
♦ TP12 – Un exemple de marche aléatoire

I. — Présentation du problème
On considère le jeu suivant. On dispose de deux urnes U1

et U2. L’urne U1 contient 9 boules noires et 1 boule blanche
et l’urne U2 contient 2 boules noires et 3 boules blanches.
Initialement, on dispose un pion sur le sommet A d’un carré.
On tire une boule dans l’urne U1. Si cette boule est blanche,
on déplace le pion au sommet suivant dans le sens des flèches :
il se retrouve donc sur B. Sinon, on laisse le pion dans sa
position : il reste donc sur A. Ensuite, on répète le processus
de la manière suivante. Lorsqu’on est sur un sommet S, on tire
une boule dans l’urne U1 si S = A ou S = D et dans l’urne U2
si S = B ou S = C. Si cette boule est blanche, on déplace le
pion sur le sommet suivant dans le sens des flèches et, sinon,
on laisse le pion sur le sommet S.

A B

CD

Cette situation où on étudie le mouvement d’un objet qui évolue de façon aléatoire s’appelle
une marche aléatoire.

Pour tout entier n ∈ N, on note An l’évènement : « après le n−ième lancer, le pion se trouve
sur le sommet A ». On définit de même les évènements Bn, Cn et Dn respectivement pour les
sommets B, C et D.

On note, pour tout n ∈ N, an, bn, cn et dn les probabilités respectives des évènements An,
Bn, Cn et Dn.

Question 1. Déterminer les valeurs de a0, b0, c0 et d0.

Solution. Initialement, le pion est sur le sommet A donc a0 = 1 et b0 = c0 = d0 = 0.

Question 2. Déterminer a1, b1, c1 et d1 puis utiliser la formule de probabilités totales pour
calculer a2, b2, c2 et d2.

Solution. Comme A0 est un évènement certain, pour tout évènement B, B = B ∩ A0 donc
P(B) = P(A0)P(B | A0) = P(B | A0). Ainsi, P(A1) = P(A1 | A0) = 9

10 , P(B1) = P(B1 | A0) =
1
10 , P(C1) = P(C1 | A0) = 0 et P(D1) = P(D1 | A0) = 0. Autrement dit, a1 = 9

10 , b1 = 1
10 et

c1 = d1 = 0.
Les évènements A1, B1, C1 et D1 forment un système complet d’évènements donc, d’après la

formule de probabilités totales,

a2 = P(A2) = P(A1)P(A2 | A1) + P(B1)P(A2 | B1) + P(C1)P(A2 | C1) + P(D1)P(A2 | D1)

= 9
10 × 9

10 + 1
10 × 0 + 0 × 0 + 0 × 0

donc a2 = 81
100.

De même,

b2 = P(B2) = P(A1)P(B2 | A1) + P(B1)P(B2 | B1) + P(C1)P(B2 | C1) + P(D1)P(B2 | D1)

= 9
10 × 1

10 + 1
10 × 2

5 + 0 × 0 + 0 × 0



donc b2 = 13
100,

c2 = P(C2) = P(A1)P(C2 | A1) + P(B1)P(C2 | B1) + P(C1)P(C2 | C1) + P(D1)P(C2 | D1)

= 9
10 × 0 + 1

10 × 3
5 + 0 × 2

5 + 0 × 0

donc c2 = 3
50 et

d2 = P(D2) = P(A1)P(D2 | A1) + P(B1)P(D2 | B1) + P(C1)P(D2 | C1) + P(D1)P(D2 | D1)

= 9
10 × 0 + 1

10 × 0 + 0 × 3
5 + 0 × 9

10

donc d2 = 0,

Le but de ce qui suit est de déterminer, lorsque n devient grand, la probabilité de chacun
des évènements An, Bn, Cn et Dn i.e. de déterminer, si elles existent, les limites des suites (an),
(bn), (cn) et (dn).

II. — Simulation
Question 3. Écrire une fonction urne1 sans paramètre qui simule un tirage dans l’urne U1
et qui renvoie 1 si on tire une boule blanche et 0 sinon. On utilisera la fonction randint du
module random.

Solution.

from random import *

def urne1 ():
if randint (1 ,10) == 10:

return 1
return 0

Question 4. Écrire une fonction urne2 sans paramètre qui simule un tirage dans l’urne U2 et
qui renvoie 1 si on tire une boule blanche et 0 sinon.

Solution.

def urne2 ():
if randint (1 ,5) >= 3:

return 1
return 0

Question 5. Écrire une fonction marche qui prend en argument un entier naturel n non nul,
qui simule n déplacements du pion et qui renvoie le numéro du sommet où se trouve le pion à
l’issue des n déplacements.



Solution.

def marche(n):
S = 1
for i in range(n):

if S == 1 or S == 4:
T = S + urne1 ()
if T <= 4:

S = T
else:

S = 1
else:

S += urne2 ()
return S

Question 6. Écrire une fonction simulation qui prend en arguments un entier naturel n
non nul et un entier naturel N non nul, qui simule N marches aléatoires de n déplacements à
l’aide de la fonction marche et qui renvoie, sous forme de liste, les fréquences de réalisation des
évènements An, Bn et Cn et Dn.

Par exemple, si en appelant simulation(1000,100), la fonction marche(1000) a renvoyé
40 fois 1, 6 fois 2, 5 fois 3 et 49 fois 4 alors la fonction simulation doit renvoyer la liste

[0.4, 0.06, 0.05, 0.49].

Solution.

def simulation (n,N):
L = [0, 0, 0, 0]
for i in range(N):

L[marche(n) -1] += 1
return [L[i]/N for i in range (4)]

Question 7. En prenant différentes valeurs de n et de N, conjecturer le comportement asympto-
tique des suites (an), (bn), (cn) et (dn).

Solution. Pour les appels suivants :

print( simulation (1000 ,100))
print( simulation (1000 ,1000))
print( simulation (100 ,10000))
print( simulation (500 ,10000))
print( simulation (1000 ,10000))
print( simulation (1000 ,100000) )

on obtient

[0.404 , 0.078 , 0.081 , 0.437]
[0.404 , 0.078 , 0.081 , 0.437]
[0.4318 , 0.0679 , 0.0723 , 0.428]
[0.4194 , 0.074 , 0.0724 , 0.4342]
[0.4299 , 0.068 , 0.0694 , 0.4327]
[0.428 , 0.06946 , 0.07239 , 0.43015]

On peut conjecturer que (an) et (dn) convergent vers une limite proche de 0,43, que (bn) et
(cn) convergent vers une limite proche de 0,07.



III. — Étude mathématique à l’aide de matrices
Question 8. Soit n ∈ N. Déterminer la probabilité de An+1 sachant An, la probabilité de Bn+1
sachant An, la probabilité de Cn+1 sachant An et la probabilité de Dn+1 sachant An.

Solution. D’après l’énoncé, on a

P(An+1 | An) = 9
10 P(Bn+1 | An) = 1

10 P(Cn+1 | An) = 0 P(Dn+1 | An) = 0

P(An+1 | Bn) = 0 P(Bn+1 | Bn) = 2
5 P(Cn+1 | Bn) = 3

5 P(Bn+1 | Dn) = 0

P(An+1 | Cn) = 0 P(Bn+1 | Cn) = 0 P(Cn+1 | Cn) = 2
5 P(Dn+1 | Cn) = 3

5
P(An+1 | Dn) = 1

10 P(Bn+1 | Dn) = 0 P(Cn+1 | Dn) = 0 P(Dn+1 | Dn) = 9
10

Ces probabilités s’appellent les probabilités de transition de l’état An aux états An+1,
Bn+1, Cn+1 et Dn+1. On remarque que ces probabilités ne dépendent pas de n. On les appellera
aussi les probabilités de transition d’un sommet à un autre.
Question 9. Sur le graphe ci-contre, indiquer
à côté des arcs les probabilités de transition
entre les différents sommets. Ce graphe pondéré
s’appelle un graphe probabiliste.

Solution. Voir ci-contre.

Question 10. On note M la matrice d’adja-
cence de ce graphe pondéré. Déterminer M . La
matrice M s’appelle la matrice de transition
associée à la marche aléatoire.

Solution. La matrice de transition est

M =


9
10

1
10 0 0

0 2
5

3
5 0

0 0 2
5

3
5

1
10 0 0 9

10



On définit, pour tout n ∈ N, la matrice ligne
Xn =

(
an bn cn dn

)
. La matrice Xn s’appelle

l’état probabiliste après n lancers.

A B

CD

9
10

1
10 2

5

3
5

2
53

5

9
10

1
10

Question 11. Déterminer la matrice X0 et justifier que, pour tout n ∈ N, Xn+1 = Xn × M .

Solution. Par définition, X0 =
(
1 0 0 0

)
.

Soit n ∈ N. Comme An, Bn, Cn et Dn forment un système complet d’évènements, d’après la
formule des probabilités totales,

an+1 = P(An+1) = P(An)PAn(An+1) + P(Bn)PBn(An+1) + P(Cn)PCn(An+1) + P(Dn)PDn(An+1)

= an × 9
10 + bn × 0 + cn × 0 + dn × 1

10 = 9
10an + 1

10dn



De la même façon, bn+1 = 1
10an + 2

5bn, cn+1 = 3
5bn + 2

5cn et dn+1 = 3
5cn + 9

10dn. Dès lors,

Xn+1 =
(
an+1 bn+1 cn+1 dn+1

)
=
( 9

10an + 1
10bn

1
10an + 2

5bn
3
5bn + 2

5cn
3
5cn + 9

10dn

)

=
(
an bn cn dn

)
9
10

1
10 0 0

0 2
5

3
5 0

0 0 2
5

3
5

1
10 0 0 9

10


= XnM

Question 12. Démontrer par récurrence que, pour tout n ∈ N, Xn = X0M
n.

Solution. Considérons, pour tout n ∈ N, la proposition Hn : « Xn = X0M
n ».

Initialisation. X0M
0 = X0I4 = X0 donc H0 est vraie.

Hérédité. Soit n ∈ N. Supposons que Hn est vraie. Alors, grâce à la question précédente,

Xn+1 = XnM = (X0M
n)M = X0(MnM) = X0M

n+1

donc Hn+1 est vraie.
Conclusion. Par le principe de récurrence, on conclut que, pour tout n ∈ N, Xn = X0M

n.

IV. — Détermination du comportement asymptotique à
l’aide de Python

1) Conjecture à l’aide du calcul matriciel
On a vu dans le TP4 sur le pivot de Gauss qu’on peut représenter une matrice en Python par

une liste de listes. Cette représentation, qui se prête bien à la programmation de l’algorithme du
pivot, n’est en revanche pas adaptée lorsqu’on veut effectuer des calculs sur les matrices.

Dans la suite, on va utiliser le module numpy qui permet d’effectuer simplement des calculs
sur les matrices. Pour cela, on commence par importer ce module en le renommant np à l’aide
de l’instruction

import numpy as np

Une fois le module importé, on peut :
• définir une matrice à l’aide de la fonction array

• additionner et soustraire des matrices à l’aide des opérateurs + et -

• multiplier des matrices à l’aide de l’opérateur @ (attention, l’opérateur * ne correspond
pas au produit matriciel)

• calculer une puissance d’une matrice carrée à l’aide de la méthode linalg.matrix_power()

• calculer l’inverse d’une matrice carrée inversible à l’aide de la méthode linalg.inv()

Par exemple, pour définir les matrices A =
(

1 2
3 4

)
, B =

(
5
6

)
et C =

(
7 8

)
puis calculer

D = AB, E = CA et F = A4 et G = A−1, on écrit



A=np.array ([[1 ,2] ,[3 ,4]])
B=np.array ([[5] ,[6]])
C=np.array ([[7 ,8]])
D=A@B
E=C@A
F=np.linalg. matrix_power (A ,4)
G=np.linalg.inv(A)

Question 13. Avec les notations de la partie III, définir les matrices X0 (qu’on appellera
simplement X) et M .

Solution.

X=np.array ([[1 ,0 ,0 ,0]])
M=np.array ([[9/10 , 1/10 , 0, 0],[0, 2/5, 3/5, 0],

[0, 0, 2/5, 3/5] , [1/10 , 0, 0, 9/10]])

Question 14. Déterminer des valeurs approchées de a10, b10, c10 et d10.

Solution. D’après la question 14, X10 = X0M
10. Or,

print(X@np.linalg. matrix_power (M ,10)

renvoie

[[0.46489652 0.0825286 0.0906087 0.36196618]]

donc a10 ≈ 0,46489652, b10 ≈ 0,0825286, c10 ≈ 0,0906087 et d10 ≈ 0,36196618.

Question 15. Calculer an, bn, cn et dn pour de « grandes valeurs » de n et conjecturer la limite
de chacune des ces suites. Ces conjectures sont-elles en accord avec celles de la question 7 ?

Solution. En exécutant

print(X@np.linalg. matrix_power (M ,20))
print(X@np.linalg. matrix_power (M ,50))
print(X@np.linalg. matrix_power (M ,100))
print(X@np.linalg. matrix_power (M ,200))

on obtient

[[0.42973175 0.07180925 0.07217165 0.42628735]]
[[0.42857146 0.07142858 0.07142859 0.42857137]]
[[0.42857143 0.07142857 0.07142857 0.42857143]]
[[0.42857143 0.07142857 0.07142857 0.42857143]]

donc on voit que (an) et (dn) semblent converger vers une même limite égale à environ 0,42857143
et (bn) et (cn) semblent converger vers une même limite égale à environ 0,07142857.

Ces conjectures sont globalement en accord avec celles de la question 7.



2) Démonstration des conjectures
Le but de cette partie est de démontrer les conjectures précédentes. Pour cela, on va

diagonaliser la matrice M en utilisant les possibilités du module numpy qui permet de déterminer
les valeurs propres d’une matrice, ainsi que des vecteurs propres associés, à l’aide de la méthode
linalg.eig(). On ajoutera le code suivant pour obtenir les valeurs exactes des coefficients sous
forme de fractions.

import fractions
np. set_printoptions ( formatter ={’all ’:lambda x:

str( fractions . Fraction (x). limit_denominator ())
})

Question 16. Déterminer, à l’aide de numpy, les valeurs propres de la matrice M et des
vecteurs propres associés à chacune de ces valeurs propres. Pourquoi peut-on affirmer que M est
diagonalisable ?

Solution. L’instruction

print(np.linalg.eig(M))

affiche

(array ([1, 7/10 , 3/5, 3/10]) , array ([[1/2 , 2/5,
-3/10, 6/37] ,

[1/2 , -4/5, 9/10 , -36/37] ,
[1/2 , -2/5, 3/10 , 6/37] ,
[1/2 , -1/5, 1/10 , -1/37]]))

donc les valeurs propres de M sont 1, 7
10 , 3

5 et 3
10 et des vecteurs propres respectivement associés

sont


1
2
1
2
1
2
1
2

,


2
5

−4
5

−2
5

−1
5

,


− 3

10
9
10
3
10
1
10

 et


6
37

−36
37

6
37

− 1
37

. On en déduit donc que


1
1
1
1

,


2

−4
−2
−1

,


−3
9
3
1

 et


6

−36
6

−1


sont également des vecteurs respectivement associés à 1, 7

10 , 3
5 et 3

10 .
Comme M est une matrice carrée d’ordre 4 qui admet 4 valeurs propres distinctes, M est

diagonalisable.
Question 17. En déduire une matrice diagonale D et une matrice inversible P telles que
M = PDP −1.

Solution. En posant D =


1 0 0 0
0 7

10 0 0
0 0 3

5 0
0 0 0 3

10

 et P =


1 2 −3 6
1 −4 9 −36
1 −2 3 6
1 −1 1 −1

, on a M = PDP −1.

Question 18. À l’aide de numpy, déterminer P −1.
Solution. L’instruction

P=np.array ([[1 , 2, -3, 6],
[1, -4, 9, -36],
[1, -2, 3, 6],
[1, -1, 1, -1]])
print(np.linalg.inv(P))



affiche

[[3/7 1/14 1/14 3/7]
[3/4 1/4 1/2 -3/2]
[1/3 1/6 1/2 -1]
[1/84 -1/84 1/14 -1/14]]

donc P −1 =


3
7

1
14

1
14

3
7

3
4

1
4

1
2 −3

2
1
3

1
6

1
2 −1

1
84 − 1

84
1
14 − 1

14

.

Question 19. Utiliser la question 12 pour calculer, à la main, pour tout n ∈ N, la matrice Xn.

Solution. Soit n ∈ N. Alors, par théorème, Mn = PDnP −1. Or, comme D est diagonale,

Dn =


1 0 0 0
0 ( 7

10)n 0 0
0 0 (3

5)n 0
0 0 0 ( 3

10)n

 donc

Xn =
(
1 0 0 0

)
1 2 −3 6
1 −4 9 −36
1 −2 3 6
1 −1 1 −1




1 0 0 0
0 ( 7

10)n 0 0
0 0 (3

5)n 0
0 0 0 ( 3

10)n




3
7

1
14

1
14

3
7

3
4

1
4

1
2 −3

2
1
3

1
6

1
2 −1

1
84 − 1

84
1
14 − 1

14



=
(
1 2 −3 6

)
1 0 0 0
0 ( 7

10)n 0 0
0 0 (3

5)n 0
0 0 0 ( 3

10)n




3
7

1
14

1
14

3
7

3
4

1
4

1
2 −3

2
1
3

1
6

1
2 −1

1
84 − 1

84
1
14 − 1

14



=
(
1 2( 7

10)n −3(3
5)n 6( 3

10)n
)

3
7

1
14

1
14

3
7

3
4

1
4

1
2 −3

2
1
3

1
6

1
2 −1

1
84 − 1

84
1
14 − 1

14


=
(

3
7 + 3

2

(
7
10

)n
−
(

3
5

)n
+ 1

14

(
3
10

)n 1
14 + 1

2

(
7
10

)n
− 1

2

(
3
5

)n
− 1

14

(
3
10

)n

1
14 +

(
7
10

)n
− 3

2

(
3
5

)n
+ 3

7

(
3
10

)n 3
7 − 3

(
7
10

)n
+ 3

(
3
5

)n
− 3

7

(
3
10

)n)

Question 20. Démontrer les conjectures précédentes.

Solution. Ainsi, pour tout n ∈ N,

an = 3
7 + 3

2

(
7
10

)n
−
(

3
5

)n
+ 1

14

(
3
10

)n

bn = 1
14 + 1

2

(
7
10

)n
− 1

2

(
3
5

)n
− 1

14

(
3
10

)n

cn = 1
14 +

(
7
10

)n
− 3

2

(
3
5

)n
+ 3

7

(
3
10

)n

dn = 3
7 − 3

(
7
10

)n
+ 3

(
3
5

)n
− 3

7

(
3
10

)n

Comme 0 < 7
10 < 1, 0 < 3

5 < 1 et 0 < 3
10 < 1, lim

n→+∞
( 7

10)n = lim
n→+∞

(3
5)n = lim

n→+∞
( 3

10)n = 0 donc,
par somme, lim

n→+∞
an = lim

n→+∞
dn = 3

7 et lim
n→+∞

bn = lim
n→+∞

cn = 1
14 .

Enfin, étant donné que 1
14 ≈ 0,07142857143 et 3

7 ≈ 0,4285714286, cela valide les conjectures
précédentes.


