TB2 samedi 4 octobre 2025

Devoir surveillé n°1
Durée : 45 minutes

L’utilisation d’une calculatrice ou de tout document est interdite.
Toute sortie anticipée est interdite.

Le sujet s’intéresse au probleme de détermination de la longueur de la plus longue sous-
séquence commune a deux séquences d’ADN. Cette longueur est un indicateur de proximité
d’especes permettant de les comparer lors d’'une étude phylogénétique.

Les parties 1, 2 et 3 sont indépendantes. On pourra utiliser les fonctions de la partie 1 dans
la partie 3.

1. Questions préliminaires

a. Ecrire une fonction maximum qui renvoie le plus grand des deux nombres passés en
argument.
Par exemple, maximum (2, 4) devra renvoyer 4.

b. Ecrire une fonction zeros qui prend en argument deux entiers naturels n et p (supposés
non nuls) et qui renvoie une liste de n listes contenant chacune p zéros, représentant ainsi
la matrice nulle a n lignes et p colonnes.

Par exemple, zeros(2, 3) devra renvoyer [[0,0,0], [0,0,0]].

2. Plus longue sous-chaine commune

On considere A =a; ...a, et B =b;...b, deux chaines de caracteres non vides.

On appelle sous-chaine de A toute chaine de caracteres a;, ...a;, ou 1< < ... <ip <n
(ces caractéres ne sont pas nécessairement consécutifs dans A).

On appelle plus longue sous-chaine commune a A et B toute sous-chaine commune
a A et B de longueur maximale. Si I'une des chaines A ou B est vide, ou si A et B n'ont
aucune sous-chaine commune, on convient que la chaine vide est I'unique plus longue sous-chaine
commune a A et B.

On s’intéresse alors au probléme ci-dessous.

Etant donné deuz chaines de caractéres A et B de longueurs respectives n et p,
quelle est la longueur d’une plus longue sous-chaine commune a A et B ¢

Par exemple, les chaines de caracteres "AAA" et "TAA" sont des plus longues sous-chaines
communes aux chaines de caractéres chainel = "ATAGA" et chaine2 = "TAACA".

La chaine de caractéres sschaine = "ATGC" est une plus longue sous-chaine commune auz
chaines de caractéres chainel = "AATGCG" et chaine2 = "TATTAGC".

a. Quelle est la longueur d’une plus longue sous-chaine commune aux chaines "AATGCG" et
"TATTAGC" ? Justifier.

b. Déterminer une plus longue sous-chaine commune aux chaines "AATGCG" et "TATTAGC"
autre que "ATGC".

c. Parmi les chaines de caracteres ci-dessous, indiquez sur votre copie quelle est la seule
plus longue sous-chaine commune aux chaines "TCGTA" et "CTG" ? On ne demande pas
de justifier la réponse.

|ICTGII IITGCTH IICGTII IICGII

d. Déterminer toutes les plus longues sous-chaines communes aux chaines "TCGTA" et "CTG".
On ne demande pas de justifier la réponse.

e. Parmi les fonctions ci-dessous, déterminer les deux seules permettant de déterminer si
une chaine de caracteres ssch est une sous-chaine d’'une chaine de caracteres ch. On ne
demande pas de justifier la réponse.

def estSousChainel (ch,ssch): def estSousChaine2 (ch,ssch):
n = len(ch) n = len(ch)
p = len(ssch) p = len(ssch)
i, § =0, 0 i, § =0, 0
while i < n and j < p: while i < n and j < p:
if ch[i] == ssch[j]: if ch[i] == ssch[j]:
jo+= 1 jo+= 1
i+=1 i+=1
return j == p return i == j
def estSousChaine3 (ch,ssch): def estSousChaine4 (ch,ssch):
n, p = len(ch), len(ssch) j =0
for i in range(n): for i in range(len(ch)):
j =0 if ch[i] == ssch[j]:
while j < p and chli+jl==ssch[j]: j += 1
j += 1 if j == len(ssch):
if j == p: return True
return True return False
return False

f. Ecrire alors une fonction booléenne sousChaineCommune qui prend en argument trois
chalnes de caracteres chainel, chaine2 et sschaine qui renvoie True si sschaine est
une sous-chaine commune a chainel et chaine?2, et False dans le cas contraire.

3. Recherche d’une solution par programmation dyna-
mique

SiA=ay...a, et B="0...b,sont deux chaines de caracteres non vides, on note 4; ; la lon-
gueur d’une plus longue sous-chaine commune aux chaines ajas . . . a; et byby . .. b; (respectivement
composées des i premiers et j premiers caractéres de A et B).

On peut montrer que la suite double (£; ;) j)efon]xo,p] Vérifie 'initialisation et la relation de
récurrence :

0 sit=0o0uyj=0
V(i,j) € [0,n] x [0,p], lij =1+ i1 ;-1 sinon si a; = b;
max({;_1;,¢; j—1) sinon si a; # b;

On cherche donc a calculer la longueur d’une plus longue sous-chaine commune & A =ajy ...a,
et B =by...by, c'est-a-dire le coefficient ¢, .

Le principe est de calculer de proche en proche chaque coefficient /; ; (en respectant 'ordre
défini par la relation de récurrence) en les mémorisant dans une matrice.

a.

b.

Quelle est la taille (nombres de lignes et de colonnes) de la matrice ou on mémorisera les

coefficients ¢; ; 7

Recopier et compléter le code de la fonction 1plscc calculant la longueur d'une plus
longue sous-chaine commune a deux chaines de caracteres chainel et chaine2 passées

en arguments.

def 1lplsch(chainel, chaine2):

n, p = len(chainel),
1 = zeros(...... S e)
for i in range(...... , n+1)

......) ¢

for j in range (1,
if chainel[i-1]

1011031 =
else:
1[i]J[j] = maximum(......
return 1[...... 10......]

len(chaine?2)

= chaine2[j-1]:

Donner la matrice des coeflicients (¢; ;) dans le cas ot A="CTG" et B="TCGT".

d. Expliquer (sans 'implémenter) comment adapter I’algorithme donné par la fonction
lplscc pour construire une plus longue sous-chalne commune.

. On sait qu'une chaine de n caractéres admet au plus 2" sous-chaines distinctes (en

comptant la chaine vide). Expliquer pourquoi la méthode programmée a la question
précédente est plus efficace qu’en comparant chaque sous-chaine de A avec chaque

sous-chaine de B.

Corrigé

1. Questions préliminaires

1.
def maximum(a,b):
if a>=b:
return a
else:
return b
2.

def zeros(n,p):
L=[]
for i in range(n):
L.append ([0]*p)
return L

Remarque : une autre syntaxe possible est la suivante, mais celle-ci engendre des
problémes d’aliasing qui s’avéreraient extrémement néfastes pour la suite.

def zeros(n,p):
return [[O]*pl*n

On peut en revanche écrire les choses de la facon suivante, sans problemes d’aliasing :

def zeros(n,p):
return [[0]l*p for i in range(n)]

2. Plus longue sous-chaine commune

1. L’énoncé dit qu'une plus longue chaine commune est "ATGC" donc la longueur d’une plus
longue sous-chaine commune est 4.

2. On a vu dans la question précédente que "AAGC" est une sous-chaine commune de longueur
maximale.

La plus longue sous-chaine commune est "CG".
Les plus longues sous-chaines communes a "TCGTA" et "CTG" sont "CT", "CG" et "TG".

Les fonctions qui conviennent sont estSousChainel et estSousChaine4.

S vk W

En nommant estSousChaine 'une des deux fonctions précédentes, on peut définir la
fonction sousChaineCommune de la maniére suivante :

def sousChaineCommune (chainel, chaine2, sschaine):
return estSousChaine(chainel, sschaine) and
estSousChaine(chaine2, sschaine)

3. Recherche d’une solution par programmation dyna-
mique

1. La matrice est de taille (n + 1) X (p+ 1) car ¢ varie entre 0 et n et j varie entre 0 et p.

2.

def 1lplsch(chainel, chaine2):
n, p = len(chainel), len(chaine2)
1 = zeros(n+l, p+1)
for i in range(l, n+1):
for j in range(l, p+1):

if chainel[i-1] == chaine2[j-1]:
10i10j] = 1+1[i-11[j-1]
else:

1[i]1[j] = maximum(1[i-1]1(j1, 1[il[j-11)
return 1[n][p]

Remarque : étant donné qu’a la fin de 'exécution i est égal a n et j est égal a p, on
peut remplacer la derniere ligne par return 1[i] [j] mais ce n’est pas le plus naturel.

00 0O0O0

) 00111

3. La matrice est 01119
011 2 2

4. La fonction 1plsch se réfere aux longueurs des chaines. Une idée possible est de reprendre
I’algorithme en remplagant les longueurs des chaines par les chaines elle-mémes.
Ainsi, on remplace la fonction maximum par une fonction plch qui prend en argument
deux chaines chainel et chaine2 et qui renvoie la plus longue (avec le choix arbitraire
de renvoyer chainel si les deux chaines ont la méme longueur).

def 1lplc(chainel, chaine?2):
if len(chainel) >= len(chaine?2):
return chainel
else:
return chaine?2

Ensuite, on remplace la fonction zeros par une fonction chaines vides qui prend en
argument deux entiers naturels non nuls n et p et qui renvoie la liste de n listes contenant
chacune p chaines vides.

def chaines_vides(n,p):
L=[]
for i in range(n):
L.append ([""]xp)
return L

Enfin, on remplace dans la fonction 1plsch les longueurs par les chaines elles-mémes :

def lplsch2(chainel, chaine2):
n, p = len(chainel), len(chaine2)
1 = chaines_vides(n+1, p+1)
for i in range(l, n+1):
for j in range(l, p+1):

if chainel[i-1] == chaine2[j-1]:
1[i]J[j] = 1[i-11[j-1] + chainel[i-1]
else:

1[0i]1[j] = 1plc(1li-11C(j], 1[il[j-11)
return 1[n][p]

On crée ainsi une matrice 1 (en fait une liste de listes) dont le coefficient d’indices i
et j n’est plus la longueur maximale ¢; ; d'une sous-chaine commune a a; ...a; et by ...0b;
mais une sous-chaine de longueur maximale commune a a;...a; et by...b;. Ainsi, a
la fin de 'exécution 1[n] [p] contient sous-chaine de longueur maximale commune a
A:al...an et B:blbp

Par exemple, I'instruction

print (1plsch2 ("TCGTA", "CTG"))

donne a I’affichage
[[;; P P ;;] [;; P ;T;)T;] [;) ;C) ;T;
;T)]’ [;;’)C;’ ;T)’ ;TG)], [;;’ ,C,, ;CT;’ JTG)]’
[;z)C))CT})TG)]]

. Considérons deux chaines A et B de longueurs n et p avec, par exemple, n > p. La
méthode par programmation dynamique demande (n + 1)(p+ 1) < (n + 1)? tests. Tester
si chaque sous-chaine de A est une sous-chaine de B demande 2" tests d’égalité de sous-
chaines (chaque test d’égalité pour une sous-chaine de longueur k& demandant lui-méme
au moins k tests, un pour chaque caractére de la sous-chaine).

Dans le premier cas, on a donc un nombre de tests polynomial en n alors que dans
le second cas, on a un nombre de tests exponentiel en n. Pour n suffisamment, la
premiere méthode est donc bien plus efficace que la seconde (par croissance comparée,
e 2 0).

n—+0o00

On pourra remarquer cependant si n > p, on peut seulement tester si les sous-chaines
de B sont des sous-chaines de A, ce qui réduit le nombre de tests d’égalité de chaines a
2P mais qui nécessite ensuite, pour comparer les deux méthodes, une analyse plus fine

concernant n et p, ce qui n’était certainement pas attendu dans cette épreuve!

