la liste triée par ordre croissant obtenue
par la méthode du tri à bulles. Vérifier ensuite avec la liste L de la Question 1.

2) Comparaison des complexités temporelles
Question 13. Écrire une fonction liste_aleatoire qui prend en arguments deux entiers
naturels non nuls n et p et qui renvoie une liste de longueur n constituée d’entiers choisis
aléatoirement et de façon équiprobable entre 0 et p.
Question 14. En utilisant la fonction time du module time (voir TP7, question 13), écrire une
fonction temps qui prend en arguments une fonction de tri fonc_tri et trois entiers naturels
non nuls n, p et nb et qui renvoie le temps moyen mis par le fonction fonc_tri pour trier une
liste renvoyée par liste_aleatoire(n,p) lors de nb répétitions.
Question 15. En s’inspirant de ce qui a été fait dans le TP7, vérifier expérimentalement que la
complexité temporelle du tri par insertion, du tri par sélection et du tri à bulles sont quadratiques
i.e., pour n assez grand, approximativement proportionnelles à n2 où n est la longueur de la
liste.
Question 16. Vérifier expérimentalement que, si les éléments d’une liste de longueur n sont
des entiers compris entre 0 et n alors la complexité temporelle du tri par comptage est linéaire
i.e., pour n assez grand, approximativement proportionnelle à n.



3) Intérêt du tri pour la recherche d’éléments
a) Recherche séquentielle

Lorsqu’on cherche à savoir si un nombre fait partie d’une liste, on peut tester successivement,
les uns après les autres, les éléments de la liste jusqu’à en trouver un qui est égal à x et, sinon,
cela signifie que x n’est pas un élément de la liste. C’est ce qu’on appelle la recherche séquentielle.

Question 17. Écrire une fonction recherche_sequentielle qui prend en arguments une liste
L et un élément x et qui renvoie, à l’aide d’une recherche séquentielle, l’indice de la première
occurrence de x dans L si x est un élément de L et -1 sinon

b) Recherche dichotomique

Lorsqu’on n’a aucune information particulière sur la liste L, on ne peut faire autrement que
procéder par recherche séquentielle pour déterminer si un nombre x appartient à L.

En revanche, si la liste L est triée par ordre croissant, on peut utiliser une autre méthode : la
recherche dichotomique.

Le principe est le suivant. On considère l’élément m situé au milieu de la liste. Si m est égal
à x alors on renvoie son indice et la fonction se termine. Si m est strictement inférieur à x
alors, comme la liste est triée, tous les éléments précédents dans la liste sont aussi strictement
inférieurs à x. On va donc chercher x parmi les éléments situés après m dans la liste. Enfin, si
m est strictement supérieur à x alors, comme la liste est triée, tous les éléments suivants dans
la liste sont aussi strictement supérieurs à x. On va donc chercher x parmi les éléments situés
avant m dans la liste.

Plus précisément, pour la programmation de la recherche dichotomique, on peut procéder de
la manière suivante.

• On initialise deux variables debut et fin respectivement à 0 et len(L).
• Tant qu’il reste des éléments entre L[debut] et L[fin-1] i.e. tant que debut est stricte-

ment inférieur à fin :
▶ on affecte à la variable milieu le plus grand entier inférieur ou égal à la moyenne de

debut et de fin.
▶ si L[milieu] est égal à x, on renvoie l’indice milieu et la fonction s’arrête.
▶ si L[milieu] est strictement inférieur à x, on affecte à debut la valeur milieu + 1.
▶ si L[milieu] est strictement supérieur à x, on affecte à fin la valeur milieu - 1.

• Si la fonction ne s’est pas arrêtée avant, on renvoie -1.

Question 18. Écrire une fonction recherche_dichotomique qui prend en arguments une liste
de nombres triée L et un nombre x et qui utilise la méthode de recherche dichotomique pour
renvoyer un indice k tel que L[k] soit égal à x si x est un élément de L et -1 sinon.

c) Comparaison des complexités

Question 19. En s’inspirant de ce qui a été fait en V. 2), vérifier expérimentalement que la
complexité temporelle de la recherche séquentielle est linéaire i.e. que pour une liste de longueur
n suffisamment grande, le temps moyen de recherche d’un élément est approximativement pro-
portionnel à n alors que la complexité temporelle de la recherche dichotomique est logarithmique
i.e. que pour une liste de longueur n suffisamment grande, le temps moyen de recherche d’un
élément est approximativement proportionnel à ln(n).


