
TB2 samedi 13 décembre 2025

Devoir surveillé n°2
Durée : 45 minutes

L’utilisation d’une calculatrice ou de tout document est interdite.
Toute sortie anticipée est interdite.

1. Questions préliminaires
1. On considère la liste de listes matA définie en Python par :

matA = [[5, 2, 3, 6, 1], [9, 7, 9, 7 ,9], [7, 4, 1, 2, 5], [3, 2, 7, 1, 4]]

a. Quelle est la valeur de len(matA) ?
b. Quel est le type de matA[2] ? Quelle est sa valeur ?
c. Quelle est la valeur de len(matA[2]) ?
d. Quel est le type de matA[2][1] ? Quelle est sa valeur ?

2. Parmi les fonctions suivantes, déterminer l’unique fonction zeros qui, à partir de deux
entiers n et p passés en arguments, renvoie une liste de n listes, contenant chacune p
coefficients, tous nuls.

Aucune justification n’est attendue.
Par exemple, zeros(3,4) devra renvoyer

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]].

def zeros1(n,p):
liste = []
for i in range(n):

for j in range(p):
liste.append ([0])

return liste

def zeros2(n, p):
liste = []
for j in range(p):

colonne = []
for i in range(n):

colonne .append (0)
liste.append( colonne )

return liste

def zero3(n, p):
liste = []
for i in range(n):

ligne = []
for j in range(p):

ligne.append (0)
liste.append(ligne)

return liste

def zeros4(n, p):
liste = []
for i in range(n):

ligne = []
for j in range(p)

ligne.append (0)
liste = liste + ligne

return liste



3. Écrire une fonction miroir qui renvoie le miroir d’une liste passée en argument, c’est-
à-dire une liste dont les éléments sont énumérés dans l’ordre inverse de ceux de la liste
passée en argument.

Par exemple,

miroir([4, 2, 5, 3, 3]) et miroir([(2,3),(2,2),(1,2),(0,2),(0,1),(0,0)])

devront respectivement renvoyer

[3, 3, 5, 2, 4] et [(0,0),(0,1),(0,2),(1,2),(2,2),(2,3)].

2. Chemins de somme minimale dans une matrice
On appelle chemin dans une matrice toute suite de coefficients adjacents reliant son

coin supérieur gauche à son coin inférieur droit. Les seuls déplacements licites sont des
déplacements vers la droite ou vers le bas. On s’intéresse ici à la somme des coefficients
de chemin dans une matrice.

Par exemple, dans la matrice A =

9 9 5
1 2 5
4 6 9

, la somme des coefficients du chemin ci-dessous

à gauche est égale à 35, tandis que les sommes des coefficients des chemins du milieu et de droite
sont respectivement égaux à 29 et 26.

9 → 9 5
↓

1 2 5
↓

4 6 → 9


9 + 9 + 2 + 6 + 9 = 35


9 9 5
↓
1 2 5
↓
4 → 6 → 9


9 + 1 + 4 + 6 + 9 = 29


9 9 5
↓
1 → 2 → 5

↓
4 6 9


9 + 1 + 2 + 5 + 9 = 26

On peut montrer que le chemin de droite est le chemin dont la somme des coefficients est
minimale.

Dans cette partie, on cherche à déterminer la somme minimale des coefficients d’une matrice
parmi tous les chemins reliant son coin supérieur gauche et son coin inférieur droit.

1. On modélise une matrice par une liste de listes notée mat de façon à ce que mat[i][j]
désigne le coefficient de la ligne i et de la colonne j, en commençant la numérotation
des lignes et colonnes à 0.

Ainsi, la matrice A ci-dessus est représentée par la liste de listes :

matA =[[9 , 9, 5], [1, 2, 5], [4, 6, 9]]

a. Quelle liste de listes représente la matrice

9 2
3 6
4 7

 ?

b. Quelle matrice la liste de listes [[9, 3, 4], [2, 6, 7]] représente-t-elle ?

2. Pour résoudre le problème, il serait très inefficace de calculer la longueur de tous les
chemins reliant le coin supérieur gauche de A à son coin inférieur droit.

Pour une matrice A = (ai,j)0⩽i⩽n−1
0⩽j⩽p−1

(de taille n × p), on note si,j la somme minimale
des coefficients de la matrice parmi tous les chemins entre le coefficient a0,0 (coin supérieur
gauche) et le coefficient ai,j (ligne i colonne j). On admet les résultats suivants :



• s0,0 = a0,0.
• Pour tout i ∈ J0, n − 2K, si+1,0 = si,0 + ai+1,0.
• Pour tout j ∈ J0, p − 2K, s0,j+1 = s0,j + a0,j+1.

• Pour tous i ∈ J0, n−2K et j ∈ J0, p−2K, si+1,j+1 =

si+1,j + ai+1,j+1 si si+1,j < si,j+1

si,j+1 + ai+1,j+1 sinon
.

La valeur recherchée est alors sn−1,p−1.
Pour éviter de recalculer plusieurs fois les coefficients si,j, on les stockera dans une

matrice S = (si,j) de même taille que A. On appelle cette matrice la matrice des
sommes minimales de A. En effet, chacun de ses coefficients si,j est la somme minimale
des coefficients de A reliant le coefficient a0,0 (coin supérieur gauche) au coefficient ai,j.

À l’aide des formules ci-dessus, on trouve que la matrice S des sommes minimales de

A =

9 9 5
1 2 5
4 6 9

 est :

S =

 9 18 23
10 12 17
14 18 26

 .

a. Déterminer la matrice S des sommes minimales de la matrice B =

5 9 2
8 7 1
2 5 3

.

b. En déduire que la somme minimale des coefficients de B, parmi tous les chemins
reliant le coin supérieur gauche de B à son coin inférieur droit, est égale à 20.

3. Recopier sur votre copie et compléter le code de la fonction ci-dessous de manière à ce
qu’elle renvoie une liste de listes représentant la matrice des sommes minimales associée
à une matrice matA passée en argument (comme une liste de listes).

def mat_sommes_minimales (matA):
n = len(matA)
p = len (...)
matS = zeros (... , ...)
matS [0][0] = ...
for i in range (...):

matS[i+1][0] = ...
for j in range (...):

matS [0][j+1] = ...
for i in range (...):

for j in range (...):
if matS[i+1][j] < ...:

matS[i+1][j+1] = ...
else:

matS[i+1][j+1] = ...
return matS

4. Écrire une fonction somme_minimale(matA) qui renvoie la somme minimale des coeffi-
cients d’une matrice matA, parmi tous les chemins reliant son coin supérieur gauche à
son coin inférieur droit.



3. Recherche d’un chemin solution
Dans la partie précédente, on implémente une méthode déterminant la somme minimale des

coefficients d’une matrice parmi tous les chemins reliant son coin supérieur gauche et son coin
inférieur droit. Cette méthode permet de déterminer la longueur d’un chemin solution, mais pas
un chemin solution.

Pour trouver un chemin solution, on procède de la manière suivante :
• on construit la matrice S = (si,j) des sommes minimales associée à la matrice A,
• on commence par se placer au coin inférieur droit de la matrice A (soit à la ligne n − 1,

colonne p − 1 si elle a n lignes et p colonnes),
• on note i et j les numéros respectifs de ligne et de colonne actuels. Tant qu’on ne se

trouve pas au point de départ (i.e. (i, j) ̸= (0, 0)), on se déplace sur la matrice A de la
manière décrite ci-dessous.
– Si on se trouve sur la première colonne, on remonte d’une ligne.
– Si si−1,j < si,j−1, c’est que la somme minimale si−1,j pour relier le coin supérieur

gauche au coefficient ai−1,j est inférieure à celle pour relier le coin supérieur gauche
au coefficient ai,j−1. On remonte alors d’une ligne.

– Dans tous les autres cas, on se décale vers la gauche, i.e. on recule d’une colonne.
Parmi les fonctions ci-après, déterminer l’unique fonction chemin prenant en argument

une liste de listes représentant une matrice A et renvoyant la liste ordonnée (du coin
supérieur gauche au coin inférieur droit) des coordonnées d’un chemin solution.

On indiquera les raisons qui ont amené à éliminer les trois autres fonctions.
L’exécution des instructions ci-dessous affichera par exemple la liste

[(0,0),(1,0),(1,1),(1,2),(2,2)].

matA =[[9 , 9, 5], [1, 2, 5], [4, 6, 9]]
print(chemin(matA))

def chemin1 (matA):
n, p = len(matA), len(matA [0])
i, j = n-1, p-1
matS = mat_sommes_minimales (matA)
print(A[i][j])
while (i,j) != (0 ,0):

if j == 0 or matS[i -1][j] < matS[i][j -1]:
i = i - 1

else:
j = j - 1

print(matA[i][j])



def chemin2 (matA):
n, p = len(matA), len(matA [0])
matS = mat_sommes_minimales (matA)
i, j = n-1, p-1
liste = [(n-1,p -1)]
while i != 0 or j != 0:

if j == 0 or matS[i -1][j] < matS[i][j -1]:
i = i - 1

else:
j = j - 1

liste.append ((i,j))
return miroir(liste)

def chemin3 (matA):
n, p = len(matA), len(matA [0])
matS = mat_sommes_minimales (matA)
i, j = n-1, p-1
liste = [(n-1,p -1)]
while i != 0 and j != 0:

if j == 0 or matS[i -1][j] < matS[i][j -1]:
i = i - 1

else:
j = j - 1

liste.append ((i,j))
return miroir(liste)

def chemin4 (matA):
n, p = len(matA), len(matA [0])
matS = mat_sommes_minimales (matA)
i, j = n-1, p-1
liste = [(n-1,p -1)]
while i != 0 or j != 0:

if j == 0 or matS[i -1][j] < matS[i][j -1]:
i = i - 1

else:
j = j - 1

liste.append ((i,j))
return liste



Solution.

1. Questions préliminaires
1. a. len(matA) renvoie la longueur de la liste c’est-à-dire ici 4.

b. matA[2] est une liste (type list) et vaut [7, 4, 1, 2, 5].
c. len(matA[2]) renvoie la longueur de la liste précédente c’est-à-dire 5.
d. matA[2][1] est un entier (type int) et vaut 4.

2. La fonction qui convient est zeros3. (En effet, zero1 renvoie un liste de n × p fois [0],
zeros2 inverse le rôle de n et p et zeros4 concatène tous les 0 en une seule liste – et on
perd ainsi la structure de liste de listes).

3. Il y a différentes possibilités. En voici quelques-unes :

def miroir(liste):
mir = []
for e in liste:

mir = [e] + mir
return mir

def miroir(liste):
mir = []
for e in liste:

mir.insert (0,e)
return mir

def miroir(liste):
mir = []
for i in range(-1,-len(liste) -1,-1):

mir.append(liste[i])
return mir

def miroir(liste):
mir = []
for i in range(len(liste)):

mir.append(liste[n-i -1])
return mir

2. Chemins de somme minimale dans une matrice

1. a. La matrice

9 2
3 6
4 7

 est représentée par [[9, 2], [3,6], [4, 7]].

b. La liste de listes [[9, 3, 4], [2, 6, 7]] représente la matrice
(

9 3 4
2 6 7

)
.



2. a. La matrice des sommes minimales de B est T =

 5 14 16
13 20 17
15 20 20

. Pour la trouver, on

applique les formules de l’énoncé de la manière suivantes :5
 −→

 5
13
15

 −→

 5 14 16
13
15

 −→

 5 14 16
13 20 17
15

 −→

 5 14 16
13 20 17
15 20 20

 .

b. Le coefficient d’indice 2 et 2 (c’est-à-dire 3e ligne et 3e colonne) est 20 la somme
minimale d’un chemin de B est 20.

3.

def mat_sommes_minimales (matA):
n = len(matA)
p = len(matA [0])
matS = zeros(n, p)
matS [0][0] = matA [0][0]
for i in range(n -1):

matS[i+1][0] = matS[i][0]+ matA[i+1][0]
for j in range(p -1):

matS [0][j+1] = matS [0][j]+ matA [0][j+1]
for i in range(n -1):

for j in range(p -1):
if matS[i+1][j] < matS[i][j+1]:

matS[i+1][j+1] = matS[i+1][j] + matA[i+1][j+1]
else:

matS[i+1][j+1] = matS[i][j+1] + matA[i+1][j+1]
return matS

4.

def sommes_minimales (matA):
n = len(matA)
p = len(matA [0])
return mat_sommes_minimales (matA)[n -1][p -1]

3. Recherche d’un chemin solution
La fonction qui convient est chemin2. En effet, chemin1 ne renvoie pas une liste comme

demandé (et A n’est pas défini), chemin3 arrête la recherche dès que l’un des deux indices i ou j
est nul (c’est-à-dire dès qu’on se trouve sur la première ligne ou la première colonne) alors qu’il
faut l’arrêter quand les deux indices sont nuls (c’est-à-dire quand on est arrivé au coin supérieur
gauche) et chemin4 renvoie la liste dans l’ordre dans lequel elle a été déterminée c’est-à-dire en
partant du coin inférieur droit et en remontant vers le coin supérieur gauche.


