
♦ TP7 – Méthode du pivot de Gauss

I. — Méthode du pivot de Gauss (Rappel)

1) Systèmes échelonnés et pivots

Définition 1

On dit qu’un système linéaire (S) de n équations est échelonné si, pour tout i ∈ J2, nK, la
i-ème ligne de (S) commence par au moins i − 1 coefficients nuls (en respectant l’ordre
initial des inconnues).

Remarque 2. Ceci revient à dire qu’à chaque nouvelle ligne, il y a au moins une inconnue
supplémentaire qui disparaît (dans l’ordre initial des inconnues).
Exemple 3. Les systèmes suivants sont échelonnés :

(S1)

3x + y = 2
y = 1

(S2)


−x + y − z = 3

3y + 2z = 5
5z = 2

(S3)

4x − z = 0
2y + z = 0

(S4)


x + y + z = 2

y − z = 1
2z = 5
0 = 0

En revanche, le système (S5)


x− 2y + z = 2

5x + z = 1
y = −1

n’est pas échelonné.

Définition 4

Si (S) est un système échelonné alors les pivots de (S) sont les coefficients non nuls
apparaissant en tête de chaque ligne.

Exemple 5. (S1) possède 2 pivots (3 et 1), (S2) possède 3 pivots (−1, 3 et 5), (S3) possède 2
pivots (4 et 2) et (S4) possède 3 pivots (1, 1 et 2).

2) Méthode du pivot de Gauss
Notation 6. Si (S) est un système linéaire de n équations, on note, pour tout i ∈ J1, nK, Li la
i-ème ligne de (S).

Propriété 7. — Opérations élémentaires

Soit (S) un système linéaire de n équations et i et j deux éléments de J1, nK. On obtient un
système équivalent à (S) si :
• on échange les lignes Li et Lj, ce qu’on notera Li ↔ Lj ;
• on remplace la ligne Li par tLi où t ∈ R∗, ce qu’on notera Li ← tLi ;
• on remplace la ligne Li par Li + tLj où t ∈ R, ce qu’on notera Li ← Li + tLj.

Remarque 8. Les opérations décrites dans la propriété précédente s’appellent les opérations
élémentaires sur les lignes d’un système.



Méthode 9 : Algorithme du pivot de Gauss

Tout système peut être transformé en un système échelonné équivalent par opérations
élémentaires sur les lignes de la manière suivante :
• on note Lp une ligne du système dans laquelle le coefficient α de x1 est non nul et on

échange L1 et Lp ;
• on utilise le coefficient α (qui est le pivot de la première ligne) pour éliminer x1 dans

toutes les autres équations du système grâce aux opérations Li ← Li− βi

α
L1 où βi est

le coefficient de x1 dans Li (si βi = 0, il n’y a donc rien à faire) pour tout i ∈ J2, nK ;
• On réitère le procédé sur le système formé par les n− 1 dernières équations avec x2

(ou à défaut x3, x4...) et ainsi de suite.

Remarque 10. On a en fait utilisé seulement deux des trois opérations élémentaires. La troisième
peut être utilisée si l’on souhaite de plus que les pivots soient tous égaux à 1. Pour cela, il suffit
de réaliser l’opération Li ← 1

αi
Li pour tout i ∈ J1, nK où αi est le pivot de la i-ème ligne.

L’intérêt de transformer un système (S) en un système échelonné équivalent (S ′) réside dans
le fait que la résolution de (S ′) est particulièrement simple par substitutions successives en
remontant le système à partir de la dernière équation. Par exemple, si on considère le système
(S2) de l’exemple 5 alors :

• de la troisième équation, on déduit que z = 2
5 ;

• de la deuxième équation, on déduit que 3y = 5− 2× 2
5 = 21

5 donc y = 7
5 ;

• de la première équation, on déduit que −x = 3− 7
5 + 2

5 = 2 donc x = −2.

Ainsi, l’unique solution de (S2) est
(
−2 ; 7

5 ; 2
5

)
.

Exemple 11. Dans chacun des cas suivants, échelonner le système par la méthode du pivot de
Gauss puis résoudre le système.

(S6)


x + y + 2z = −1
2x− y + 2z = −4
4x + y + 4z = −2

(S7)


2x− 3y + 4z = −3
−x + 2y + z = 5
4x− 5y + 14z = 1

(S8)


x− y − z = 4
2x− 3y + 2z = 1
5x− 8y + 7z = 1

Définition 12

Soit (S) un système linéaire de n équations à p inconnues.
1. Le nombre de pivots dans la méthode de Gauss s’appelle le rang du système. On le

note rg(S).
2. Si n = p alors le système (S) possède une unique solution si et seulement si n = rg(S).

Dans ce cas, on dit que (S) est un système Cramer.



II. — Programmation de la méthode pour résoudre un
système de Cramer

On souhaite résoudre un système de Cramer de n équations à n inconnues. Pour être en
adéquation avec la numérotation de Python qui commence à 0, on écrira un tel système

(S)



a0,0x0 + a0,1x1 + a0,2x2 + · · ·+ a0,n−1xn−1 = b0

a1,0x0 + a1,1x1 + a1,2x2 + · · ·+ a1,n−1xn−1 = b1
...

an−1,0x0 + an−1,1x1 + an−1,2x2 + · · ·+ an−1,n−1xn−1 = bn−1

L’écriture matricielle de (S) est AX = B avec

A =



a0,0 a0,1 a0,2 · · · a0,n−1
a1,0 a1,1 a1,2 · · · a1,n−1
a2,0 a2,1 a2,2 · · · a2,n−1

... ... ... . . . ...
an−1,0 an−1,1 an−1,2 · · · an−1,n−1

 X =



x0
x1
x2
...

xn−1

 et B =



b0
b1
b2
...

bn−1


1) Saisie des données

Pour représenter un système linéaire en Python, on va utiliser l’écriture matricielle et
représenter une matrice de taille n× p par une liste de n listes ayant chacune p éléments.

Par exemple, pour le système S6, on a

A =

1 1 2
2 −1 2
4 1 4

 et B =

−1
−4
−2


et on va représenter la matrice A par la liste de listes

A = [[1, 1, 2], [2, -1, 2], [4, 1, 4]]

et la matrice B par la liste de listes
B = [[-1], [-4], [-2]].

Question 1. Déterminer ce que renvoie chacune des instructions suivantes et vérifier ensuite
à l’aide de l’ordinateur.
A[0] A[0][0] A[1][3] len(A) len(A[2]) B[-1] B[1][0] len(B)

Pour la programmation de la méthode du pivot, il est pratique de considérer la matrice
augmentée C obtenue en ajoutant en dernière colonne de A les éléments de B. Ainsi, pour le
système (S6) la matrice C est

C =

1 1 2 −1
2 −1 2 −4
4 1 4 −2

 .

Question 2. Écrire une fonction matrice_augmentee qui prend en arguments deux listes
de listes A et B représentant respectivement une matrice A ∈Mn(R) et une matrice colonne
B ∈Mn,1(R) et qui renvoie la liste de listes représentant la matrice augmentée associée. On
prendra garde à écrire une fonction sans effet de bord.

Vérifier ensuite que l’instruction C = matrice_augmentee(A,B) affecte bien
[[1, 1, 2, -1], [2, -1, 2, -4], [4, 1, 4, -2]]

à la variable C.



2) Opérations élémentaires
Question 3. Écrire une fonction echange_lignes prenant en arguments une liste de listes

M représentant une matrice M ∈Mn,p(R) ainsi que deux entiers i et j compris entre 0 et n− 1
et qui modifie M en échangeant les lignes i et j (les lignes étant numérotées de 0 à n− 1). Cette
fonction renverra None.

Vérifier ensuite que echange_lignes(C, 1, 2) modifie bien C en

[[1, 1, 2, -1], [4, 1, 4, -2], [2, -1, 2, -4]].

Question 4. Écrire une fonction multiplie_ligne prenant en arguments une liste de listes
M représentant une matrice M ∈Mn,p(R) ainsi qu’un entier i compris entre 0 et n− 1 et un
nombre flottant t non nul et qui modifie M en remplaçant la ligne Li par t× Li (les lignes étant
numérotées de 0 à n− 1). Cette fonction renverra None.

Vérifier ensuite que multiplie_ligne(C, 2, 3) modifie bien C en

[[1, 1, 2, -1], [4, 1, 4, -2], [6, -3, 6, -12]].

Question 5. Écrire une fonction combine prenant en arguments une liste de listes M
représentant une matrice M ∈Mn,p(R) ainsi que deux entiers i et j compris entre 0 et n− 1 et
un nombre flottant t et qui modifie M en remplaçant la ligne Li par Li + t× Lj (les lignes étant
numérotées de 0 à n− 1). Cette fonction renverra None.

Vérifier ensuite que combine(C, 1, 0, -4) modifie bien C en

[[1, 1, 2, -1], [0, -3, -4, 2], [6, -3, 6, -12]].

3) Échelonnement
D’un point de vue mathématique, on peut utiliser n’importe quel nombre non nul comme

pivot dans une équation pour éliminer une inconnue dans les autres équations. Cependant,
en Python, le calcul sur les nombres flottants se fait de façon approchée et des divisions par
des petits nombres peuvent entraîner des erreurs d’arrondis qui, en se cumulant, donnent des
résultats totalement faux. On a donc intérêt à éviter les pivots trop petits. Pour cela, on va
choisir systématiquement le plus grand pivot possible en valeur absolue.

a0,0 a0,1 · · · · · · · · · a0,n−1 b0

0 a1,0 · · · · · · · · · a1,n−1 b1

... . . . . . . ...
0 · · · 0 aj,j · · · aj−1,n−1 bj−1

... ... ... ...

0 · · · 0 an−1,j · · · an−1,n−1 bn−1





colonne j

Partie déjà
échelonnée

Le « meilleur » pivot de la colonne j
est le nombre, parmi ceux entourés,
qui a la plus grande valeur absolue



Question 6. Écrire une fonction cherche_pivot prenant en arguments une liste de listes
M représentant une matrice M = (Mk,ℓ) ∈Mn,p(R) et un entier j compris entre 0 et n− 1 et
qui renvoie un indice de ligne contenant le plus grand pivot en valeur absolue pour l’indice xj

c’est-à-dire un entier m compris entre j et n− 1 tel que

∀i ∈ Jj, n− 1K, |Mm,j| ⩾ |Mi,j| .

Vérifier que cherche_pivot(C,0) renvoie 2 et que cherche_pivot(C,1) renvoie 1.

Question 7. On souhaite écrire une fonction echelonnement qui prend en arguments deux
listes de listes A et B représentant respectivement une matrice A ∈Mn(R) et une matrice colonne
B ∈Mn,1(R) et qui renvoie la matrice augmentée obtenue à l’issue de l’échelonnement par la
méthode du pivot de Gauss.

Compléter le code suivant.

def echelonnement (A,B):
M = matrice_augmentee (A,B)
n = len (...) # nombre d’é quations et d’inconnues
for i in range (...):

ligne_pivot = ... # dé termination du " meilleur " pivot
echange_lignes (... , ..., ...) # on échange la ligne i et la
for k in range (... , ...): # ligne contenant le " meilleur " pivot

coeff = M[k][i]/M[i][i]
combine (M, ..., ..., ...) # é limination de x_i sur les

return M # lignes L_k avec k>i

Vérifier que echelonnement(A,B) renvoie

[[4, 1, 4, -2], [0.0, -1.5, 0.0, -3.0], [0.0, 0.0, 1.0, -2.0]]

4) Résolution du système
Une fois le système échelonné, on termine la résolution par substitution en remontant les

équations à partir de la dernière. Pour cela, on va avoir besoin d’utiliser une boucle for avec un
pas décroissant, contrairement à l’habitude. Ceci est possible avec la syntaxe

for k in range(a, b, -1)

qui prend toutes les valeurs de a à b+1 avec un pas de 1 en décroissant.

Question 8. Déterminer ce qu’affiche le code suivant puis vérifier à l’aide de l’ordinateur.

L = [1, 2, 3, 4, 5, 6]
for k in range (5,-1,-1):

print(L[k])

Question 9. On souhaite enfin écrire une fonction resolution prenant en arguments deux
listes de listes A et B représentant respectivement une matrice A ∈Mn(R) et une matrice colonne
B ∈Mn,1(R) et qui renvoie une liste de listes X représentant la matrice colonne X ∈Mn,1(R)
solution de AX = B.

Compléter le code suivant.



def resolution (A,B):
n = len (...) # nombre d’é quations
M = echelonnement (... , ...)
X = [[...] for i in range (...)] # initialisation de X
for i in range (... , ..., -1):

s = 0
for j in range(i+1,n):

s = s + M [...][...] * X [...][...] # utilisation des inconnues
X[i] = [(M [...][...] -...) /M [...][...]] # déjà déterminées

return X

Utiliser la fonction resolution pour vérifier la solution obtenue pour la système (S6).

Question 10. Utiliser la fonction resolution avec les systèmes (S7) et (S8). Expliquer les
résultats obtenus.

5) Autres exemples
Question 11. Résoudre à la main les systèmes suivants puis vérifier à l’aide de la fonction

resolution.

(S9)


4x− 5y + 3z = −4
−5x + 3y − 7z = 5
6x− 6y + 8z = −8

(S10)


7x− 12y + 8z = 7
3x + 2y + 5z = 22
11x− 3y − 8z = −19

.

III. — Prolongements

1) Complexité en temps
La méthode du pivot de Gauss ne dépend pas du nombre d’équations du système : elle

fonctionne tout aussi bien pour un système de 2 équations à 2 inconnues que pour un système
de 10 équations à 10 inconnues. Cependant, plus le nombre d’équations augmente, plus il y a de
calculs à effectuer et plus la résolution va être longue. Le lien entre le nombre n d’équations et le
nombre de calculs à effectuer (ou le temps mis pour les exécuter, qui lui est approximativement
proportionnel) s’appelle la complexité en temps de l’algorithme. On peut démontrer que la
complexité du pivot de Gauss est cubique, ce qui signifie que, lorsque n devient grand, le temps
d’exécution est approximativement proportionnel à n3.

Question 12. Écrire une fonction matrice_aleatoire qui prend en arguments deux entiers
naturels non nuls n et p et qui renvoie une liste de listes A représentant une matrice A ∈Mn,p(R)
dont les coefficients sont choisis au hasard et de façon équiprobable dans [0 ; 1[

Rappel. Pour obtenir un flottant aléatoire entre 0 et 1, on utilise la fonction random() du
module random. Il faut donc commencer par l’importer en utilisant l’instruction

from random import *



Question 13. Expliquer le rôle de la fonction suivante.

import time

def temps(n):
A, B = matrice_aleatoire (n,n), matrice_aleatoire (n ,1)
t_initial = time.time ()
resolution (A,B)
t_final = time.time ()
return t_final - t_initial

Question 14. Écrire une fonction temps_moyen prenant en arguments deux entiers naturels
non nuls n et m et qui renvoie le temps moyen de résolution de m systèmes linéaires aléatoires
de n équations à n inconnues à l’aide de la fonction resolution.

Question 15. Si on admet que lorsque n est suffisamment grand, le temps moyen de
résolution d’un système de n équations à n inconnues par la méthode du pivot est proportionnel
à n3, quel est le rapport entre le temps moyen de résolution d’un système de 2n équations à 2n
inconnues et la temps moyen de résolution d’un système de n équations à n inconnues ?

Vérifier expérimentalement ce résultat en utilisant la fonction temps_moyen avec n = 100 et
m = 10 puis m = 20 puis m = 50.

2) Choix du pivot
On a dit précédemment que, d’un point de vue numérique, tous les pivots ne se valent pas et

qu’il faut éviter les « petits » pivots. On a donc choisi de prendre, à chaque étape, le plus grand
pivot possible en valeur absolue. Cependant, le problème des approximations vient des divisions
et, en fait, de ce point de vue, les meilleurs pivots sont 1 et −1.

Question 16. Modifier la fonction recherche_pivot de façon à choisir 1 ou −1 comme
pivot si cela est possible et le plus grand pivot en valeur absolue sinon.

Utiliser alors la fonction resolution pour le système (S8). Que constate-t-on ?

3) Résolution par élimination
Une fois le système échelonné, on a terminé la résolution par substitution. Une autre méthode

est possible en utilisant des opérations élémentaires pour éliminer les inconnues non seulement
en dessous d’une ligne mais également au-dessus. Cela permet d’obtenir la solution du système
sur la matrice augmentée à condition de partir d’un système échelonné réduit c’est-à-dire un
système échelonné dans lequel tous les pivots sont égaux à 1.

Question 17. Écrire une fonction reduction qui prend en argument une liste de listes
représentant la matrice augmentée obtenue à l’issue de l’échelonnement par la méthode du pivot
et qui renvoie une matrice échelonnée équivalente dans laquelle tous les pivots sont égaux à 1.

Question 18. Écrire une fonction resolution_par_elimination qui prend en arguments
deux listes de listes A et B représentant respectivement une matrice A ∈Mn(R) et une matrice
B ∈Mn,1(R) et qui renvoie une liste de listes X représentant la matrice X solution de AX = B
obtenue par élimination. On pourra utiliser les différentes fonctions définies précédemment.

4) Détermination du rang
Question 19. En s’inspirant de la fonction echelonnement, écrire une fonction rang prenant

en argument une liste de listes A représentant une matrice A ∈Mn(R) et qui renvoie le rang de
la matrice A.


