¢ TP7 — Méthode du pivot de Gauss

I. — Meéthode du pivot de Gauss (Rappel)

1) Systémes échelonnés et pivots

Définition 1

On dit qu’un systeme linéaire (S) de n équations est échelonné si, pour tout i € [2,n], la
i-eme ligne de (S) commence par au moins i — 1 coefficients nuls (en respectant 'ordre
initial des inconnues).

Remarque 2. Ceci revient a dire qu’a chaque nouvelle ligne, il y a au moins une inconnue
supplémentaire qui disparait (dans I'ordre initial des inconnues).

Exemple 3. Les systémes suivants sont échelonnés :

r+y+z=2
v +y=2 mrhy-z=3 dr —z= y—z=
(51) (52) 3y+2:=5 (Ss) (1)
y=1 20+ 2=0 22 =25
Dz =2
0—
T—2y+z=2
En revanche, le systéme (Ss) br+z=1 n’est pas échelonné.
y=—1

Définition 4

Si (S) est un systéme échelonné alors les pivots de (S) sont les coefficients non nuls
apparaissant en téte de chaque ligne.

Exemple 5. (S7) possede 2 pivots (3 et 1), (S3) possede 3 pivots (—1, 3 et 5), (S3) possede 2
pivots (4 et 2) et (5;) possede 3 pivots (1, 1 et 2).

2) Méthode du pivot de Gauss

Notation 6. Si (S) est un systéme linéaire de n équations, on note, pour tout i € [1,n], L; la
i-eme ligne de (.5).

' M

Propriété 7. — Opérations élémentaires

Soit (S) un systeme linéaire de n équations et i et j deux éléments de [1,n]. On obtient un
systeme équivalent a (.5) si :

e on échange les lignes L; et L;, ce qu'on notera L; <+ L;;

e on remplace la ligne L; par tL; ou t € R*, ce qu’on notera L; < tL;;

e on remplace la ligne L; par L; +tL; out € R, ce qu’on notera L; < L; +tL;.

Remarque 8. Les opérations décrites dans la propriété précédente s’appellent les opérations
élémentaires sur les lignes d’un systéme.

— Méthode 9 : Algorithme du pivot de Gauss 2

Tout systeme peut étre transformé en un systeme échelonné équivalent par opérations
élémentaires sur les lignes de la maniére suivante :

e on note L, une ligne du systeme dans laquelle le coefficient o de z; est non nul et on
échange Ly et Ly ;

e on utilise le coefficient v (qui est le pivot de la premiére ligne) pour éliminer x; dans
toutes les autres équations du systéme grace aux opérations L; <— L; — %Ll ou f; est
le coefficient de x1 dans L; (si 5; =0, il n’y a donc rien a faire) pour tout i € [2,n];

e On réitere le procédé sur le systeme formé par les n — 1 dernieres équations avec xo
(ou a défaut xs, x4...) et ainsi de suite.

. J

Remarque 10. On a en fait utilisé seulement deux des trois opérations élémentaires. La troisieme
peut étre utilisée si ’on souhaite de plus que les pivots soient tous égaux a 1. Pour cela, il suffit
de réaliser 'opération L; <+ iLi pour tout i € [1,n] ot a; est le pivot de la i-éme ligne.

L’intérét de transformer un systeme (S) en un systeme échelonné équivalent (S”) réside dans
le fait que la résolution de (S’) est particulierement simple par substitutions successives en
remontant le systéme a partir de la derniere équation. Par exemple, si on considere le systeme
(S2) de I'exemple 5 alors :

e de la troisieme équation, on déduit que z = % ;

I

e de la deuxieme équation, on déduit que 3y =5 —2 x £ = %1 donc y =

[SHEN]

= 2 donc z = —2.

SIS

e de la premiere équation, on déduit que —z = 3 — g +
Ainsi, 'unique solution de (.S2) est (—2 ¥ %)

Exemple 11. Dans chacun des cas suivants, échelonner le systéme par la méthode du pivot de
Gauss puis résoudre le systeme.

rT+y+2z2=-1 20 — 3y + 4z = -3 r—y—z=4
(Se)q2x —y+2z=—4 (S7) —x+2y+2=5 (Sg){2x—3y+22=1
dr+y+4z = -2 dor —dy + 14z =1 r —8y+T7z=1
Solution.
r+y+22=—-1 1L r+y+2z2=—-1 I,
—3y—4Z:2 L3<—L3—4L1 —2z=4 L3<—L3—L2
r+y+22=-1 r+y+2z2=-1 T+y+2z=-1
— —3y=2z-2 < —Jy=-6 < =2
z2= =2 z=—2 z= =2
r=—-y—2z—1 T =
< y=2 Y=
z=—2 z=—2

Ainsi, I'unique solution de (Sg) est (1;2;—2).

—r+2y+z=>5 L1+ Loy —r+2y+z2=5 I,

(S7) =120 —3y+4z=-3 Ly L < y+6z=7T7 Lo+ Ly+ 2L
e — by +14z=1 Ls 3y+ 182 =21 L3+« Ls+4L,
—rtyta=5 L {—x——Q(—6z—|—7)—z—|—5

— Yy+6z=7 Lo< Lo+ 2L <
0=0 L3<—L3—3L2 y:_6z+7

—xr=112—-9 r=—112+9
<
y=—06z4+7

Ainsi, 'ensemble des solutions de (57) est {(—1124+9;—-62+7;2) | z € R}.

r—y—z=4 Ly r—y—z=4 Ly
(Sg) = —y+4dz=-T7 Lo+ Ly—2L1 <= —y+4z2=-7 Ly
—3y—|—122?:—19 Ly <= L3 —51, 0=2 L3 <+ L3 — 3L,

On obtient une égalité fausse sur la ligne 3 donc 'ensemble des solutions de (Sg) est @.

— Définition 12 N

Soit (S) un systeme linéaire de n équations a p inconnues.

1. Le nombre de pivots dans la méthode de Gauss s’appelle le rang du systeme. On le
note rg(9).

2. Sin = p alors le systéme (S) possede une unique solution si et seulement si n = rg(.S).
Dans ce cas, on dit que (S) est un systeme Cramer.

II. — Programmation de la méthode pour résoudre un
systeme de Cramer

On souhaite résoudre un systéeme de Cramer de n équations a n inconnues. Pour étre en
adéquation avec la numérotation de Python qui commence a 0, on écrira un tel systeme

ap,0To + Qo171 + Ao 22 + -+ + Ao p—1Tn—1 = by
a1,0T0 + a1,1T1 + a12%2 + -+ AL p_1Tp—1 = by
Ap—1,020 + Ap_1,121 + Qp_12%T2 + -+ + Ap—1p—1Tp—1 = b1

L’écriture matricielle de (S) est AX = B avec

0,0 ao,1 Qo2 ot Aop—1 Zo bo
aio aia a2 T a1n—1 X1 by
A= Qs 21 a2 9 Tt A2p—1 X = L2 et B = ba

Ap—-10 Qan—1,1 QGp-12 *'* QAp—-1n—1 Tn—1 bn—l

1) Saisie des données

Pour représenter un systeme linéaire en Python, on va utiliser 1’écriture matricielle et
représenter une matrice de taille n X p par une liste de n listes ayant chacune p éléments.
Par exemple, pour le systéme Sg, on a

1 1 2 -1
A=12 -1 2 et B=1-4
4 1 4 -2

et on va représenter la matrice A par la liste de listes
A=[[1, 1, 2], [2, -1, 2], [4, 1, 4]]
et la matrice B par la liste de listes
B = [[-1], [-4]1, [-2]].

Question 1. Déterminer ce que renvoie chacune des instructions suivantes et vérifier ensuite
a 'aide de I'ordinateur.

A[0] Afo] [o] Af1][3] len(A) len(A[2]) B[-1] B[1] [0] len(B)

Solution.
e A[O] renvoie la liste [1, 1, 2]
e A[0] [0] renvoie 'entier 1

e A[1] [3] renvoie un message d’erreur car A[1] est une liste de 3 éléments numérotés de 0
a 2 donc A[1] [3] n’existe pas.

e len(A) renvoie 3

e len(A[2]) renvoie 3

e B[-1] renvoie la liste [-2]
e B[1] [0] renvoie 'entier -4

e len(B) renvoie 3

Pour la programmation de la méthode du pivot, il est pratique de considérer la matrice
augmentée C' obtenue en ajoutant en derniere colonne de A les éléments de B. Ainsi, pour le
systeme (Sg) la matrice C' est

1 1 2 -1
C=12 -1 2 -4
4 1 4 =2

Question 2. Ecrire une fonction matrice_augmentee qui prend en arguments deux liste
de listes A et B représentant respectivement une matrice A € ., (R) et une matrice colonne
B € #,1(R) et qui renvoie la liste de listes représentant la matrice augmentée associée. On
prendra garde a écrire une fonction sans effet de bord.

Vérifier ensuite que l'instruction C = matrice_augmentee(A,B) affecte bien

(f1, 1, 2, -11, [2, -1, 2, -4], [4, 1 ,4, -2]]

a la variable C.

Solution.

def matrice_augmentee (A,B):
M = []
for k in range(len(A)):
M.append (A[k] + B[kI])
return M

2) Opérations élémentaires

Question 3. Ecrire une fonction echange_lignes prenant en arguments une liste de listes
M représentant une matrice M € ., ,(R) ainsi que deux entiers i et j compris entre 0 et n — 1
et qui modifie M en échangeant les lignes i et j (les lignes étant numérotées de 0 a n — 1). Cette
fonction renverra None.

Vérifier ensuite que echange_lignes(C, 1, 2) modifie bien C en

(1, 1, 2, -11, [4, 1, 4, -2]1, [2, -1, 2, -4]].

Solution.

def echange lignes(M,i,j):
M[il,M[3j] = M[j],M[i]
return None

Question 4. Ecrire une fonction multipl ie_ligne prenant en arguments une liste de listes
M représentant une matrice M € ., ,(R) ainsi qu'un entier i compris entre 0 et n — 1 et un
nombre flottant t non nul et qui modifie M en remplagant la ligne L; par t x L; (les lignes étant
numérotées de 0 a n — 1). Cette fonction renverra None.

Vérifier ensuite que multiplie_ligne(C, 2, 3) modifie bien C en

[[1’ 1: 2’ _1]: [4, 1, 4, _2], [6, _3, 6, _12]]

Solution.

def multiplie_ligne(M,i,t):
for k in range(len(M[i])):
M[i] [k] = t*M[i] [k]
return None

Question 5. Ecrire une fonction combine prenant en arguments une liste de listes M
représentant une matrice M € ., ,(R) ainsi que deux entiers i et j compris entre 0 et n — 1 et
un nombre flottant t et qui modifie M en remplacant la ligne L; par L; +t x L; (les lignes étant
numérotées de 0 a n — 1). Cette fonction renverra None.

Vérifier ensuite que combine(C, 1, 0, -4) modifie bien C en

[(ft, 1, 2, -11, (o, -3, -4, 21, [6, -3, 6, -12]].

Solution.

def combine(M,i,j,t):
for k in range(len(M[i])):
MIi][k] = M[i][k] + t*xM[j][k]
return None

3) Echelonnement

D’un point de vue mathématique, on peut utiliser n’'importe quel nombre non nul comme
pivot dans une équation pour éliminer une inconnue dans les autres équations. Cependant,
en Python, le calcul sur les nombres flottants se fait de facon approchée et des divisions par
des petits nombres peuvent entrainer des erreurs d’arrondis qui, en se cumulant, donnent des
résultats totalement faux. On a donc intérét a éviter les pivots trop petits. Pour cela, on va
choisir systématiquement le plus grand pivot possible en valeur absolue.

colonne j
l Le « meilleur » pivot de la colonne j
Partie déja est le nombre, parmi ceux entourés,
échelonnée ap0 Qo1 qui a la plus grande valeur absolue
O CLL()

N\, 0 (). a/j—l‘,n—l bj_l
©

0 e 0 e anfl,nfl bnfl

Question 6. Ecrire une fonction cherche_pivot prenant en arguments une liste de listes
M représentant une matrice M = (M) € 4, ,(R) et un entier j compris entre 0 et n — 1 et
qui renvoie un indice de ligne contenant le plus grand pivot en valeur absolue pour l'indice z;
¢’est-a-dire un entier m compris entre j et n — 1 tel que

Vi € H]an - 1]]7 |Mm7j‘ = |Mi,j’ .

Vérifier que cherche_pivot(C,0) renvoie 2 et que cherche pivot(C,1) renvoie 1.
Solution.

def cherche_pivot (M, j):
m o=
for k in range(j+1, len(M)):
if abs(M[k][j]) > abs(M[m][j]):
m = k
return m

Question 7. On souhaite écrire une fonction echelonnement qui prend en arguments deux
listes de listes A et B représentant respectivement une matrice A € .#,,(R) et une matrice colonne
B € #,1(R) et qui renvoie la matrice augmentée obtenue a l'issue de I’échelonnement par la

méthode du pivot de Gauss.
Compléter le code suivant.

def echelonnement (A,B):
M = matrice_augmentee (A,B)
n = len(...) #
for i in range(...):
ligne _pivot = ... #
echange lignes (..., ..., ...) #
for k in range(..., ...): #
coeff = M[k][i]/M[i][i]
combine(M, ..., ..., ...) #
return M #

nombre d’équations et d’inconnues

détermination du "meilleur"
on échange la ligne i et la
ligne contenant le "meilleur"

pivot
pivot

€limination de x i sur les
lignes L_k avec k>i

Vérifier que echelonnement (A,B) renvoie
(f4, 1, 4, -2],

Solution.

(0.0, -1.5, 0.0, -3.0],

(0.0, 0.0, 1.0, -2.0]]

def echelonnement (A,B):

ligne_pivot =

coeff =

return M

M = matrice_augmentee (A,B)
n = len(A)
for i in range(n):

cherche _pivot (M,1i)
echange lignes(M,i,ligne _pivot)
for k in range(i+1l,n):
MIk][il/M[i][i]

combine (M,k,i,-coeff)

4) Résolution du systeme

Une fois le systéme échelonné, on termine la résolution par substitution en remontant les
équations a partir de la derniere. Pour cela, on va avoir besoin d’utiliser une boucle for avec un
pas décroissant, contrairement a I'’habitude. Ceci est possible avec la syntaxe

for k in range(a, b, -1)

qui prend toutes les valeurs de a a b+1 avec un pas de 1 en décroissant.

Question 8. Déterminer ce qu’affiche le code suivant puis vérifier a ’aide de I'ordinateur.

L = [1, 2, 3, 4, 5, 6]
for k in range(5,-1,-1):
print (L[k]1)

Solution. On obtient a 'affichage les termes de liste L du dernier au premier.

Question 9. On souhaite enfin écrire une fonction rsolution prenant en arguments deux
listes de listes A et B représentant respectivement une matrice A € .#,,(R) et une matrice colonne
B € #,1(R) et qui renvoie une liste de listes X représentant la matrice colonne X € ., 1(R)

solution de AX = B.
Compléter le code suivant.

def resolution(A,B):
n = len(...) # nombre d’équations
M = echelonnement (..., ...)
X = [[...] for i in range(...)] # initialisation de X
for i in range(..., ..., -1):
s =0
for j in range(i+1l,n):
s =s +M[...J[...] x X[...10...] # utilisation des inconnues
Xx[il = [(MC...2C...1-...)/M[...1[...]] # déja déterminées

return X

Utiliser la fonction resolution pour vérifier la solution obtenue pour la systeme (Sg).
Solution.

def resolution(A,B):
n = len(A)
M = echelonnement (A, B)
X = [[0] for i in range(n)]
for i in range(n-1, -1, -1):
s =0
for j in range(i+1l,n):
s = s + M[i]l[j] = X[jl[o0]
X[i] = [(M[i][n]l-s)/M[i][i]]

return X

Question 10. Utiliser la fonction resolution avec les systemes (S7) et (Sg). Expliquer les
résultats obtenus.

Solution. Pour (S7), on obtient un message d’erreur due a une tentative de division par 0.
C’est cohérent car on a vu dans ’'exemple 11 que (S57) n’est pas un systeme de Cramer et que
son rang est 2. Ainsi, lors de ’échelonnement, on va obtenir une ligne ne contenant pas de pivot
(tous les coefficients sont nuls) et la fonction resolution va donc utiliser 0 comme « pivot », ce
qui n’est pas possible.

Pour (Ss), on obtient la liste de listes

[[-7505999378950826.0] , [-6004799503160662.0], [-1501199875790167.2]]

ce qui n’est pas cohérent puisque (Ss) n’est pas de solution. Le probleme vient des erreurs
d’arrondis et met en lumiere les limites du calcul numérique en Python.

5) Autres exemples

Question 11. Résoudre a la main les systemes suivants puis vérifier a ’aide de la fonction
resolution.

dr — by + 3z = —4
—br+3y—T72=5
6z — 6y + 82 = —8

(So) (S10)

Solution.

Tr —12y+82 =7
3z +2y+ 5z =22
11z — 3y — 82z = —19

dr —dby+3z=—-4 Iy dr —by+3z=-4 I,

(So) = —By—22=0 Ly+ Li+32L <= -By-2:=0 L,
Syt lo=—2 Ly Ly— 3L, 22=—-2 Ly< L3+ £Ls
dr — by + 3z = —4 dr =dy — 3z —4 dor =4 r=1
<> Yy=—z < y=1 <~ y=1 = Jy=1
z=—1 z=—1 z=—1 z=—1

Ainsi, 'unique solution de (Sg) est (1;1;—1). On vérifie qu’on obtient bien le méme résultat
a 'aide de la fonction resolution.

Tr—12y4+82 =7 Ly Tx —12y+82=7 Ly
(Sw0) <= Dy+H2=19 Ly+ Ly— 3L, <= Yy+Lz=19 Ly
%Iy—%‘*z:—im L3<—L3—171L1 —% :—% Lg(-Lg-%Ll
Tr — 12y +82 =7 Tr — 12y +8z =17 Tr =12y — 82+ 7
= Wy=19—-4z < By=20 <=1 y=2
z=3 z2=3 z=3
T =17 r=1
< y=2 <={y=2
z=3 z=3

Ainsi, I'unique solution de (Sio) est (1;2;3). On vérifie qu’on obtient bien le méme résultat
a l'aide de la fonction resolution. Précisément, on obtient

[[1.0], [1.9999999999999996], [3.0]]

I'imprécision de la seconde valeur étant due aux erreurs d’arrondis du calcul en flottant.

III. — Prolongements

1) Complexité en temps

La méthode du pivot de Gauss ne dépend pas du nombre d’équations du systeme : elle
fonctionne tout aussi bien pour un systeme de 2 équations a 2 inconnues que pour un systeme
de 10 équations a 10 inconnues. Cependant, plus le nombre d’équations augmente, plus il y a de
calculs a effectuer et plus la résolution va étre longue. Le lien entre le nombre n d’équations et le
nombre de calculs a effectuer (ou le temps mis pour les exécuter, qui lui est approximativement
proportionnel) s’appelle la complexité en temps de I'algorithme. On peut démontrer que la
complexité du pivot de Gauss est cubique, ce qui signifie que,lorsque n devient grand, le temps
d’exécution est approximativement proportionnel & n3.

Question 12. Ecrire une fonction matrice_aleatoire qui prend en arguments deux entiers
naturel non nuls n et p et qui renvoie une liste de listes A représentant une matrice A € ., ,(R)
dont les coefficients sont choisis au hasard et de fagon équiprobable dans [0;1]

Rappel. Pour obtenir un flottant aléatoire entre 0 et 1, on utilise la fonction random() du
module random. Il faut donc commencer par importer en utilisant 'instruction

from random import

Solution.

from random import *

def matrice_aleatoire(n,p):
M = [[random() for i in range(p)] for j in range(n)]
return M

Question 13. Expliquer le role de la fonction suivante.

import time

def temps(n):
A, B = matrice_aleatoire(n,n), matrice_aleatoire(n,1)
t _initial = time.time ()
resolution (A, B)
t_final = time.time ()
return t_final-t_initial

Solution. La fonction temps calcule le temps de résolution par la méthode du pivot d'un
systeme de n équations a n inconnues dont les coefficients sont des nombres flottants aléatoires
entre 0 et 1.

Question 14. Ecrire une fonction temps_moyen prenant en arguments deux entiers naturels
non nuls n et m et qui renvoie le temps moyen de résolution de m systémes linéaires aléatoires
de n équations a n inconnues a l’aide de la fonction resolution.

Solution.

def temps_moyen(n,m):
T =20
for k in range(m):
T += temps(n)
return T/m

Question 15. Si on admet que lorsque n est suffisamment grand, le temps moyen de
résolution d’un systeme de n équations a n inconnues par la méthode du pivot est proportionnel
a n3, quel est le rapport entre le temps moyen de résolution d'un systéme de 2n équations a 2n
inconnues et la temps moyen de résolution d’un systeme de n équations a n inconnues ?

Vérifier expérimentalement ce résultat en utilisant la fonction temps_moyen avec n = 100 et
m = 10 puis m = 20 puis m = 50.

Solution. Notons 7'(n) le temps moyen de résolution d’'un systeme de n équations a n
inconnues par la méthode du pivot de Gauss. Pour n assez grand, on a T(n) =~ n® donc
T(2n) =~ (2n)® = 8n® donc T'(2n)/T(n) ~ 8.

Ceci se confirme expérimentalement. En effet,

e en exécutant print (temps_moyen(200,10) /temps_moyen(100,10)), on a obtenu

8.411251550032349

e en exécutant print (temps_moyen(200,20) /temps_moyen(100,20)), on a obtenu

8.239061921974065

e en exécutant print (temps_moyen(200,50) /temps_moyen(100,50)), on a obtenu

8.09534974090762.

2) Choix du pivot

On a dit précédemment que, d’un point de vue numérique, tous les pivots ne se valent pas et
qu’il faut éviter les « petits » pivots. On a donc choisi de prendre, a chaque étape, le plus grand
pivot possible en valeur absolue. Cependant, le probleme des approximations vient des divisions
et, en fait, de ce point de vue, les meilleurs pivots sont 1 et —1.

Question 16. Modifier la fonction recherche_pivot de facon a choisir 1 ou —1 comme
pivot si cela est possible et le plus grand pivot en valeur absolue sinon.
Solution.

def cherche_pivot (M, j):
mo=
for k in range(j, len(M)):
if abs(M[k][jl) == 1:
return k
elif abs(M[k][j]) > abs(M[m][j]):
m =k
return m

En utilisant la fonction resolution pour le systéme (Ss), on obtient une erreur de type
« tentative de division par 0 », ce qui n’était pas le cas avec la version initiale de cette fonction
(voir la Question 10.). Ici, le fait de choisir le pivot 1 plutét que le plus grand pivot en valeur
absolue a ¢évité des approximations lors de divisions et donne une résultat cohérent.

3) Résolution par élimination

Une fois le systeme échelonné, on a terminé la résolution par substitution. Une autre méthode
est possible en utilisant des opérations élémentaires pour éliminer les inconnues non seulement
en dessous d’une ligne mais également au-dessus. Cela permet d’obtenir la solution du systeme
sur la matrice augmentée a condition de partir d'un systeme échelonné réduit c’est-a-dire un
systeme échelonné dans lequel tous les pivots sont égaux a 1.

Question 17. Ecrire une fonction reduction qui prend en argument une liste de listes
représentant la matrice augmentée obtenue a l'issue de I’échelonnement par la méthode du pivot
et qui renvoie une matrice échelonnée équivalente dans laquelle tous les pivots sont égaux a 1.

Solution.

def reduction (M) :
n = len(M)
for i in range(n):
multiplie_ligne(i, 1/M[i]l[il)
return M

Question 18.Ekrﬂe1nu3ﬁnumknlresolution_par_elimination.quiprend<ﬂlargununms
deux listes de listes A et B représentant respectivement une matrice A € .4, (R) et une matrice
B € #,1(R) et qui renvoie une liste de listes X représentant la matrice X solution de AX = B
obtenue par élimination. On pourra utiliser les différentes fonctions définies précédemment.

Solution.

def resolution_par_elimination(A,B):

n = len(A)
M = echelonnement (A,B)
N = reduction (M)

for j in range(1l,n):
for i in range(j):
combine(N,i,j,-N[il[j1)
X = []
for i in range(n):
X.append ([N[i][n]1)
return X

4) Détermination du rang

Question 19. En s’inspirant de la fonction echelonnement, écrire une fonction rang prenant
en argument une liste de listes A représentant une matrice A € .4, (R) et qui renvoie le rang de
la matrice A.

Solution.

def rang(A):
n = len(A)
for i in range(n):
ligne _pivot = cherche_pivot(A,1i)
echange lignes(A,i,ligne pivot)
if A[i]l[i] '= O:
for k in range(i+l,n):
coeff = A[k][i]/A[i][i]
combine (A,k,i,-coeff)

r =0
for i in range(n):
if A[i]l[i] '= O:
r += 1

return r

