
TB2 samedi 31 janvier 2026

Devoir surveillé n°3
Durée : 45 minutes

L’utilisation d’une calculatrice ou de tout document est interdite.
Toute sortie anticipée est interdite.

En biologie, certains processus complexes se prêtent bien à une modélisation probabiliste. En
génétique, par exemple, on peut modéliser l’expérience de Mendel sur des plantes hétérozygotes
à deux caractères (pois verts et jaunes) par des répétitions de « pile ou face ».

En Python, la fonction random (importée de la bibliothèque du même nom) ne prend aucun
argument et renvoie un nombre flottant aléatoire dans l’intervalle [0 ; 1[. La fonction random
peut être vue comme une variable aléatoire suivant une loi uniforme sur [0 ; 1[.

Exemple : random() peut renvoyer 0.8794190882576618.
On considère cette fonction préalablement définie et on pourra l’utiliser sans condition dans

tout le sujet.

1. Lancer d’une pièce
1. Reproduire et compléter sur la copie le code de la fonction suivante de façon à ce qu’elle

simule la réalisation d’une variable aléatoire à valeurs dans {0 ; 1} suivant une loi de
Bernoulli de paramètre de succès p ∈ [0 ; 1].

def pile(p):
if random () < ... :

return ...
else:

return ...

La fonction pile pourra être utilisée dans la suite du sujet.
2. Écrire une fonction lancers_piece qui prend pour arguments d’entrée un entier naturel

n et un nombre flottant p ∈]0 ; 1[, qui simule n lancers indépendants d’une pièce dont la
probabilité d’obtenir « pile » est p et qui renvoie le nombre de « pile » obtenus lors de
ces n lancers.

3. Écrire une fonction premier_face qui prend pour argument d’entrée un nombre flottant
p ∈]0 ; 1[et qui renvoie le nombre de lancers nécessaires pour obtenir le premier « face »
(en supposant toujours que les lancers sont indépendants et qu’à chaque lancer, la
probabilité d’obternir « pile » est p).

4. On note E l’expérience où l’on lance une pièce jusqu’à l’obtention du premier « face ».
On souhaite simuler la répétition de n expériences E indépendantes.
Écrire pour cela une fonction liste_nb_lancers qui prend pour arguments d’entrée un
entier n et un nombre flottant p ∈]0 ; 1[, qui renvoie une liste (type list en Python) de
n entiers naturels, chacun représentant le nombre de lancers nécessaires pour obtenir le
premier face lors de l’expérience E .
Par exemple, si l’instruction liste_nb_lancers(3, 0.4) renvoie [4,1,2], c’est qu’on

a réalisé trois expériences avec une pièce dont la probabilité d’obtenir « pile » est égale à
0,4. Le premier « face » a été obtenu au quatrième lancer lors de la première expérience,
au premier lancer lors de la seconde et au second lancer lors de la dernière expérience.

5. Écrire une fonction nb_occurrences qui prend pour arguments une liste de nombres
liste ainsi qu’un nombre k et qui renvoie le nombre de fois où le nombre k apparaît
dans liste.

6. Écrire une fonction frequence qui prend pour arguments deux entiers naturels n et k et
un nombre flottant p ∈]0 ; 1[, et qui renvoie la fréquence des expériences pour lesquelles
il a fallu exactement k lancers pour obtenir « face », lors de la répétition de n expériences
E indépendantes.

2. Nombre maximal de résultats consécutifs
Dans la suite du sujet, les questions sont à choix multiples (plusieurs réponses sont possibles).

Les réponses devront être recopiées sur la copie. Aucune justification n’est attendue.
1. On considère le script suivant :

suite = ""
for k in range (1 ,11):

if random () > 0.7:
suite = suite + "F"

else:
suite = suite + "P"

print(suite)

a. Quel est le type de la variable suite ?

entier int liste list
booléen bool chaîne de caractères str

b. Que peut afficher le script précédent ?

"P" "FFFFFFFFFF"
"FPPPPPPPPP" "FFPPFFPPFFP"

2. Parmi les quatre fonctions suivantes, déterminer celle(s) qui permet(tent) de vérifier si une
chaîne de caractères uniquement constituée des caractères F et P contient la sous-chaîne
"FF", i.e. deux caractères "F" consécutifs.
Par exemple, double_facei("FPPFPF") renverra False et double_facei("FPFFPF")
renverra True.

def double_face1 (ch):
for k in range(len(ch) - 1):

if ch[k:k+2] == "FF":
return True

return False

def double_face2 (ch):
for k in range(len(ch)):

if ch[k:k+2] == "FF":
return True

else:
return False

def double_face3 (ch):
k = 0
flag = False
while k < len(ch) - 1 and not flag:

if ch[k] == "F" and ch[k+1] == "F":
flag = True

k = k + 1
return flag

def double_face4 (ch):
compteur = 0
for k in range(len(ch)):

if ch[k] == "F":
compteur = compteur + 1

if compteur >= 2:
return True

else:
return False

On rappelle que l’instruction return arrête le déroulement d’une fonction : tout code
écrit après l’instruction return, lorsqu’elle est exécutée, ne sera pas exécuté.

On indiquera uniquement sur la copie le nom de la (ou des) fonction(s) qui répond(ent)
à la question.

3. On considère la fonction suivante :

def fonction_mystere (ch):
n = len(ch)
compteur = 0
for k in range(n):

i = 0
while k + i < n and ch[k + i] == "P":

i = i + 1
if i > compteur :

compteur = i
return compteur

Que renvoie chacune des instructions suivantes ?
a. Instruction 1 : fonction_mystere("PFF")
b. Instruction 2 : fonction_mystere("PPPPFFP")
c. Instruction 3 : fonction_mystere("PFFPPPPFFF")

4. Parmi toutes les sous-chaînes de caractères identiques et consécutifs d’une chaîne de
caractères ch, on appelle sous-chaîne maximale toute sous-chaîne de caractères iden-
tiques et consécutifs dont la longueur est maximale.
Exemple : dans la chaîne de caractères ch = "PFFFPFPPPF", il y a deux sous-chaînes
maximales (de longueur 3) : "FFF" et "PPP" qui commencent respectivement aux indices
1 et 6 dans la chaîne ch.
Modifier le code de la fonction précédente (fonction_mystère) de façon à ce que la
nouvelle fonction, qu’on nommera index_sous_chaine_max, détermine l’indice (dans
le chaîne ch entrée en argument) du premier caractère de la plus grande sous-chaîne
composée de caractères identiques. En cas d’existence de plusieurs sous-chaînes maximales,
la fonction devra renvoyer l’indice de la dernière sous-chaîne maximale parcourue, i.e. le
plus grand indice parmi ceux des premiers caractères des sous-chaînes maximales.
Exemple : index_sous_chaine_max("PFFFPFPPPF") devra renvoyer 6. En effet, la der-
nière sous-chaîne maximal, "PPP", commence à l’indice 6 dans la chaîne de caractères
"PFFFPFPPPF".

