¢ TP6 — Dictionnaires

I. — Définition

Un dictionnaire est une structure ayant son propre type (dict) et qui représente un ensemble
(non ordonné) de couples (clé,valeur) saisis sous la forme clé:valeur. Un dictionnaire est
délimité par des accolades et ses éléments (qui sont des couples) sont séparés par des virgules.
La longueur d’un dictionnaire est le nombre d’entrées (i.e. de couples clé/valeur) et, comme
pour les listes, on peut utiliser la fonction len pour connaitre cette longueur.

Dans un dictionnaire, les clés sont des objets de types non mutables (des nombres, des chaines
de caracteres, des booléens mais pas des listes ni des dictionnaires) et les valeurs peuvent étre
de types quelconques (y compris des dictionnaires). Dans un méme dictionnaire, les différentes
clés peuvent étre de types différents (et de méme pour les valeurs).

Par exemple, 'instruction suivante définit un dictionnaire dico :
dico = {’abc’:5, 2:True, 3.4:[1,2,3]1}

Ce dictionnaire possede trois clés : la chalne de caracteres *abc’, I'entier 2 et le flottant 3.4. La
valeur associée a la clé abc’ est I'entier 5, la valeur associée a la clé 2 et le booléen True et la
valeur associée a la clé 3.4 est la liste [1,2,3]. La longueur de ce dictionnaire est 3 (puisqu’il y
a 3 couples) donc len(dico) renvoie 3.

Le dictionnaire vide, qui ne contient aucun couple clé:valeur, se définit par {}.

On utilise un dictionnaire lorsqu’on veut regrouper des éléments qui partagent une caracté-
ristique commune (la clé) a laquelle on veut associer une donnée (la valeur). Un exemple typique
d’utilisation d’un dictionnaire est le suivant. On considere la chaine de caracteres

ch="AGCTTACGATACTT’

et on aimerait avoir acces au nombre d’occurrences de chaque caractere de cette chaine. Une
facon de stocker ces données est d’utiliser le dictionnaire suivant :

nb_occur = {’A’:4, ’C’:3, °G’:2, ’T’:5}.

Dans cet exemple, on a défini le dictionnaire « en extension » c’est-a-dire en saisissant expli-
citement tous les couples clé/valeur. Il est également possible de définir un dictionnaire « en
compréhension » (comme on peut le faire pour les listes). Par exemple, si on considere liste de
chaines de caracteres

L = ["CCT", "ACGTTA", "ATTCTGA", "AG"]
on peut définir un dictionnaire qui associe a chaque chaine sa longueur par la syntaxe suivante
{ chaine:len(chaine) for chaine in L }.

Dans un dictionnaire, on s’intéresse, en général, a la valeur associée a une clé donnée.
Contrairement aux cas des listes ou des chaines de caractéres, ceci ne peut pas se faire a 'aide
d’un indice car un dictionnaire n’est pas ordonné.

Si dic est un dictionnaire et si ¢ est une clé de ce dictionnaire alors on peut obtenir la valeur
associée a cette clé grace a I'instruction suivante :

dic[c]

Ainsi, si on veut savoir quelle est la valeur associée a la clé > T’ dans le dictionnaire nb_occur,
on écrit

nb_occur [’T’]

Remarque. Ainsi, une entrée (clé/valeur) dans un dictionnaire est identifiée par sa clé; il est
donc nécessaire, pour pouvoir déterminer chaque entrée de maniere unique, que toutes les clés
soient différentes (contrairement aux valeurs qui peuvent se répéter).

Question 1. On considére le dictionnaire dic1 suivant :
dicl = {’a’:2, 2:’b’, ’c’:3}
Déterminer ce que renvoient les instructions suivantes
1) type(dic1) 2) len(dicl) 3) dici[2] 4) dici[1] 5) dicl[’b’] 6) type(dici[’a’])

Vérifier a 'aide de ordinateur.

Solution.

1) type(dicl) renvoie <class ’dict’> ce qui signifie que dic1 est de type dict.

2) len(dicl) renvoie 3 car le dictionnaire contient trois entrées.

3) dic1[2] renvoie ’b’ car la valeur associée a la clé 2 est *b’.

4) dic1[1] renvoie un message d’erreur car 1 n’est pas une clé de dicl.

4) dic1[’b’] renvoie un message d’erreur car *b’ n’est pas une clé de dicl.

6) type(dici[’a’]) renvoie int puisque dic1[’a’] renvoie 2 qui est de type entier.

Question 2.

1. Ecrire une fonction nb_occurences qui prend en argument une chaines de caracteres ch
et un caractere car et qui renvoie le nombre d’occurrences de car dans ch.

2. On considere la liste suivante :
L = [’aab’, ’adea’, ’de’, ’aaaaa’, ’teaaaza’, ’zqtad’].
A Paide de la fonction nb_occurences, définir un dictionnaire D dont les clés sont les
chalnes de caracteres de L et les valeurs associées sont les nombres de ’a’ dans ces chailnes.

3. Est-il possible d’écrire un dictionnaire identique si L est une liste de listes plutot qu’une
liste de chaine de caracteres?

Solution.
1.
def nb_occurrences (ch,car):
c =0
for e in ch:
if e == car:
c += 1
return c
2.
D = { ch:nb_occurrences(ch,’a’) for ch in L}

3. Il n’est pas possible de définir un dictionnaire identique pour une liste de listes car les
clés d’un dictionnaire ne peuvent pas étre des objets mutables (et donc ne peuvent pas
étre des listes).

II. — Modification d’un dictionnaire

1) Modification d’une valeur

Un dictionnaire est un objet mutable (on peut modifier les valeurs ou ajouter des couples
clé /valeur).

Reprenons le dictionnaire nb_occur qui donne le nombre d’occurrences de chaque lettre
de la chaine de caracteres ch=’AGCTTACGATACTT’. Si on modifie la chaine ch par la syntaxe
ch += ’G’ alors on obtient la chaine ch="AGCTTACGATACTTG’ et pour actualiser le dictionnaire
nb_occur, sans le reconstruire complétement, on peut simplement modifier la valeur de la clé
’G’ grace a l'instruction

nb_occur[’G’] += 1

qui va ajouter 1 a la valeur associée a la clé >G’. Ainsi, le dictionnaire nb_occur devient
nb_occur = {’A’:4, ’C’:3, ’G’:3, ’T’:5}

Remarque. C’est la tout 'intérét d’un dictionnaire. On pourrait en effet se dire qu’on peut
remplacer le dictionnaire nb_occur initial par la liste de listes

L=1[[A,4], [’C’,3], [’G’,2], [’T’,5]].

Cependant, si on veut changer le nombre associé a ’G’ et 'augmenter de 1, il faut savoir que
ce nombre est stocké dans la quatrieme liste et utiliser 'instruction L[3] [2] += 1 alors que,
pour un dictionnaire, il suffit d’utiliser la clé *G’ sans se préoccuper de la place de cette clé (un
dictionnaire n’étant de toute fagon pas ordonné).

Question 3. Quelle instruction doit-on écrire pour adapter le dictionnaire nb_occur si on
modifie la chaine ch par la syntaxe ch += T’ 7

Solution.

nb_occur [’T’] += 1

2) Test d’appartenance

Pour tester si une clé c est présente dans un dictionnaire dic, on peut utiliser la syntaxe
suivante : ¢ in dic. Celle-ci renvoie un booléen. Ainsi, ’A’ in nb_occur renvoie True alors
que B’ in nb_occur renvoie False.

Question 4. On considere le dictionnaire dico défini dans le paragraphe 1. Que renvoient les
instructions suivantes ?

1) ’abc’ in dico 2) True in dico 3) 3.4 in dico 4) ’ab’ in dico.

Solution.

1) abc’ in dico renvoie True car ’abc’ est une clé de dico.

2) True in dico renvoie False car True n’est pas une clé de dico.
3) 3.4 in dico renvoie True car 3.4 est une clé de dico.

4) >ab’ in dico renvoie False car ’ab’ n’est pas une clé de dico.

3) Ajout et suppression d’un couple clé/valeur

Il est possible d’ajouter un couple clé/valeur & un dictionnaire. Précisément, pour ajouter
une clé ¢ a un dictionnaire dic en lui attribuant la valeur v, on utilise la syntaxe

dic[cl=v

Remarque. Ainsi, si dic est un dictionnaire et si ¢ est un objet alors

e soit ¢ est une clé déja existante dans dic et, dans ce cas, I'instruction dic[c]=v modifie
la valeur associée a la clé ¢ qui est remplacée par v;

e soit ¢ n’est pas une clé présente dans dic et, dans ce cas, I'instruction dic[c]=v ajoute
la clé ¢ au dictionnaire dic en lui attribuant la valeur v.

De méme, il est possible de supprimer un couple clé/valeur d’un dictionnaire. Précisément,
pour supprimer la clé ¢ (et sa valeur v) d’un dictionnaire dic, on utilise la syntaxe

del dic([c]

Question 5. On considere les instructions suivantes :

1 dico = { ’Pierre’: 15, ’Paul’:12, ’Jacques’:18, ’Rémi’:7,
>Jean’: 11, ’Marc’:5 }

2 dico[’Pierre’]-=1

s dico[’Michel’]=8

4+ del dico[’Rémi’]

Donner I'état du dictionnaire dico apres I'exécution de la ligne 2, apres I'exécution de la
ligne 3 et apres I'exécution de la ligne 4 puis vérifier a I’aide de 'ordinateur.

Solution.
Apres I'exécution de la ligne 2, dico vaut

{ ’Pierre’: 14, ’Paul’:12, ’Jacques’:18, ’Rémi’:7, ’Jean’: 11, ’Marc’:5 }
Apres I'exécution de la ligne 3, dico vaut

{ ’Pierre’: 14, ’Paul’:12, ’Jacques’:18, ’Rémi’:7, ’Jean’: 11, ’Marc’:5,
’Michel’:8 }

Apres I'exécution de la ligne 4, dico vaut

{ ’Pierre’: 14, ’Paul’:12, ’Jacques’:18, ’Jean’: 11, ’Marc’:5, ’Michel’:8 }

Question 6. Ecrire une fonction nb_occ qui prend en argument une chaine de caractéres ch et
qui renvoie le dictionnaire dont les clés sont les caractéres qui composent la chaine ch et les
valeurs associées sont les nombres d’occurrences de ces caracteres dans la chaine ch.

Vérifier que l'instruction nb_occ (?’ ATTENTION’) renvoie le dictionnaire

{ A1, °T’:3, ’E’:1, ’N’:2, ’I’:1, °07:1 }.

Solution

def nb _occ(ch):
dic = {}
for e in ch:
if e in dic:
dicl[e] += 1
else:
dicl[e] = 1
return dic

III. — Itération sur un dictionnaire

Comme les listes, les dictionnaires sont itérables (c’est-a-dire, on peut les parcourir selon
leurs clés et /ou leurs valeurs). Voici quelques exemples de syntaxes qu’on peut utiliser et adapter
en fonction du contexte et des besoins.

Supposons qu’on dispose d’un dictionnaire dic.

e Si on souhaite obtenir la liste des clés de dic, on peut utiliser 'une des deux syntaxes
suivantes :

[¢ for ¢ in dic]

ou

[¢ for ¢ in dic.keys()]

e Si on souhaite obtenir la liste des valeurs de dic, on peut utiliser I'une des deux syntaxes
suivantes :

[dic[c] for c in dic 1]

ou

[v for v in dic.values ()]

e Si on souhaite obtenir la liste des couples (clé, valeur) de dic, on peut utiliser I'une des
deux syntaxes suivantes :

[(c,dicl[c]) for c in dic]

ou

[i for i in dic.items ()]

Question 7. En utilisant la fonction nb_occ de la question 6, écrire une fonction caracteres
qui prend en argument une chaine de caracteres ch et qui renvoie la liste des caracteres distincts
qui apparaissent dans ch.

Vérifier que l'instruction caracteres(’ananas’) renvoie la liste [’a’, ’n’, ’s’].

Solution.

def caracteres(ch):
return [c for ¢ in nb_occ(ch)]

IV. — Exercices
Exercice 1. On considere le dictionnaire suivant qui donne la masse en kg de certains animaux :
masse = {’girafe’:1100, ’tigre’:250, ’singe’:70}.
1. Prédire puis vérifier a ’aide de 'ordinateur ce que renvoie les commandes suivantes.

type (masse) len(masse) masse[1] masse[’tigre’] masse[’souris’].

2. a. On exécute l'instruction masse[’souris’] = 0.02. Que vaut a présent len(masse) ?
Vérifier a I'aide de I'ordinateur.

b. On exécute l'instruction masse[’souris’] = 0.03. Que vaut a présent len(masse) 7
Vérifier a I'aide de 'ordinateur.

3. En utilisant une itération sur les clés, créer un dictionnaire masse_gramme qui donne la
masse en gramme (et non pas en kg) des animaux du dictionnaire masse.

Solution.

1. type(masse) renvoie <class ’dict’> ce qui signifie que masse est de type dict
len(masse) renvoie 3, masse[1] renvoie un message d’erreur car 1 n’est pas une clé de
masse
masse[’tigre’] renvoie 250
masse[’souris’] renvoie un message d’erreur puisque ’souris’ n’est pas une clé du
dictionnaire masse.

2. a. On ajoute une clé au dictionnaire donc len(masse) renvoie 4.
b. On modifie une valeur mais on ne change pas les clés du dictionnaire donc len(masse)
renvoie encore 4.

3. On peut créer le dictionnaire des masses moyennes en gramme par la syntaxe suivante :

masse_gramme = { e:masse[e]*1000 for e in masse }

Exercice 2. Les syntaxes suivantes sont-elles correctes ?
1. dict = { "a":[1,2,3], "b":3, "c":True }.
2. dic2 = { [1,2,3]:"a", 3:"b", True:"c" }.
3. dic3 {1:"a", 2:{ 1:"a", "a":[1,2] }, 4:4 }.

Solution. Les syntaxes de dicl et dic3 sont correctes mais pas celle de dic2 car une liste
ne peut pas étre une clé dans un dictionnaire.

Exercice 3.
1. Ecrire en extension le dictionnaire D1 = { k:2#xk for k in range(5) }.

2. Fecrire en compréhension le dictionnaire D2 = {0:1, 1:4, 2:7, 3:10, 4:13, 5:16}.

Solution.
1.D1 ={ 0:1, 1:2, 2:4, 3:8, 4:16 }.
2. D2 = { 3k+1 for k in range(6) 7.

Exercice 4. On considére une séquence d’acides aminés sous la forme d’une chaine de caracteres,
comme par exemple :

seq_ex = ’*AGWPSGGASAGLAILWGASAIMPGALW’.

. Ecrire une fonction nb_occ_bis qui prend en argument une chaine de caractéres seq

représentant une séquence d’acides aminés et qui renvoie, sous forme d’un dictionnaire,
le nombre d’occurrences de chaque acide aminé présent dans cette séquence. Vérifier que
nb_occ_bis(seq_ex) renvoie

{ A7, °G’:6, ’W’:3, ’P’:2, ’S’:3, ’L’:3, ’I’:2, "M’:1 }

. En utilisant la fonction nb_occ_bis, écrire une fonction aa_presents qui prend en

argument une chaine de caracteres seq représentant une séquence d’acides aminés et qui
renvoie la liste des acides aminés présents dans cette séquence (chaque acide aminé ne
devant apparaitre qu'une seule fois dans la liste).

Solution.

1.

def nb_occ(seq):
dic = {}
for e in seq:
if e in dic:
dicl[e]+=1
else:
dicl[e]=1
return dic

def aa_present (seq):
return [e for e in nb_occ(seq)]

Exercice 5. On représente une recette de cuisine par un dictionnaire dont les clés sont les
ingrédients et les valeur sont les quantités de chaque ingrédient (I'unité est variable selon
I'ingrédient : gramme, millilitre, nombre). Par exemple, la recette des crépes est représentée par
le dictionnaire

crepes = {"farine":250, "oeufs":4, "lait":300, "beurre":50, "sucre'":30}.

1.

Ecrire une fonction nombre_ingredients prenant en argument un dictionnaire D repré-
sentant une recette et qui renvoie le nombre d’ingrédients différents de la recette.

. Supposons qu’on soit allergique aux noix. Ecrire une fonction est_sans_noix prenant

en argument un dictionnaire représentant une recette et qui renvoie True si la recette ne
contient pas de noix, et False sinon.

. On souhaite faire un régime. Ecrire une fonction est_sain prenant en argument un

dictionnaire représentant une recette et qui renvoie True si la recette contient moins de
50 grammes de sucre, et False sinon. On prendra garde au fait qu’il y a deux situations
possibles : ou bien "sucre" est une clé du dictionnaire dont la valeur doit étre inférieure
a b0, ou bien "sucre" n’est pas une clé du dictionnaire.

Solution.
1.

def nombre_ingredients(D):
return len(D)

def est_sans _noix(D):
return not("noix" in D)

3. Version courte

def est_sain(D):
return not("sucre" in D and D["sucre"] > 50)

Version longue

def est_sain(D):
if "sucre" in D and D["sucre"] > 50:
return False
return True

Exercice 6. On représente un porte-monnaie contenant des pieces et des billets par un dic-
tionnaire dic, ou d[x] représente le nombre de billets (ou pieces) de x euro. Par exemple, le
dictionnaire D = { 1:4, 2:7, 10:1 } représente un porte-monnaie avec 4 pieces de 1 euro, 7
pieces de 2 euros et 1 billet de 10 euros. Dans cet exemple, la somme totale est de 28 euros.

Ecrire une fonction total qui prend en argument un tel dictionnaire D représentant un
porte-monnaie et qui renvoie la somme d’argent totale que cela représente.

Solution.

def total(D):
S =0
for ¢ in D:
S += c*D[c]
return S

Exercice 7.

1. Ecrire une fonction conversionDL qui prend en argument un dictionnaire D et ren-
voie la liste des listes [clé,valeur]. Par exemple, si D={"a":1, "b":2, "c":3} alors
conversionDL(D) doit renvoyer [["a",1], ["b",2], ["c",3]].

2. Ecrire une fonction conversionLD qui prend en arguments deux listes de méme longueur
(une liste cles de « clés » et une liste valeurs de « valeurs ») et renvoie le diction-
naire correspondant. Par exemple, si cles=["a","b","c"] et si valeurs=[1,2,3] alors
I'instruction conversionDL(cles,valeurs) doit renvoyer {"a":1, "b":2, "c":3}.

Solution.

1.
def conversionDL (D) :
L = []
for ¢ in D:
L.append ([c,D[c]])
return L
2.

def conversionLD(cles,valeurs):
n len(cles)
dic = {}
for i in range(n):
dic[cles[i]] = valeurs/[il
return dic

Exercice 8. Ecrire une fonction changeCle prenant en argument un dictionnaire dic et deux
objets a et b et qui renvoie le dictionnaire obtenu a partir de dic en modifiant la clé a en b
lorsque a est une clé de dic et qui renvoie dic sinon. Ainsi, si dic={"a":1, "b":2, "c":3}
alors changeCle(dic, "b", "r") doit renvoyer le dictionnaire {"a":1, "r":2, "c":3} alors
que changeCle(dic, "d", "r") doit renvoyer {"a":1, "b":2, "c":3}

Solution.

def changeCle(dic,a,b):
if a in dic:
dic[b] = dic[al
del dicl[a]
return dic

Exercice 9. Ecrire une fonction recherche prenant en argument un dictionnaire D et un objet
x et qui renvoie la liste de toutes les clés du dictionnaire D associées a la valeur x. Si aucune clé
n’est associée a x, la fonction renvoie la liste vide.

Solution.

def recherche(D, x):
L = []
for ¢ in D:
if D[c] ==
L.append (
return L

X
C

)

Autre possibilité :

def recherche(D, x):
return [c for c¢c in D if D[c] == x]

Exercice 10. Ecrire une fonction frequencelettres ayant pour argument une chaine de
caracteres ch et qui renvoie un dictionnaire qui contient la fréquence de toutes les lettres de la
chaine ch. Par exemple, frequencelLettres(’aabtetetaa’) doit renvoyer {’a’:0.4, ’b’:0.1,
’£2:0.3, ’e’:0.2}

Solution.

def frequencelettres(ch):
n len(ch)
D = {}
for ¢ in ch:
if ¢ in D:
D[c] += 1/mn
else:
D[lc] = 1/n
return D

Exercice 11. Ecrire une fonction renverse qui prend en argument un dictionnaire D et qui
qui renvoie un dictionnaire dont les clés sont les valeurs de D et dont les valeurs sont les clés
de D. Dans le cas ou certaines clés de D sont associées a une méme valeur, le dictionnaire
renvoyé doit regrouper ces clés dans une liste. Ainsi, siD = {"a":1, "b":2, "c":3, "d":4}
alors renverse (D) doit renvoyer {1:"a", 2:"b", 3:"c", 4:"d"} maissiD = {"a":1, "b":2,
"c":1, "d":4} alors renverse(D) doit renvoyer {1:["a","c"], 2:"b", 4:"d"}.

Solution.

def renverse(D):
dic_renv = {}
for ¢ in D:
if D[c] in dic _renv:
if type(dic_renv[D[c]]) ==
dic_renv[D[c]].append(c)
else:
dic_renv[D[c]]
else:
dic_renv[D[c]] =
return dic_renv

list:

[dic_renv[D[c]], c]

(@]

Exercice 12. Ecrire une fonction fusion qui prend en arguments deux dictionnaires D1 et D2
dont les valeurs sont des nombres et qui renvoie le dictionnaire obtenu en réunissant les entrées
de D1 et celles de D2. Quand une méme clé est présente dans les deux dictionnaires, on somme
les valeurs associées. Ainsi, si D1={’a’:1, ’b’:2} et D2={’b’:7, ’c’:3} alors fusion(D1,D2)
doit renvoyer le dictionnaire {’a’:1, ’b’:9, ’c’:3}

Solution.

def fusion(D1,D2):
dic _fusion = {c:D1[c] for c imn D1}
for c¢c in D2:
if ¢ in dic_fusion:
dic_fusion[c] += D2[c]
else:
dic _fusion[c] = D2[c]
return dic_fusion

Exercice 13.

1.

Ecrire une fonction chaines 2 lettres qui prend en argument une chaine de caractéres
ch et qui renvoie un dictionnaire dont les clés sont les chaines de caractéres de deux
lettres consécutives apparaissant dans ch et les valeurs sont les nombres d’occurrences de
ces chaines.

Vérifier que chaine_ 2 lettres("ACCTAGCCCTA") renvoie le dictionnaire

{"AC":1, "CC":3, "CT":2, "TA":2, "AG":1, "GC":1}.

En déduire une fonction sous _chaines 2 lettres qui prend en argument une chaine
de caracteres ch et qui renvoie la liste des chaines de caracteres distinctes formées de
deux lettres consécutives apparaissant dans ch.

Vérifier que sous_chaine 2_lettres("ACCTAGCCCTA") renvoie la liste

[HACII IICCII |ICTII IITAII IIAGH I|GCII:| .

Solution.
1.

def chaines 2 lettres(ch):
dic = {}
for k in range(len(ch)-1):
if ch[k:k+2] in dic:
dic[ch[k:k+2]] += 1
else:
dic[ch[k:k+2]] = 1
return dic

def sous _chaines 2 lettres(ch):
return [¢ for ¢ in chaines_2_lettres(ch)]

