
TB2 samedi 4 octobre 2025

Devoir surveillé n°1
Durée : 45 minutes

L’utilisation d’une calculatrice ou de tout document est interdite.
Toute sortie anticipée est interdite.

Le sujet s’intéresse au problème de détermination de la longueur de la plus longue sous-
séquence commune à deux séquences d’ADN. Cette longueur est un indicateur de proximité
d’espèces permettant de les comparer lors d’une étude phylogénétique.

Les parties 1, 2 et 3 sont indépendantes. On pourra utiliser les fonctions de la partie 1 dans
la partie 3.

1. Questions préliminaires
a. Écrire une fonction maximum qui renvoie le plus grand des deux nombres passés en

argument.
Par exemple, maximum(2, 4) devra renvoyer 4.

b. Écrire une fonction zeros qui prend en argument deux entiers naturels n et p (supposés
non nuls) et qui renvoie une liste de n listes contenant chacune p zéros, représentant ainsi
la matrice nulle à n lignes et p colonnes.
Par exemple, zeros(2, 3) devra renvoyer [[0,0,0], [0,0,0]].

2. Plus longue sous-chaîne commune
On considère A = a1 . . . an et B = b1 . . . bp deux chaînes de caractères non vides.
On appelle sous-chaîne de A toute chaîne de caractères ai1 . . . aik

où 1 ⩽ i1 < . . . < ik ⩽ n
(ces caractères ne sont pas nécessairement consécutifs dans A).

On appelle plus longue sous-chaîne commune à A et B toute sous-chaîne commune
à A et B de longueur maximale. Si l’une des chaînes A ou B est vide, ou si A et B n’ont
aucune sous-chaîne commune, on convient que la chaîne vide est l’unique plus longue sous-chaîne
commune à A et B.

On s’intéresse alors au problème ci-dessous.

Étant donné deux chaînes de caractères A et B de longueurs respectives n et p,
quelle est la longueur d’une plus longue sous-chaîne commune à A et B ?

Par exemple, les chaînes de caractères "AAA" et "TAA" sont des plus longues sous-chaînes
communes aux chaînes de caractères chaine1 = "ATAGA" et chaine2 = "TAACA".

La chaîne de caractères sschaine = "ATGC" est une plus longue sous-chaîne commune aux
chaînes de caractères chaine1 = "AATGCG" et chaine2 = "TATTAGC".

a. Quelle est la longueur d’une plus longue sous-chaîne commune aux chaînes "AATGCG" et
"TATTAGC" ? Justifier.

b. Déterminer une plus longue sous-chaîne commune aux chaînes "AATGCG" et "TATTAGC"
autre que "ATGC".



c. Parmi les chaînes de caractères ci-dessous, indiquez sur votre copie quelle est la seule
plus longue sous-chaîne commune aux chaînes "TCGTA" et "CTG" ? On ne demande pas
de justifier la réponse.

"CTG" "TGCT" "CGT" "CG"

d. Déterminer toutes les plus longues sous-chaînes communes aux chaînes "TCGTA" et "CTG".
On ne demande pas de justifier la réponse.

e. Parmi les fonctions ci-dessous, déterminer les deux seules permettant de déterminer si
une chaîne de caractères ssch est une sous-chaîne d’une chaîne de caractères ch. On ne
demande pas de justifier la réponse.

def estSousChaine1 (ch ,ssch):
n = len(ch)
p = len(ssch)
i, j = 0, 0
while i < n and j < p:

if ch[i] == ssch[j]:
j += 1

i += 1
return j == p

def estSousChaine2 (ch ,ssch):
n = len(ch)
p = len(ssch)
i, j = 0, 0
while i < n and j < p:

if ch[i] == ssch[j]:
j += 1

i += 1
return i == j

def estSousChaine3 (ch ,ssch):
n, p = len(ch), len(ssch)
for i in range(n):

j = 0
while j < p and ch[i+j]== ssch[j]:

j += 1
if j == p:

return True
return False

def estSousChaine4 (ch ,ssch):
j = 0
for i in range(len(ch)):

if ch[i] == ssch[j]:
j += 1

if j == len(ssch):
return True

return False

f. Écrire alors une fonction booléenne sousChaineCommune qui prend en argument trois
chaînes de caractères chaine1, chaine2 et sschaine qui renvoie True si sschaine est
une sous-chaîne commune à chaine1 et chaine2, et False dans le cas contraire.

3. Recherche d’une solution par programmation dyna-
mique

Si A = a1 . . . an et B = b1 . . . bp sont deux chaînes de caractères non vides, on note ℓi,j la lon-
gueur d’une plus longue sous-chaîne commune aux chaînes a1a2 . . . ai et b1b2 . . . bj (respectivement
composées des i premiers et j premiers caractères de A et B).

On peut montrer que la suite double (ℓi,j)(i,j)∈J0,nK×J0,pK vérifie l’initialisation et la relation de
récurrence :

∀(i, j) ∈ J0, nK × J0, pK, ℓi,j =


0 si i = 0 ou j = 0
1 + ℓi−1,j−1 sinon si ai = bj

max(ℓi−1,j, ℓi,j−1) sinon si ai ̸= bj

.

On cherche donc à calculer la longueur d’une plus longue sous-chaîne commune à A = a1 . . . an

et B = b1 . . . bp, c’est-à-dire le coefficient ℓn,p.



Le principe est de calculer de proche en proche chaque coefficient ℓi,j (en respectant l’ordre
défini par la relation de récurrence) en les mémorisant dans une matrice.

a. Quelle est la taille (nombres de lignes et de colonnes) de la matrice où on mémorisera les
coefficients ℓi,j ?

b. Recopier et compléter le code de la fonction lplscc calculant la longueur d’une plus
longue sous-chaîne commune à deux chaînes de caractères chaine1 et chaine2 passées
en arguments.

def lplsch(chaine1 , chaine2 ):
n, p = len( chaine1 ), len( chaine2 )
l = zeros (...... , ......)
for i in range (...... , n+1):

for j in range(1, ......) :
if chaine1 [i -1] == chaine2 [j -1]:

l[i][j] = ......
else:

l[i][j] = maximum (...... , ......)
return l [......][......]

c. Donner la matrice des coefficients (ℓi,j) dans le cas où A="CTG" et B="TCGT".
d. Expliquer (sans l’implémenter) comment adapter l’algorithme donné par la fonction

lplscc pour construire une plus longue sous-chaîne commune.
e. On sait qu’une chaîne de n caractères admet au plus 2n sous-chaines distinctes (en

comptant la chaîne vide). Expliquer pourquoi la méthode programmée à la question
précédente est plus efficace qu’en comparant chaque sous-chaîne de A avec chaque
sous-chaine de B.



Corrigé

1. Questions préliminaires
1.

def maximum (a,b):
if a>=b:

return a
else:

return b

2.
def zeros(n,p):

L=[]
for i in range(n):

L.append ([0]*p)
return L

Remarque : une autre syntaxe possible est la suivante, mais celle-ci engendre des
problèmes d’aliasing qui s’avéreraient extrêmement néfastes pour la suite.

def zeros(n,p):
return [[0]*p]*n

On peut en revanche écrire les choses de la façon suivante, sans problèmes d’aliasing :

def zeros(n,p):
return [[0]*p for i in range(n)]

2. Plus longue sous-chaîne commune
1. L’énoncé dit qu’une plus longue chaîne commune est "ATGC" donc la longueur d’une plus

longue sous-chaîne commune est 4.
2. On a vu dans la question précédente que "AAGC" est une sous-chaîne commune de longueur

maximale.
3. La plus longue sous-chaîne commune est "CG".
4. Les plus longues sous-chaînes communes à "TCGTA" et "CTG" sont "CT", "CG" et "TG".
5. Les fonctions qui conviennent sont estSousChaine1 et estSousChaine4.
6. En nommant estSousChaine l’une des deux fonctions précédentes, on peut définir la

fonction sousChaineCommune de la manière suivante :

def sousChaineCommune (chaine1 , chaine2 , sschaine ):
return estSousChaine (chaine1 , sschaine ) and

estSousChaine (chaine2 , sschaine )



3. Recherche d’une solution par programmation dyna-
mique

1. La matrice est de taille (n + 1) × (p + 1) car i varie entre 0 et n et j varie entre 0 et p.
2.

def lplsch(chaine1 , chaine2 ):
n, p = len( chaine1 ), len( chaine2 )
l = zeros(n+1, p+1)
for i in range(1, n+1):

for j in range(1, p+1):
if chaine1 [i -1] == chaine2 [j -1]:

l[i][j] = 1+l[i -1][j -1]
else:

l[i][j] = maximum (l[i -1][j], l[i][j -1])
return l[n][p]

Remarque : étant donné qu’à la fin de l’exécution i est égal à n et j est égal à p, on
peut remplacer la dernière ligne par return l[i][j] mais ce n’est pas le plus naturel.

3. La matrice est


0 0 0 0 0
0 0 1 1 1
0 1 1 1 2
0 1 1 2 2

.

4. La fonction lplsch se réfère aux longueurs des chaînes. Une idée possible est de reprendre
l’algorithme en remplaçant les longueurs des chaînes par les chaînes elle-mêmes.

Ainsi, on remplace la fonction maximum par une fonction plch qui prend en argument
deux chaînes chaine1 et chaine2 et qui renvoie la plus longue (avec le choix arbitraire
de renvoyer chaine1 si les deux chaînes ont la même longueur).

def lplc(chaine1 , chaine2 ):
if len( chaine1 ) >= len( chaine2 ):

return chaine1
else:

return chaine2

Ensuite, on remplace la fonction zeros par une fonction chaines_vides qui prend en
argument deux entiers naturels non nuls n et p et qui renvoie la liste de n listes contenant
chacune p chaines vides.

def chaines_vides (n,p):
L=[]
for i in range(n):

L.append ([""]*p)
return L



Enfin, on remplace dans la fonction lplsch les longueurs par les chaînes elles-mêmes :

def lplsch2 (chaine1 , chaine2 ):
n, p = len( chaine1 ), len( chaine2 )
l = chaines_vides (n+1, p+1)
for i in range(1, n+1):

for j in range(1, p+1):
if chaine1 [i -1] == chaine2 [j -1]:

l[i][j] = l[i -1][j -1] + chaine1 [i -1]
else:

l[i][j] = lplc(l[i -1][j], l[i][j -1])
return l[n][p]

On crée ainsi une matrice l (en fait une liste de listes) dont le coefficient d’indices i
et j n’est plus la longueur maximale ℓi,j d’une sous-chaîne commune à a1 . . . ai et b1 . . . bj

mais une sous-chaîne de longueur maximale commune à a1 . . . ai et b1 . . . bj. Ainsi, à
la fin de l’exécution l[n][p] contient sous-chaîne de longueur maximale commune à
A = a1 . . . an et B = b1 . . . bp.

Par exemple, l’instruction

print( lplsch2 ("TCGTA", "CTG"))

donne à l’affichage

[[’’, ’’, ’’, ’’], [’’, ’’, ’T’, ’T’], [’’, ’C’, ’T’,
’T’], [’’, ’C’, ’T’, ’TG’], [’’, ’C’, ’CT’, ’TG’],
[’’, ’C’, ’CT’, ’TG’]]

5. Considérons deux chaînes A et B de longueurs n et p avec, par exemple, n ⩾ p. La
méthode par programmation dynamique demande (n + 1)(p + 1) ⩽ (n + 1)2 tests. Tester
si chaque sous-chaîne de A est une sous-chaîne de B demande 2n tests d’égalité de sous-
chaînes (chaque test d’égalité pour une sous-chaîne de longueur k demandant lui-même
au moins k tests, un pour chaque caractère de la sous-chaîne).

Dans le premier cas, on a donc un nombre de tests polynomial en n alors que dans
le second cas, on a un nombre de tests exponentiel en n. Pour n suffisamment, la
première méthode est donc bien plus efficace que la seconde (par croissance comparée,
(n+1)2

2n −−−−→
n→+∞

0).
On pourra remarquer cependant si n ⩾ p, on peut seulement tester si les sous-chaînes

de B sont des sous-chaînes de A, ce qui réduit le nombre de tests d’égalité de chaînes à
2p mais qui nécessite ensuite, pour comparer les deux méthodes, une analyse plus fine
concernant n et p, ce qui n’était certainement pas attendu dans cette épreuve !


