
♦ TP13 – Préparation à l’oral

I. — Utilisation de numpy pour la diagonalisation
Le module numpy contient la structure de données matrix qui permet de calculer simplement

sur des matrices.
On importe le module numpy sous la forme :

from numpy import *

1) Création d’une matrice
On utilise l’instruction matrix() : entre les parenthèses, on indique la liste de lignes de la

matrice, chaque ligne étant elle-même implémentée sous forme de liste.
Exemple. Considérons les matrices

A =
(

1 2 −1
3 0 4

)
, B =

(
1 −0,4

0,5 1

)
, C =

(
2

−1

)
, D =

(
2 −1

)
.

Pour saisir ces matrices, on écrit :

A = matrix ([[1 , 2, -1], [3, 0, 4]])
B = matrix ([[1 , -0.4], [0.5 , 1]])
C = matrix ([[2] , [ -1]])
D = matrix ([[2 , -1]])

Remarque. Après l’instruction matrix, il y a donc toujours une parenthèse et deux crochets.

2) Opérations sur les matrices
• Si A et B sont deux matrices de même taille, on calcule A + B par l’instruction A+B.
• Si A est une matrice et k est un scalaire, on calcule kA par l’instruction k*A.
• Si A et B sont deux matrices telles que le produit AB soit défini, on calcule AB par

l’instruction A*B.
• Si A est une matrice carrée et n ∈ N, on calcule An par l’instruction A**n.
• Si A est une matrice carrée inversible, on calcule son inverse A−1 par l’instruction

A**(-1).
Exemple. Considérons les matrices

A =
1 2

3 −4

 , B =
−1 1

−2 3

 .

Implémenter ces matrices puis calculer à l’aide de numpy,

A + B 3A A × B A2 A−1

Solution.

A=matrix ([[1 ,2] ,[3 , -4]])
B=matrix ([[ -1 ,1] ,[ -2 ,3]])



>>> A+B
matrix ([[ 0, 3],

[ 1, -1]])
>>> 3*A
matrix ([[ 3, 6],

[ 9, -12]])
>>> A*B
matrix ([[-5, 7],

[ 5, -9]])
>>> A**2
matrix ([[ 7, -6],

[-9, 22]])
>>> A**( -1)
matrix ([[ 0.4, 0.2] ,

[ 0.3, -0.1]])

3) Résolution de systèmes linéaires
Soit A ∈ Mn(R) une matrice carrée inversible, X ∈ Mn,1(R) et B ∈ Mn,1(R). Pour résoudre

le système matriciel AX = B, on utilise l’instruction :

linalg.solve(A, B)

Exemple. Considérons le système :
2x + y − z = 7
x + 2y + z = 5
3x − y + 2z = −4

On peut l’écrire sous forme matricielle AX = B avec :

A =

2 1 −1
1 2 1
3 −1 2

 , X =

x
y
z

 et B =

 7
5

−4

 .

Dans l’interpréteur, on saisit

A = matrix ([[2 , 1, -1], [1, 2, 1], [3, -1, 2]])
B = matrix ([[7] , [5], [ -4]])
linalg.solve(A, B)

et on obtient

matrix ([[ 1.],
[ 3.],
[ -2.]])

Ainsi, l’unique solution de (S) est (x, y, z) = (1, 3, −2).

4) Valeurs propres et vecteurs propres
Soit A une matrice carrée à coefficients réels ou complexes. Les valeurs propres et les vecteurs

propres de A peuvent s’obtenir par l’instruction



linalg.eig(A)

Exemple. On considère la matrice

M =
(

1 −1
2 4

)
.

Dans l’interpréteur, on saisit :

M = matrix ([[1 , -1], [2, 4]])
linalg.eig(M)

et on obtient :

(array ([2. , 3.]) , matrix ([[ -0.70710678 , 0.4472136 ],
[ 0.70710678 , -0.89442719]]) )

Le tableau array[2., 3.] contient les valeurs propres : ici, il s’agit donc de 2 et 3 et la
matrice matrix([[-0.70710678, 0.4472136 ], [ 0.70710678, -0.89442719]] contient, en
colonne, des vecteurs propres associés à ces deux valeurs propres.

Remarques sur l’affichage.
— Les calculs sont approchés. On peut donc observer des arrondis. Par exemple, si une

valeur propre vaut 2, Python peut afficher 2.000000002 ou 1.99999998.
— Si Python affiche un résultat très proche de zéro, comme par exemple 8.26466798 × 10−9,

il est possible qu’il s’agisse d’une erreur d’arrondi et que le résultat soit nul.
— Python donne des vecteurs propres unitaires, ce qui est peu pratique en raison des

arrondis. Ainsi, on ne s’en servira pas pour déterminer des vecteurs propres. Cela peut
cependant aider à vérifier un résultat. Ainsi, on peut montrer qu’un vecteur propre

associé à la valeur propre 2 pour la matrice M est
(

1
−1

)
et on peut constater que la

première colonne de la matrice fournit le vecteur
(

−0,70710678
0,70710678

)
qui est bien colinéaire

à ce vecteur.
— Python peut donner des résultats dans C. En Python, on utilise la lettre j pour désigner

le nombre complexe i. Par exemple, l’écriture 2+3j désigne le nombre complexe 2 + 3i.

5) Résumé
Dans le tableau ci-dessous, A et B sont des matrices de dimensions appropriées, k est un

scalaire et n un entier naturel.

Notation mathématique Instruction Python

Définir une matrice A =
(

1 2
−3 4

)
A = matrix([[1, 2], [-3, 4]])

Somme de deux matrices : A + B A+B
Produit d’une matrice par un scalaire : kA k*A
Produit de deux matrices : AB A*B
Puissance : An A**n
Inverse d’une matrice inversible : A−1 A**(-1)
Résolution du système AX = B linalg.solve(A, B)
Valeurs propres et vecteurs propres de A linalg.eig(A)



6) Exercices

Exercice 1. On considère la matrice A =
(

−2 1
1 −3

)
.

1. À la main, justifier que A est inversible et donner A−1.
2. À l’aide de numpy, calculer A−1

Solution.

1. Comme det(A) = (−2) × (−3) − 1 × 1 = 5 ̸= 0, A est inversible et A−1 = 1
5

(
−3 −1
−1 −2

)
=(

−0,6 −0,2
−0,2 −0,4

)
.

2. On saisit

A=matrix ([[ -2 ,1] ,[1 , -3]])
A**( -1)

et on obtient :

matrix ([[ -0.6 , -0.2],
[-0.2, -0.4]])

Exercice 2. On considère les matrices :

A =

1 1 0
2 1 2
0 1 1

 et P =

 1 1 1
0 −2 2

−1 1 1

 .

1. À l’aide de numpy, calculer Q = P −1. Vérifier avec numpy que PQ = I3 et QP = I3.
2. À l’aide de numpy, calculer D = P −1AP . Que peut-on en déduire ?

Solution.
1. On saisit

P=matrix ([[1 ,1 ,1] ,[0 , -2 ,2] ,[ -1 ,1 ,1]])
Q=P**( -1)
print(Q)

et on obtient :

[[ 0.5 0. -0.5 ]
[ 0.25 -0.25 0.25]
[ 0.25 0.25 0.25]]

puis

>>> P*Q
matrix ([[1. , 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> Q*P
matrix ([[1. , 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])



Ainsi, on a bien PQ = QP = I3.
2. On saisit

A=matrix ([[1 ,1 ,0] ,[2 ,1 ,2] ,[0 ,1 ,1]])
D=Q*A*P
print(D)

et on obtient :

[[ 1. 0. 0.]
[ 0. -1. 0.]
[ 0. 0. 3.]]

Il s’agit d’une matrice diagonale diagonale donc A est diagonalisable et les valeurs propres
de A sont 1, −1 et 3.

Exercice 3. On considère le système

(S)


2x + 2y + 5z = 14
4x − y + z = 6
x + 1

2y + 3
2z = 9

2

1. Déterminer les matrices A et B telles que l’écriture matricielle de (S) soit AX = B. Saisir
les matrices A et B dans l’interpréteur.

2. Résoudre le système à l’aide de l’instruction linalg.solve de numpy.
3. Calculer X = A−1B à l’aide de numpy et vérifier que l’on retrouve la solution de (S).

Solution.

1. L’écriture matricielle de (S) est AX = B avec A =

2 2 5
4 −1 1
1 1

2
3
2

 et B =

14
6
9
2

.

2. On saisit

A=matrix ([[2 ,2 ,5] ,[4 , -1 ,1] ,[1 ,1/2 ,3/2]])
B=matrix ([[14] ,[6] ,[9/2]])
linalg.solve(A,B)

et on obtient :

matrix ([[ 0.5] ,
[-1. ],
[ 3. ]])

Ainsi, l’unique solution de (S) est (1
2 , −1, 3).

3. On saisit

A**( -1)*B

et on obtient :

matrix ([[ 0.5] ,
[-1. ],
[ 3. ]])



On retrouve que l’unique solution de (S) est (1
2 , −1, 3).

Exercice 4. On considère les matrices

M =

3 1 −1
1 3 −1
1 1 1

 , P =

1 0 1
0 1 1
1 1 1

 .

On peut démontrer que
• M possède deux valeurs propres : 2 et 3.
• le sous-espace propre associé à 2 est :

E2(M) =


x

y
z


∣∣∣∣∣∣∣ z = x + y

 = Vect(u, v) avec u =

1
0
1

 et v =

0
1
1

 .

• le sous-espace propre associé à 3 est E3(M) = Vect(w) avec w =

1
1
1

.

1. À l’aide de numpy, déterminer les valeurs propres de M .
2. Vérifier que les vecteurs propres donnés par numpy sont cohérents avec les espaces propres

donnés par l’étude mathématique.
3. On note D = P −1MP . Sans calculs, que vaut D ? Vérifier à l’aide de numpy.
4. On note Q la matrice des coordonnées des vecteurs propres donnée par numpy. On note

D′ = Q−1MQ. Sans calculs, que vaut D′ ? Vérifier à l’aide de numpy.
Solution.
1. On saisit

M=matrix ([[3 ,1 , -1] ,[1 ,3 , -1] ,[1 ,1 ,1]])
linalg.eig(A)

et on obtient :

(array ([3. , 2., 2.]) , matrix ([[ 5.77350269e-01, -3.20493781e-
16, 8.06898221e -01] ,

[ 5.77350269e-01, -7.07106781e-01, -2.95345247e -01] ,
[ 5.77350269e-01, -7.07106781e-01, 5.11552974e -01]])

)

On en déduit que le spectre de M est {3 ; 2}.

2. Le vecteur propre associé à 3 est (environ)

0,577350269
0,577350269
0,577350269

 qui est bien colinéaire à w.

En réalité, la valeur exacte du vecteur propre est 1√
3

1
1
1

.

Les vecteurs propres associés sont (environ)

 0
−0,707106781
−0,707106781

 et

 0,806898221
−0,295345247
0,511552974

 et

leurs coordonnées vérifient z = x + y, ce qui est cohérent. En fait, la valeur exacte du

premier vecteur est 1√
2

 0
−1
1

. Celle du deuxième est plus mystérieuse...



3. Comme P est la matrice de passage de la base canonique de M3,1(R) à (u, v, w), D =2 0 0
0 2 0
0 0 3

.

Si on ajoute, dans l’interpréteur,

P=matrix ([[1 ,0 ,1] ,[0 ,1 ,1] ,[1 ,1 ,1]])
print(P**( -1)*M*P)

et on obtient :

[[2. 0. 0.]
[0. 2. 0.]
[0. 0. 3.]]

comme annoncé.

4. Pour la même raison, on va obtenir D′ =

3 0 0
0 2 0
0 0 2

 et on ajoute, dans l’interpréteur,

Q=matrix ([[ 5.77350269e-01, -3.20493781e-16, 8.06898221e
-01] ,

[ 5.77350269e-01, -7.07106781e-01, -2.95345247e -01] ,
[ 5.77350269e-01, -7.07106781e-01, 5.11552974e -01]])

print(Q**( -1)*M*Q)

et on obtient :

[[ 3.00000000 e+00 0.00000000 e+00 4.44089210e -16]
[ 4.44089210e -16 2.00000000 e+00 2.22044605e -16]
[ -2.22044605e -16 4.44089210e -16 2.00000000 e+00]]

ce qui, aux erreurs d’arrondis près, confirme la valeur de D′.

II. — Utilisation de GeoGebra en analyse
GeoGebra est un logiciel qui permet de construire des figures géométriques planes ainsi que

des courbes représentatives de fonctions. Il dispose également d’un tableur et d’un module de
calcul formel.

1) Présentation
Lorsqu’on démarre GeoGebra, une fenêtre apparaît avec
— à droite : la partie Graphique pour faire des figures ;
— à gauche : la partie Algèbre où apparaissent les coordonnées des points ainsi que les

expressions des fonctions représentées ;
— en haut : en dessous de la barre de menus, des boutons qui correspondent à d’autres

menus déroulants ;
— en bas : un champ de saisie où l’on peut écrire directement les points, les fonctions, etc.



2) Représentation graphique d’une fonction
Considérons les fonctions f et g définies sur R par

f(x) = x2 et g(x) = ex(2 − x).

1. Dans le champ de saisie, taper f(x)=xˆ2 puis appuyer sur Entrée . La courbe représen-
tative de f s’affiche. On peut aussi taper xˆ2 dans le champ de saisie et GeoGebra trace
la fonction en lui attribuant un nom. Il est possible d’utiliser une autre variable que x
(par exemple : f(t)=tˆ2).

2. Taper de même g(x)=exp(x)*(2-x) et appuyer sur Entrée . La courbe représentative
de g s’affiche.

3. a. Afficher le menu déroulant du deuxième bouton en cliquant sur la petite flèche (qui
devient rouge) en bas à droite du carré qui sert d’icône.

b. Sélectionner l’outil « Intersection ».
c. Sur le graphique, cliquer sur le point d’intersection le plus à droite. Ses coordonnées

apparaissent dans la fenêtre Algèbre. On obtient A(1,5 ; 2,24).
d. Cliquer de même sur le point d’intersection le plus à gauche. On obtient B(−1,04 ; 1,08).

4. Il est possible de tracer la courbe d’une fonction sur un intervalle donné ou d’une fonction
définie par morceaux.
a. Pour tracer la courbe représentative de la fonction u définie sur [0 ; +∞[ par u(x) = x2,

saisir u(x)=Si(x>=0,xˆ2) et appuyer sur Entrée .



b. Pour tracer la courbe représentative de la fonction v définie sur R par

v(x) =

x ln(x) si x > 0,

x si x ⩽ 0.

saisir v(x)=Si(x>0,x*ln(x),x) et appuyer sur Entrée .



3) Calcul formel
GeoGebra possède un outil de calcul formel. On l’active en cochant Calcul formel dans le

menu Affichage.

1. Pour calculer la valeur de
∫ 1

0
x2 dx, saisir Intégrale(xˆ2,0,1) puis appuyer sur Entrée .

On obtient 1
3 .

Il est possible de calculer des intégrales impropres. Par exemple, pour calculer
∫ +∞

0
e−x2 dx,

saisir Intégrale(exp(-xˆ2),0,+∞) puis appuyer sur Entrée . Le symbole ∞ est dis-
ponible en cliquant sur l’icône α à droite de la cellule. On obtient 1

2
√

π.
2. Pour déterminer une primitive de ln sur ]0 ; +∞[, on peut soit saisir Intégrale(ln(x))

soit saisir ln(x) et cliquer sur Primitive dans le menu déroulant f’ . On obtient, dans
le deux cas, x ln(x) − x + c1.

3. De la même façon, on peut calculer la dérivée de x 7−→ ln(x2 + 1) en saisissant
Dérivée(ln(xˆ2+1)) ou en utilisant le bouton f’ . On obtient 2 · x

x2+1 .
4. GeoGebra permet également de calculer des limites. Par exemple,

a. pour obtenir lim
x→+∞

2x
x−1 , on saisit Limite(2*x/(x-1),+∞) qui affiche 2.

b. Il est également possible de calculer des limites à droite ou à gauche en remplaçant
Limite par LimDroite ou LimGauche.

Remarque. Si on doit effectuer plusieurs calculs sur une même fonction f , on a intérêt à la
définir en tapant dans le champ de saisie, par exemple, f(x)=2*x/(x-1). On peut ensuite calculer
sa dérivée, ses limites en saisissant Dérivée(f(x)), Limit(f(x),−∞), LimGauche(f(x),1),
etc.

4) Exercices
Chaque exercice se fera dans une fenêtre GeoGebra distincte.

Exercice 5. On considère la fonction f définie sur R par

f(x) = x3 + x2 + x + 2.

1. Tracer la courbe représentative de f à l’aide de GeoGebra.
2. On peut démontrer que l’équation f(x) = 0 admet une unique solution α dans R. À

l’aide de GeoGebra, donner une valeur approchée de α à 10−3 près :
a. en utilisant la courbe de f ;
b. en utilisant le bouton x= de l’outil de calcul formel.
Remarque. On peut régler la précision d’affichage des valeurs numériques en sélectionnant
« Arrondi » dans le menu Options.

Solution.
1. On obtient la courbe suivante :



2. a. On construit le point d’intersection entre la courbe de f et l’axe des abscisses.
L’abscisse de ce point est une valeur approchée de α. On trouve α ≈ −1,353.

b. En utilisant l’outil de Calcul formel, on entre l’équation f(x)=0 et on clique sur l’icône
x= .

Exercice 6. Soit f et g les fonctions définies sur R par

f(x) = ex + e−x

2 et g(x) = ex − e−x

2 .

On note C1 et C2 leurs courbes représentatives dans un repère orthonormé.
1. Tracer C1 et C2 à l’aide de GeoGebra.
2. Que peut-on conjecturer graphiquement concernant lim

x→+∞
[f(x) − g(x)] ?

Solution.
1. Voir page suivante.
2. À partir du graphique, on peut conjecturer que lim

x→+∞
[f(x) − g(x)] = 0.



Exercice 7. Soit f la fonction définie sur [0 ; +∞[ par

f(x) =

x ln(x) − x, si x > 0,

0 si x = 0.

1. Tracer la courbe représentative C de f . La fonction f semble-t-elle continue en 0 ?
2. Soit S l’aire, en unité d’aire, du domaine limité par C, l’axe des abscisses et les droites

d’équation x = 1 et x = e.
a. Exprimer S à l’aide d’une intégrale.
b. Calculer la valeur exacte de S à l’aide de l’outil de calcul formel.

Solution.
1. On saisit f(x)=Si(x>=0,Si(x>0, x*ln(x)-x),0) et on obtient la courbe suivante de

la page suivante. Graphiquement, f semble continue.
2. a. Graphiquement, il semble de f soit négative sur [1 ; e]. C’est bien le cas car, pour tout

x > 0, f(x) = x(ln(x) − 1) et si x ∈ [1 ; e], x > 0 et ln(x) ⩽ 1 donc f(x) ⩽ 0. Ainsi,
S =

∫ e

1
−f(x) dx.

b. On saisit Intégrale(-(x*ln(x)-x),1,exp(1)) dans l’outil de Calcul formel et on

trouve que S = e2 − 3
4 .

Remarque. Il semble que la double condition « Si » dans la définition de f empêche la
syntaxe Intégrale(-f(x),1,exp(1)) de fonctionner ici.



Exercice 8. Soit f la fonction définie sur R par f(x) = 2x

x2 + 1.

À l’aide de GeoGebra, déterminer
1. la dérivée de f sur R ;
2. une primitive de f sur R ;

3. la valeur exacte de
∫ 1

0
f(x) dx ;

4. déterminer le comportement de f(x) quand x tend vers +∞ puis vers en −∞.

Solution. On obtient les résultats suivants :



qui permettent de dire que :

1. pour tout réel x, f ′(x) = −4x2

(x2 + 1)2 + 2
x2 + 1

2. la fonction F : x 7−→ ln(x2 + 1) est une primitive de f sur R ;

3.
∫ 1

0
f(x) dx = ln(2) ;

4. lim
x→+∞

f(x) = lim
x→−∞

f(x) = 0.

Exercice 9. Reprendre les questions de l’exercice précédent avec la fonction f définie sur R par
f(x) = exp(−x) cos(x).

Que constate-t-on concernant le comportement de f au voisinage de −∞ ? Expliquer.

Solution. On obtient les résultats suivants :

qui permettent de dire que :
1. pour tout réel x, f ′(x) = − sin(x)e−x − cos(x)e−x

2. la fonction F : x 7−→
(1

2 sin(x) − 1
2 cos(x)

)
e−x est une primitive de f sur R ;

3.
∫ 1

0
f(x) dx = sin(1) − cos(1)

2e
+ 1

2 ;

4. lim
x→+∞

f(x) = 0.

On remarque que GeoGebra ne parvient pas à déterminer la limite de f en −∞. Cela est rassurant
car cette limite n’existe pas. En effet, pour tout entier n ∈ N, f(−2nπ) = exp(2nπ) tend vers +∞
quand n tend vers +∞ et f(−(2n + 1)π) = − exp((2n + 1)π) tend vers −∞ quand n tend vers
+∞. Or, comme les deux suites (−2nπ) et (−(2n+1)π) tendent vers −∞, si f avait une limite L
(finie ou infinie) en −∞ alors, par composition, on aurait lim

n→+∞
f(−2nπ) = lim

n→+∞
f(−(2n + 1)π).



III. — Quelques exemples d’étude de suites
Dans cette partie, on utilise Python pour effectuer certains calculs sur les suites.

Exercice 10. Soit (un) la suite définie par

∀n ∈ N, un = n3 − 4n.

1. Écrire une fonction Python suite1, d’argument n ∈ N, qui renvoie la valeur de un.
2. Donner les valeurs exactes de u10, u20 et u30.

Solution.

def suite1(n):
return n**3 - 4*n

suite1(10) donne u10 = 960, suite1(20) donne u20 = 7920 et suite1(30) donne u30 =
26880.

Exercice 11. Soit (un) la suite définie par u0 = 2 et

∀n ∈ N, un+1 = 2un + 1
un + 1 .

1. Écrire un programme qui affiche les 10 premiers termes de la suite (de u0 à u9).
2. Écrire une fonction suite2, d’argument n ∈ N, qui calcule et renvoie un.

Solution.
1.

u = 2
for k in range (10):

print(u)
u = (2*u + 1) / (u + 1)

2.

def suite2(n):
u = 2
for k in range(n):

u = (2*u + 1) / (u + 1)
return u

Exercice 12. Soit (un) la suite définie par u0 = 1 et

∀n ∈ N, un+1 = u2
n − n.

Écrire une fonction suite3, d’argument un entier n ∈ N, qui renvoie la valeur de un.

Solution.

def suite3(n):
u = 1
for k in range(n):

u = u*u - k
return u



Exercice 13. On considère les suites (un) et (vn) définies par u0 = 2 et v0 = 0

∀n ∈ N,

un+1 = un + vn

vn+1 = 2un.

Écrire une fonction suite4, d’argument n ∈ N, qui calcule et renvoie un et vn.

Solution.
Première méthode :

def suite4(n):
u = 2
v = 0
for k in range(n):

w = u
u = u + v
v = 2 * w

return u, v

Seconde méthode :

def suite4(n):
u, v = 2, 0
for k in range(n):

u, v = u + v, 2 * u
return u, v

Exercice 14. On considère la suite (un) définie par u0 = 1, u1 = 3 et

∀n ∈ N, un+2 = un+1 + un.

Écrire une fonction suite5, d’argument un entier n ∈ N, qui calcule et renvoie un.

Solution.
Première méthode :

def suite5(n):
u = 1
v = 3
for k in range(n):

w = v
v = u + v
u = w

return u



Seconde méthode :

def suite5(n):
u, v = 1, 3
for k in range(n):

u, v = v, u + v
return u

Exercice 15. Soit (un) la suite définie par
u0 = 1
∀n ∈ N un+1 = un + 4

un

.

On admet que lim
n→+∞

un = +∞.

1. Déterminer le plus petit entier naturel n tel que un > 100.
2. Soit A ∈ ]0 ; +∞[. Écrire une fonction seuil prenant en argument un réel A et qui

renvoie le plus petit entier naturel n tel que un > A.

Solution.

1. On peut utiliser le programme suivant :

u = 1
n = 0
while u <= 100:

u = u + 4/u
n += 1

print(n)

Le programme donne la valeur n = 1247.
2.

def seuil(A):
u = 1
n = 0
while u <= A:

u = u + 4/u
n += 1

return n

Exercice 16. Pour tout n ∈ N∗, on pose

Sn =
n∑

k=1

1
k

.

1. Écrire une fonction somme prenant en argument un entier naturel n non nul et qui renvoie
la valeur de Sn.

2. Donner des valeurs approchées à 10−3 près de S10, S100 et S1000.
3. Justifier l’existence d’un entier N tel que SN > 10. Déterminer le plus entier N vérifiant

cette inégalité.



Solution.

1.

def somme(n):
S = 0
for k in range(1, n+1):

S = S + 1/k
return S

2. On trouve les valeurs S10 ≈ 2,929, S100 ≈ 5,187 et S1000 ≈ 7,485.
3. La série harmonique diverge vers +∞ donc lim

n→+∞
Sn = +∞ donc il existe un entier N

tel que SN > 10. En utilisant le programme

N = 1
while somme(N) <= 10:

N += 1
print(N)

on trouve N = 12367.
On peut noter que ce programme n’est pas optimal car il réitère des calculs déjà effectué à
chaque tour alors qu’on peut tirer parti du fait que, pour tout n ∈ N∗, Sn+1 = Sn + 1

n + 1
pour écrire un programme plus efficace :

S = 1
N = 1
while S <= 10:

N += 1
S + = 1/(N+1)

print(N)


