Corrigés des exercices du chapitre 3

Exercice 1. Soit x et y deux réels strictement positifs. Dans chaque cas, comparer A et B.

1)
$$A = (x+y)^2$$
 et $B = x^2 + y^2$

1)
$$A = (x+y)^2$$
 et $B = x^2 + y^2$ 2) $A = x + y$ et $B = \frac{2}{\frac{1}{x} + \frac{1}{y}}$ 3) $A = \frac{x+y}{2}$ et $B = \sqrt{xy}$

3)
$$A = \frac{x+y}{2}$$
 et $B = \sqrt{xy}$

Solution.

- 1) $A B = (x + y)^2 (x^2 + y^2) = x^2 + 2xy + y^2 x^2 y^2 = 2xy$ donc, comme x et y sont
- strictement positifs, A B > 0. Ainsi, on conclut que A > B. 2) $A B = x + y \frac{2}{\frac{1}{x} + \frac{1}{y}} = x + y \frac{2}{\frac{y+x}{xy}} = x + y \frac{2xy}{x+y} = \frac{(x+y)^2 2xy}{x+y} = \frac{x^2 + 2xy + y^2 2xy}{x+y} = \frac{x^2 + y^2}{x+y}$

donc, comme x et y sont strictement positifs, A - B > 0. Ainsi, on conclut que A > B.

3) $A-B=\frac{x+y}{2}-\sqrt{xy}=\frac{x+y-2\sqrt{xy}}{2}=\frac{\sqrt{x^2-2\sqrt{x}\sqrt{y}+\sqrt{y}^2}}{2}=\frac{(\sqrt{x}-\sqrt{y})^2}{2}$ donc $A-B\geqslant 0$. Ainsi, on conclut que $A\geqslant B$.

Exercice 2. Montrer que, pour tout réel x > 0, $x + \frac{1}{x} \ge 2$.

Solution. Soit un réel x > 0. Alors,

$$x + \frac{1}{x} - 2 = \frac{x^2 + 1 - 2x}{x} = \frac{x^2 - 2x + 1^2}{x} = \frac{(x - 1)^2}{x} \geqslant 0$$

 $car (x-1)^2 \ge 0 \text{ et } x > 0.$

On conclut donc que, pour tout x > 0, $x + \frac{1}{x} \ge 2$.

Exercice 3. Soit x un réel tel que x > 1 et $x \le 3$.

- 1. Traduire l'énoncé sous la forme $x \in \dots$ en remplaçant les pointillés par un intervalle.
- 2. Donner un encadrement de :

a)
$$x + 5$$

b)
$$x - 2$$

a)
$$x + 5$$
 b) $x - 2$ c) $2x$ d) $-x$ e) $\frac{x}{4}$ f) $-\frac{x}{2}$.

Solution.

- 1. Les deux inégalités x > 1 et $x \le 3$ se traduisent par $x \in [1, 3]$
- **2.** a) Comme $1 < x \le 3$, $1 + 5 < x + 5 \le 3 + 5$ donc $6 < x + 5 \le 8$
 - **b)** Comme $1 < x \le 3$, $1 2 < x 2 \le 3 2$ donc $-1 < x 2 \le 1$
 - c) Comme $1 < x \le 3$ et comme 2 > 0, $2 \times 1 < 2 \times x \le 2 \times 3$ donc $2 < 2x \le 6$
 - **d)** Comme $1 < x \le 3$ et comme -1 < 0, $(-1) \times 1 > (-1) \times x \ge (-1) \times 3$ donc
 - e) Comme $1 < x \le 3$ et comme $4 > 0, \frac{1}{4} < \frac{x}{4} \le \frac{3}{4}$.
 - **f)** Comme $1 < x \le 3$ et comme -2 < 0, $\frac{1}{-2} > \frac{x}{-2} \ge \frac{3}{-2}$ donc $\left[-\frac{1}{2} > -\frac{x}{2} \ge -\frac{3}{2} \right]$

Exercice 4. Soit x et y deux réels tels que $x \in [2,7]$ et $y \in [4,5]$.

Donner une encadrement de : 1. x + y;

3. 2x + 4y;

5. 3y - 2x;

2. xy;

4. x - y;

6. (2y-x)(3x-y).

Solution.

1. Comme $2 \le x \le 7$ et $4 \le y \le 5$, $2 + 4 \le x + y \le 7 + 5$ donc $6 \le x + y \le 12$.

- 2. Comme tous les nombres en jeux sont positifs, on peut multiplier les inégalités membre à membre donc $2 \times 4 \leqslant x \times y \leqslant 7 \times 5$ c'est-à-dire $\boxed{8 \leqslant xy \leqslant 35}$.
- **3.** Comme $2 \leqslant x \leqslant 7$ et comme 2 > 0, $4 \leqslant 2x \leqslant 14$. De même, comme $4 \leqslant y \leqslant 5$ et 4 > 0, $16 \leqslant 4y \leqslant 20$. Ainsi, en ajoutant membre à membre les deux inégalités, il vient $20 \leqslant 2x + 4y \leqslant 34$.
- **4.** D'une part, [*] $2 \leqslant x \leqslant 7$. D'autre part, comme $4 \leqslant y \leqslant 5$, en multipliant par -1, $-4 \geqslant -y \geqslant -5$ c'est-à-dire [**] $-5 \leqslant -y \leqslant -4$. En sommant membre à membre les deux inégalités [*] et [**], il vient $2+(-5) \leqslant x+(-y) \leqslant 7+(-4)$ c'est-à-dire $-3 \leqslant x-y \leqslant 3$].
- **5.** Comme $4 \leqslant y \leqslant 5$ et comme 3 > 0, $12 \leqslant 3y \leqslant 15$. D'autre part, comme $2 \leqslant x \leqslant 7$ et -2 < 0, $-4 \geqslant -2x \geqslant -14$ c'est-à-dire $-14 \leqslant -2x \leqslant -4$. En sommant membre à membre les deux inégalités, il vient $12 + (-14) \leqslant 3y + (-2x) \leqslant 15 + (-4)$ c'est-à-dire $-2 \leqslant 3y 2x \leqslant 11$.
- **6.** Comme $4 \le y \le 5$ et 2 > 0, $8 \le 2y \le 10$. De plus, comme $2 \le x \le 7$, en multipliant par -1, $-2 \ge -x \ge -7$ c'est-à-dire $-7 \le -x \le -2$. En additionnant membre à membre, on obtient [*] $1 \le 2y x \le 8$.

De même, comme $2 \leqslant x \leqslant 7$ et comme 3 > 0, $6 \leqslant 3x \leqslant 21$. D'autre part, comme $4 \leqslant y \leqslant 5$ et comme -1 < 0, $-4 \geqslant -y \geqslant -5$ c'est-à-dire $-5 \leqslant -y \leqslant -4$. En sommant membre à membre, on obtient [**] $1 \leqslant 3x - y \leqslant 17$. Comme [*] et [**] ne portent que sur des nombres positifs, on peut les multiplier membre à membre et on obtient $1 \leqslant (2y - x)(3x - y) \leqslant 136$.

Exercice 5. Calculer les nombres suivants.

$$A = |3|$$
 $B = |-5|$ $C = |1 - \sqrt{2}|$ $D = |17 - 25|$ $E = |-3 - \pi|$ $F = |10^{-4}|$.

Solution.

Comme 3 > 0, A = 5

Comme -5 < 0, B = -(-5) i.e. B = 5.

Comme $1 - \sqrt{2} < 0$, $C = -(1 - \sqrt{2}) = -1 + \sqrt{2}$ i.e. $C = \sqrt{2} - 1$

Comme 17 - 25 = -8 < 0, D = -(-8) i.e. D = 8.

Comme $-3 - \pi < 0$, $E = -(-3 - \pi)$ i.e. $E = 3 + \pi$

Comme $10^{-4} > 0$, $F = 10^{-4}$

Exercice 6. Dans chacun des cas suivants, calculer la distance entre x et y.

1)
$$x = -1$$
 et $y = 3$ 2) $x = \sqrt{3}$ et $y = -1$ 3) $x = \frac{1}{3}$ et $y = 4$ 4) $x = 3$ et $y = \pi$.

Solution.

- 1) |x-y| = |-1-3| = |-4| = -(-4) donc la distance entre x et y est 4.
- 2) $|x-y| = |\sqrt{3} (-1)| = |\sqrt{3} + 1|$ donc la distance entre x et y est $\sqrt{3} + 1$.
- 3) $|x-y| = \left|\frac{1}{3} 4\right| = \left|\frac{1-12}{4}\right| = \left|-\frac{11}{4}\right|$ donc la distance entre x et y est $\frac{11}{4}$.
- 4) $|x-y| = |3-\pi| = -(3-\pi) = -3 + \pi$ donc la distance entre x et y est $\pi 3$.

Exercice 7. Les propositions suivants sont-elles vraies ou fausses? On justifiera sa réponse.

- 1. Pour tout réel x, $|1 + x^2| = 1 + x^2$.
- 2. Pour tous réels x et y, |x + y| = |x| + |y|.
- **3.** Il existe des réels x et y tels que |x + y| = |x| + |y|.

- **4.** Pour tous réels positifs ou nuls x et y, |x + y| = |x| + |y|.
- 5. Il existe un réel x tel que $|-x^2| = -x^2$.

Solution.

- 1. La proposition est vraie car, pour tout réel x, $1 + x^2 > 0$ donc $|1 + x^2| = 1 + x^2$.
- **2.** La proposition est <u>fausse</u>. Par exemple, pour x = 1 et y = -1, |x + y| = |1 1| = |0| = 0 alors que |x| + |y| = |1| + |-1| = 1 + 1 = 2.
- **3.** La proposition est <u>vraie</u>. Par exemple, pour x = y = 0, |x + y| = |0| = 0 et |x| + |y| = 0 + 0 = 0.
- **4.** La proposition est <u>vraie</u>. Soit x et y deux réels positifs ou nuls. Alors, x + y est positif ou nul donc |x + y| = x + y. Or, comme x et y sont positifs, x = |x| et y = |y| donc |x + y| = |x| + |y|.
- **5.** La proposition est <u>vraie</u>. Pour x = 0, $|-0^2| = |0| = 0 = -0^2$.

Exercice 8. Soit x et y deux réels. Montrer que le minimum de x et de y est égal à $\frac{1}{2}(x+y-|x-y|)$ et que le maximum de x et de y est égal à $\frac{1}{2}(x+y+|x-y|)$.

Solution. On raisonne par disjonction des cas.

1^{er} cas. Supposons que x < y. Alors, le minimum des deux nombres est x et le maximum est y. Or, comme x < y, x - y < 0 donc |x - y| = -(x - y) = y - x. Ainsi,

$$\frac{1}{2}(x+y-|x-y|) = \frac{1}{2}(x+y-(y-x)) = \frac{1}{2}(x+y-y+x) = x$$

et

$$\frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+y+(y-x)) = \frac{1}{2}(x+y+y-x) = y.$$

Ainsi, $\frac{1}{2}(x+y-|x-y|)$ est bien égal au minimum de x et y et $\frac{1}{2}(x+y+|x-y|)$ est bien égal au maximum de x et y.

2^e cas. Supposons que $x \ge y$. Alors, le minimum des deux nombres est y et le maximum est x. Or, comme $x \ge y$, $x - y \ge 0$ donc |x - y| = x - y. Ainsi,

$$\frac{1}{2}(x+y-|x-y|) = \frac{1}{2}(x+y-(x-y)) = \frac{1}{2}(x+y+y-x) = y$$

et

$$\frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+y+(x-y)) = \frac{1}{2}(x+y+x-y) = x.$$

Ainsi, $\frac{1}{2}(x+y-|x-y|)$ est bien égal au minimum de x et y et $\frac{1}{2}(x+y+|x-y|)$ est bien égal au maximum de x et y.

On conclut que, dans tous les cas, $\left[\frac{1}{2}(x+y-|x-y|)\right]$ est égal au minimum de x et y et $\left[\frac{1}{2}(x+y+|x-y|)\right]$ est bien égal au maximum de x et y.

Exercice 9. Soit x et y deux réels. Montrer que $||x| - |y|| \le |x - y|$.

Solution. Remarquons que x peut s'écrire x=(x-y)+y. Dès lors, d'après l'inégalité triangulaire, $|x|=|(x-y)+y|\leqslant |x-y|+|y|$ et donc $|x|-|y|\leqslant |x-y|$.

Ce qui précède est valable pour tous réels x et y donc, en échangeant les rôles de x et de y, on obtient $|y| - |x| \le |y - x|$. Or, |y - x| = |-(x - y)| = |x - y| donc $|y| - |x| \le |x - y|$.

Pour conclure, il suffit de remarquer que ||x| - |y|| est égal, par définition, à |x| - |y| ou à |y| - |x| donc, comme ces deux nombres sont tous les deux inférieurs à |x - y|, on conclut que, pour tous réels x et y, $||x| - |y|| \le |x - y|$.

Exercice 10. Compléter avec \in ou \notin .

1.
$$4 \in]-\infty; -1] \cup]0; +\infty[.$$

2.
$$4 \notin]-\infty; -1] \cap [0; +\infty[.$$

3.
$$-1 \in]-\infty; -1] \cup [0; +\infty[$$
.

4.
$$-1 \notin]-\infty; -1] \cap [0; +\infty[.$$

5.
$$0 \in]-\infty; -1] \cup [0; +\infty[.$$

6.
$$0 \notin]-\infty; -1] \cap [0; +\infty[.$$

7.
$$4 \in [-2; 3] \cup [1; 5]$$
.

8.
$$4 \notin [-2;3] \cap [1;5]$$
.

9.
$$3 \in [-2;3] \cup [1;5]$$
.

10.
$$3 \in [-2; 3] \cap [1; 5]$$
.

11.
$$1 \notin]-2;3] \cup [1;5].$$

12.
$$1 \notin s [-2; 3] \cap [1; 5]$$
.

Solution. Voir ci-dessus.

Exercice 11. Dans chaque cas, écrire E comme un intervalle ou comme une union d'intervalles.

- **1.** E est l'ensemble des réels x tels que $x \ge 1$ et $0 \le x < 4$.
- **2.** $E = [5; 8] \cap [3; 6].$
- 3. E est l'ensemble des réels x tels que $x \ge 1$ ou $x \le -1$.
- **4.** E est l'ensemble des réels x tels que $1 \le x \le 3$ et 0 < x < 2.
- **5.** E est l'ensemble des réels x tels que $1 \le x \le 3$ ou 0 < x < 2.
- **6.** E est l'ensemble des réels x tels que $1 \le x \le 2$ ou -2 < x < -1.

Solution.

- 1. E = [1; 4[.
- **2.** E = [5; 6].
- 3. $E =]-\infty; -1] \cup [1; +\infty[.$
- **4.** E = [1; 2[.
- **5.** E = [0; 3].
- **6.** $E =]-2; -1[\cup [1; 2].$

Exercice 12. Vérifier que $2 + \sqrt{6}$ est solution de l'équation $x^2 - 4x = 2$.

Solution. Étant donné que

$$(2+\sqrt{6})^2 - 4(2+\sqrt{6}) = 2^2 + 2 \times 2 \times \sqrt{6} + \sqrt{6}^2 - 8 - 4\sqrt{6} = 4 + 4\sqrt{6} + 6 - 8 - 4\sqrt{6} = 2$$

 $2 + \sqrt{6}$ est solution de l'équation $x^2 - 4x = 2$

Exercice 13. — On considère l'équation

(E):
$$\frac{3x+1}{5} - 2x + 1 = 3 + 4x$$
.

Compléter le raisonnement suivant en indiquant entre parenthèses l'opération effectuée pour passer d'une équation à l'autre (par exemple : on a divisé par 3, on a additionné 2, etc...)

(E)
$$\iff \frac{3x+1}{5} - 2x + 1 - (3+4x) = 0$$
 (On a soustrait $3+4x$)
$$\iff \frac{3x+1}{5} - 2x + 1 - 3 - 4x = 0$$

$$\iff \frac{3x+1}{5} - 6x - 2 = 0$$

$$\iff 3x+1 - 30x - 10 = 0$$
 (On a multiplié par $5 \neq 0$)
$$\iff -27x - 9 = 0$$

$$\iff x = -\frac{9}{27}$$
 (On a additionné 9)
$$\iff x = -\frac{1}{3}$$

Conclusion : L'ensemble des solutions de (E) est $\{-\frac{1}{3}\}$.

Exercice 14. — Résoudre dans \mathbb{R} les équations suivantes.

$$(E_1): 3x = 0$$
 $(E_2): 5x = 1$ $(E_3): 3 - 2x = 5$ $(E_4): 1 - x = 4x + 7$

$$(E_5): 0.3x + 0.01 = 2.7 - 3.1x$$
 $(E_6): \frac{2}{3}x = 5$ $(E_7): \frac{7}{5}x - \frac{1}{3} = \frac{3}{4}x + 1$

Solution.
$$(E_1) \iff \frac{3x}{3} = \frac{0}{3} \iff x = 0$$

L'ensemble des solutions des (E_1) est $\{0\}$.

$$(E_2) \Longleftrightarrow \frac{5x}{5} = \frac{1}{5} \Longleftrightarrow x = \frac{1}{5}$$

L'ensemble des solutions des (E_2) est $\left\{\frac{1}{5}\right\}$.

$$(E_3) \Longleftrightarrow 3 - 2x - 3 = 5 - 3 \Longleftrightarrow -2x = 2 \Longleftrightarrow \frac{-2x}{-2} = \frac{2}{-2} \Longleftrightarrow x = -1$$

L'ensemble des solutions des (E_3) est $\{-1\}$.

$$(E_4) \Longleftrightarrow 1 - x + x = 4x + 7 + x \Longleftrightarrow 1 = 5x + 7 \Longleftrightarrow 1 - 7 = 5x + 7 - 7 \Longleftrightarrow -6 = 5x$$

$$\iff \frac{-6}{5} = \frac{5x}{5} \Longleftrightarrow -\frac{6}{5} = x$$

L'ensemble des solutions des (E_4) est $\left\{-\frac{\overline{6}}{5}\right\}$.

$$(E_5) \iff 0.3x + 0.01 = 2.7 - 3.1x \iff 0.3x + 3.1x + 0.01 = 2.7 \iff 3.4x = 2.7 - 0.01$$

 $\iff 3.4x = 2.69 \iff x = \frac{2.69}{3.4} \iff x = \frac{269}{340}$

L'ensemble des solutions des (E_5) est $\left\{\frac{269}{340}\right\}$.

$$(E_6) \Longleftrightarrow x = \frac{5}{\frac{2}{3}} \Longleftrightarrow x = 5 \times \frac{3}{2} \Longleftrightarrow x = \frac{15}{2}$$

L'ensemble des solutions des (E_6) est $\left\{\frac{15}{2}\right\}$.

$$(E_7) \iff \frac{7}{5}x - \frac{3}{4}x - \frac{1}{3} = 1 \iff \left(\frac{7}{5} - \frac{3}{4}\right)x = 1 + \frac{1}{3} \iff \left(\frac{28}{20} - \frac{15}{20}\right)x = \frac{3}{3} + \frac{1}{3}$$
$$\iff \frac{13}{20}x = \frac{4}{3} \iff x = \frac{\frac{4}{3}}{\frac{13}{20}} \iff x = \frac{4}{3} \times \frac{20}{13} \iff x = \frac{80}{39}$$

L'ensemble des solutions des (E_7) est $\left\{\frac{80}{39}\right\}$.

Exercice 15. — Résoudre dans \mathbb{R} les équations suivantes.

$$(E_1): \frac{x-2}{2} + 2 = 2x \qquad (E_2): \frac{2x+3}{4} + \frac{4-x}{3} = \frac{x+1}{2}$$

$$(E_3): \frac{5-x}{7} + 0,3x = \frac{2}{5} \qquad (E_4): \sqrt{3}x - 2 = x+1$$

Solution.
$$(E_1) \iff 2\left(\frac{x-2}{2}+2\right) = 2 \times 2x \iff x-2+4=4x \iff x+2=4x \iff 2=4x-x$$
 $\iff 2=3x \iff \frac{2}{3}=x$

L'ensemble des solutions des (E_1) est $\left\{\frac{2}{2}\right\}$.

$$(E_2) \iff 12\left(\frac{2x+3}{4} + \frac{4-x}{3}\right) = 12 \times \frac{x+1}{2} \iff 3(2x+3) + 4(4-x) = 6(x+1)$$

$$\iff 6x+9+16-4x = 6x+6 \iff 2x+25 = 6x+6 \iff 25 = 6x+6-2x$$

$$\iff 25 = 4x+6 \iff 25-6 = 4x \iff 19 = 4x \iff \frac{19}{4} = x$$

L'ensemble des solutions des (E_2) est $\left\{\frac{19}{4}\right\}$.

$$(E_3) \iff \frac{5-x}{7} + \frac{3}{10}x = \frac{2}{5} \iff 70\left(\frac{5-x}{7} + \frac{3}{10}x\right) = 70 \times \frac{2}{5} \iff 10(5-x) + 21x = 28$$

 $\iff 50 - 10x + 21x = 28 \iff 11x = 28 - 50 \iff x = \frac{-22}{11} \iff x = -2$

L'ensemble des solutions des (E_3) est $\{-2\}$

$$(E_4) \Longleftrightarrow \sqrt{3}x - 2 = x + 1 \Longleftrightarrow \sqrt{3}x - x - 2 = 1 \Longleftrightarrow (\sqrt{3} - 1)x - 2 = 1 \Longleftrightarrow (\sqrt{3} - 1)x = 1 + 2$$
$$\iff (\sqrt{3} - 1)x = 3 \Longleftrightarrow x = \frac{3}{\sqrt{3} - 1} \Longleftrightarrow x = \frac{3(\sqrt{3} + 1)}{\sqrt{3}^2 - 1^1} \Longleftrightarrow x = \frac{3\sqrt{3} + 3}{2}$$

L'ensemble des solutions des (E_4) est $\left\{\frac{3\sqrt{3}+3}{2}\right\}$

Exercice 16. — Résoudre dans \mathbb{R} les équations suivantes.

$$(E_1): x(x+1) = x^2 + 3$$
 $(E_2): (2x+3)^2 - 4x^2 = 5x + 1$
 $(E_3): x(1-3x) + 3x^2 = \frac{3-7x}{5}$ $(E_4): (x+1)^3 = x^3 + 3x^2 + 5x - 2$

Solution.

(E₁)
$$\iff$$
 $x^2 + x = x^2 + 3 \iff x^2 + x - x^2 = 3 \iff x = 3$
L'ensemble des solutions des (E₁) est {3}.

$$(E_2) \iff (2x+3)^2 - 4x^2 = 5x + 1 \iff (2x)^2 + 2 \times 2x \times 3 + 3^2 - 4x^2 = 5x + 1 \iff 4x^2 + 12x + 9 - 4x^2 = 5x + 1 \iff 12x + 9 = 5x + 1 \iff 12x + 9 - 5x = 1 \iff 7x + 9 = 1 \iff 7x = 1 - 9 \iff 7x = -8 \iff x = -\frac{8}{7}$$

L'ensemble des solutions des (E_2) est $\left\{-\frac{8}{7}\right\}$.

$$(E_3) \iff 5\left(x(1-3x)+3x^2\right) = 5 \times \frac{3-7x}{5} \iff 5x(1-3x)+15x^2 = 3-7x$$

$$\iff 5x-15x^2+15x^2 = 3-7x \iff 5x = 3-7x \iff 5x+7x = 3$$

$$\iff 12x = 3 \iff x = \frac{3}{12} \iff x = \frac{1}{4}$$

L'ensemble des solutions des (E_3) est $\left\{\frac{1}{4}\right\}$.

$$(E_4) \iff (x+1)^2(x+1) = x^3 + 3x^2 + 5x - 2 \iff (x^2 + 2x + 1)(x+1) = x^3 + 3x^2 + 5x - 2 \iff x^3 + x^2 + 2x^2 + 2x + x + 1 = x^3 + 3x^2 + 5x - 2 \iff x^3 + 3x^2 + 3x + 1 = x^3 + 3x^2 + 5x - 2 \iff x^3 + 3x^2 + 3x + 1 - x^3 - 3x^2 - 5x = -2 \iff -2x + 1 = -2 \iff -2x = -2 - 1 \iff -2x = -3 \iff x = \frac{-3}{-2} \iff x = \frac{3}{2}$$

L'ensemble des solutions de (E_4) est $\left\{\frac{3}{2}\right\}$.

Exercice 17. Étudier le signe des expressions suivantes en fonction de x:

$$A(x) = -3x + 1$$
 $B(x) = 4 + 5x$ $C(x) = (2x + 6)(4 - x)$ $D(x) = 4x^{2} + 1$

$$A(x) = -3x + 1 B(x) = 4 + 5x C(x) = (2x + 6)(4 - x) D(x) = 4x^{2} + 1$$

$$E(x) = x^{2} - 9 F(x) = x^{3} - 2x^{2} G(x) = x^{3} - x H(x) = x^{3} + x I(x) = \frac{2 - 3x}{x + 1}$$

- **Solution.** Comme -3 < 0, $A(x) \ge 0$ pour tout $x \in \left] -\infty; \frac{1}{3} \right]$ et $A(x) \le 0$ pour tout $x \in \left[\frac{1}{3}; +\infty \right[\right]$.
 Comme 5 > 0, $B(x) \le 0$ pour tout $x \in \left[-\infty; -\frac{4}{5} \right]$ et $B(x) \ge 0$ pour tout $x \in \left[-\frac{4}{5}; +\infty \right[\right]$
- Pour étudier le signe de C(x), on utilise un tableau de signe.

x	$-\infty$	-3		4		$+\infty$
signe de $2x+6$	_	0	+		+	
signe de $4-x$	+		+	0	_	
signe de $C(x)$	_	0	+	0	_	

Ainsi, $C(x) \ge 0$ pour tout $x \in [-3; 4]$ et $C(x) \le 0$ pour tout $x \in [-\infty; -3] \cup [4; +\infty[]$.

- Pour tout réel $x, x^2 \ge 0$ donc $4x^2 \ge 0$ et ainsi D(x) > 0.
- Pour tout réel x, $E(x) = x^2 3^2 = (x 3)(x + 3)$ donc on a le tableau suivant :

x	$-\infty$		-3		3		$+\infty$
signe de $x-3$		_		_	0	+	
signe de $x + 3$		_	0	+		_	
signe de $E(x)$		+	0	_	0	+	

Ainsi, $|E(x)| \ge 0$ pour tout $x \in]-\infty; -3] \cup [3; +\infty[$ et $C(x) \le 0$ pour tout $x \in [-3; 3]$.

- Pour tout réel x, $F(x) = x^2(x-2)$ donc, comme $x^2 \ge 0$, le signe de F(x) est le même que le signe de x-2. Ainsi, $F(x) \le 0$ pour tout $x \in]-\infty; 2]$ et $F(x) \ge 0$ pour tout $x \in [2; +\infty[$ (Remarque : F(x) a le même signe de x-2 mais s'annule, de plus, en x=0.)
 - Pour tout réel x, $G(x) = x(x^2 1) = x(x 1)(x + 1)$ donc on a le tableau suivant :

x	$-\infty$	_	-1	0		1		$+\infty$
signe de x	-	_	_	- 0	+		+	
signe de $x - 1$	-	_	_	-	_	0	+	
signe de $x + 1$	-	- () +	-	+		+	
signe de $G(x)$	-	- () +	- 0	_	0	+	

Ainsi, $G(x) \leq 0$ pour tout $x \in]-\infty; -1] \cup [0; 1]$ et $G(x) \geq 0$ pour tout $x \in [-1; 0] \cup [1; +\infty[]$

• Pour tout réel x, $H(x) = x(x^2 + 1)$ et $x^2 + 1 > 0$ donc le signe de H(x) est le signe de x.

Ainsi, $H(x) \le 0$ pour tout $x \in]-\infty; 0]$ et $H(x) \ge 0$ pour tout $x \in]0; +\infty]$

• Pour le signe de I(x), on utilise un tableau de signe :

x	$-\infty$		-1		$\frac{2}{3}$		$+\infty$
signe de $2-3x$		+		+	0	_	
signe de $x + 1$		_	0	+		_	
signe de $I(x)$		_		+	0	_	

Ainsi,
$$I(x) \le 0$$
 pour tout $x \in]-\infty; -1[\cup \left[\frac{2}{3}; +\infty\right[\text{ et } I(x) \geqslant 0 \text{ pour tout } x \in \left]-1; \frac{2}{3}\right]]$

Exercice 18. Résoudre dans \mathbb{R} les inéquations suivantes.

$$(I): (x+1)(x+2) > (x+2)(3-x)$$
 $(J): (x+1)^2 < (2x-3)^2$ $(K): 3x+1 \le x(3x+1).$

Solution.

$$(I) \iff (x+1)(x+2) - (x+2)(3-x) > 0 \iff (x+2)[(x+1) - (3-x)] > 0 \iff (x+2)(2x-2) > 0.$$

x	$-\infty$	-2		1		$+\infty$
signe de $x + 2$	_	- 0	+		+	
signe de $2x-2$	_	-	_	0	+	
signe de $(x+2)(2x-2)$	_	- 0	_	0	+	

Ainsi, l'ensemble des solutions de (I) est $]-\infty; -2[\cup]1; +\infty[.$

$$(J) \iff (x+1)^2 - (2x-3)^2 < 0 \iff [(x+1) - (2x-3)][(x+1) + (2x-3)] < 0$$
$$\iff (4-x)(3x-2) < 0.$$

x	$-\infty$	$\frac{2}{3}$		4		$+\infty$
signe de $4-x$	+		+	0	_	
signe de $3x-2$	_	0	+		+	
signe de $(4-x)(3x-2)$	_	9	+	0	_	

Ainsi, l'ensemble des solutions de (J) est $\left[\frac{2}{3};4\right[$.

$$(K) \Longleftrightarrow (3x+1) \times 1 - x(3x+1) \leqslant 0 \Longleftrightarrow (3x+1)(1-x) \leqslant 0$$

x	$-\infty$		$-\frac{1}{3}$		1		$+\infty$
signe de $3x + 1$		_	0	+		+	
signe de $1-x$		+		+	0	_	
signe de $(3x+1)(1-x)$		_	0	+	0	_	

Ainsi, l'ensemble des solutions (K) est $]-\infty; -\frac{1}{3}] \cup [1; +\infty[$.

Exercice 19. Résoudre dans \mathbb{R} les équations et inéquations suivantes.

1)
$$|x-4|=1$$

2)
$$|x+5|=5$$

1)
$$|x-4|=1$$
 2) $|x+5|=5$ 3) $|3x+2|>5$ 4) $|1-7x|<2$ 5) $|x|=|x+1|$

4)
$$|1-7x|<2$$

5)
$$|x| = |x+1|$$

Solution.

1.
$$|x-4|=1 \iff x-4=1$$
 ou $x-4=-1 \iff x=5$ ou $x=3$. L'ensemble des solutions de $|x-4|=1$ est $\{3\,;5\}$.

2.
$$|x+5| = 5 \iff x+5 = 5 \text{ ou } x+5 = -5 \iff x=0 \text{ ou } x=-10.$$
L'ensemble des solutions de $|x+5| = 5$ est $\{-10; 0\}$.

3.
$$|3x+2| > 5 \iff 3x+2 > 5$$
 ou $3x+2 < -5 \iff x=1$ ou $x < -\frac{7}{3}$. L'ensemble des solutions de $|3x+2| > 5$ est $]-\infty; -\frac{7}{3}[\cup]1; +\infty[.]$

4.
$$|1-7x| < 2 \Longleftrightarrow -2 < 1-7x < 2 \Longleftrightarrow -3 < -7x < 1 \Longleftrightarrow \frac{3}{7} > x > -\frac{1}{7}$$
. L'ensemble des solutions de $|1-7x| < 2$ est $]-\frac{1}{7};\frac{3}{7}[.]$

5. Soit $x \in \mathbb{R}$. Alors, |x| est la distance de $x \ge 0$ et |x+1| est la distance de $x \ge -1$. Ainsi, |x| = |x+1| si et seulement si x est à égale distance de 0 et -1 ce qui revient à dire que x est le centre de l'intervalle [-1;0], soit $-\frac{1}{2}$.

Ainsi, l'ensemble des solutions de |x| = |x+1| est $\{-\frac{1}{2}\}$.

Exercice 20. Résoudre dans \mathbb{R} les équations suivantes.

$$(E_1): 4x^2 - 9 = 0$$

$$(E_1): 4x^2 - 9 = 0$$
 $(E_2): 2(x-1)(x+2) = 0$ $(E_3): x - 3x^2 = 0$ $(E_4): x^2 + 6x + 9 = 0$

$$(E_3): x - 3x^2 = 0$$

$$(E_4): x^2 + 6x + 9 = 0$$

$$(E_5): x^2 - x - 6 = 0$$

$$(E_6): 2x^2 + x - 3 = 0$$

$$(E_7): 2x^2 + x + 3 = 0$$

$$(E_5): x^2 - x - 6 = 0$$
 $(E_6): 2x^2 + x - 3 = 0$ $(E_7): 2x^2 + x + 3 = 0$ $(E_8): -x^2 + 2x + 1 = 0$

Solution.

•
$$(E_1) \iff (2x)^2 - 3^2 = 0 \iff (2x - 3)(2x + 3) = 0 \iff 2x - 3 = 0 \text{ ou } 2x + 3 = 0$$

 $\iff x = \frac{3}{2} \text{ ou } x = -\frac{3}{2}.$

L'ensemble des solutions de (E_1) est $\{-\frac{3}{2}; \frac{3}{2}\}$.

•
$$(E_2) \iff (x-1)(x+2) = 0 \iff x-1 = 0 \text{ ou } x+2 = 0 \iff x=1 \text{ ou } x=-2.$$

L'ensemble des solutions de (E_2) est $\{-2;1\}$.

•
$$(E_3) \iff x(1-3x) = 0 \iff x = 0 \text{ ou } 1 - 3x = 0 \iff x = 0 \text{ ou } x = \frac{1}{3}$$
.
L'ensemble des solutions de (E_3) est $\{0; \frac{1}{3}\}$.

- $\bullet (E_4) \Longleftrightarrow (x+3)^2 = 0 \Longleftrightarrow x+3 = 0 \Longleftrightarrow x = -3.$ L'ensemble des solutions de (E_4) est $\{-3\}$.
- Le discriminant de $x^2 x 6$ est $\Delta = (-1)^2 4 \times 1 \times (-6) = 25 > 0$ donc (E_5) possède deux solutions réelles : $\frac{-(-1)-\sqrt{25}}{2} = -2$ et $\frac{-(-1)+\sqrt{25}}{2} = 3$.

Ainsi, l'ensemble des solutions de (E_5) est $\{-2; 3\}$

• Le discriminant de $2x^2 + x - 3$ est $\Delta = 1^2 - 4 \times 2 \times (-3) = 25 > 0$ donc (E_6) possède deux solutions réelles : $\frac{-1 - \sqrt{25}}{2 \times 2} = -\frac{3}{2}$ et $\frac{-1 + \sqrt{25}}{2 \times 2} = 1$. Ainsi, [l'ensemble des solutions de (E_6) est $\{-\frac{3}{2};1\}$].

• Le discriminant de $2x^2 + x + 3$ est $\Delta = 1^2 - 4 \times 2 \times 3 = -23 < 0$ donc (E_7) n'a pas de solution réelle.

Ainsi, l'ensemble des solutions de (E_7) est \varnothing .

• Le discriminant de $-x^2 + 2x + 1$ est $\Delta = 2^2 - 4 \times (-1) \times 1 = 8 > 0$ donc (E_8) possède deux solutions réelles : $\frac{-2-\sqrt{8}}{2\times(-1)} = \frac{-2-2\sqrt{2}}{-2} = 1 + \sqrt{2}$ et $\frac{-2+\sqrt{8}}{2\times(-1)} = \frac{-2+2\sqrt{2}}{-2} = 1 - \sqrt{2}$.

Ainsi, l'ensemble des solutions de (E_6) est $\{1-\sqrt{2}; 1+\sqrt{2}\}$

Exercice 21. Résoudre dans \mathbb{R} les équations suivantes.

$$(E_1) x^2 + 2\sqrt{2}x - 3 = 0 (E_2) : -x^2 + x + 1 = 3x - 7$$

$$(E_3) : (x - 2)(-3x^2 + 19x - 6) = 0 (E_4) : x^2 - (1 + \sqrt{2})x + \sqrt{2} = 0.$$

Solution.

• Le discriminant de $x^2 + 2\sqrt{2}x - 3$ est $\Delta = (2\sqrt{2})^2 - 4 \times 1 \times (-3) = 20 > 0$ donc (E_1) possède deux solutions réelles : $\frac{-2\sqrt{2}-\sqrt{20}}{2} = \frac{-2\sqrt{2}-2\sqrt{5}}{2} = -\sqrt{2}-\sqrt{5}$ et $\frac{-2\sqrt{2}+\sqrt{20}}{2} = \frac{-2\sqrt{2}+2\sqrt{5}}{2} = -\sqrt{2}+\sqrt{5}$. Ainsi, l'ensemble des solutions des (E_1) est $\{-\sqrt{2}-\sqrt{5}; -\sqrt{2}+\sqrt{5}\}$.

• $(E_2) \iff -x^2 + x + 1 - (3x - 7) = 0 \iff -x^2 - 2x + 8 = 0$

Le discriminant de $-x^2 - 2x + 8$ est $\Delta = (-2)^2 - 4 \times (-1) \times 8 = 36 > 0$ donc (E_2) possède deux solutions réelles : $\frac{2-\sqrt{36}}{2\times(-1)} = 2$ et $\frac{2+\sqrt{36}}{2\times(-1)} = -4$.

Ainsi, l'ensemble des solutions des (E_2) est $\{-4; 2\}$

• $(E_3) \iff x - 2 = 0 \text{ ou } -3x^2 + 19x - 6 = 0.$

D'une part, l'unique solution de x-2=0 est x=2.

D'autre part, le discriminant de $-3x^2+19x-6$ est $\Delta=19^2-4\times(-3)\times(-6)=289>0$ donc l'équation $-3x^2+19x-6=0$ possède deux solutions réelles : $\frac{-19-\sqrt{289}}{2\times(-3)}=6$ et $\frac{-19+\sqrt{289}}{2\times(-3)}=\frac{1}{3}$.

Ainsi, l'ensemble des solutions des (E_3) est $\{2; 6; \frac{1}{3}\}$

• Le discriminant de $x^2-(1+\sqrt{2})x+\sqrt{2}$ est $\Delta=(1+\sqrt{2})^2-4\times 1\times \sqrt{2}=1+2\sqrt{2}+2-4\sqrt{2}=1+2\sqrt{2}$ $1 - 2\sqrt{2} + 2 = (1 - \sqrt{2})^2 > 0$ donc (E_4) possède deux solutions réelles : $\frac{(1+\sqrt{2})-\sqrt{(1-\sqrt{2})^2}}{2} = \frac{1}{2}$ $\frac{1+\sqrt{2}-\left|1-\sqrt{2}\right|}{2} = \frac{1+\sqrt{2}-(\sqrt{2}-1)}{2} = 1 \text{ et } \frac{(1+\sqrt{2})+\sqrt{(1-\sqrt{2})^2}}{2} = \frac{1+\sqrt{2}+\left|1-\sqrt{2}\right|}{2} = \frac{1+\sqrt{2}+(\sqrt{2}-1)}{2} = \sqrt{2}.$ Ainsi, [l'ensemble des solutions de (E_4) est $\{1;\sqrt{2}\}$].

Exercice 22. Résoudre dans \mathbb{R} les équations suivantes d'inconnue x.

$$(E_1): \frac{x}{x^2+1} = \frac{1}{2}$$
 $(E_2): \frac{3x^2-8x+16}{x-4} = 2x$ $(E_3): x+\frac{1}{x} = 3$ $(E_4): 4x^4-13x^2+3 = 0$

$$(E_5): -2x + 9\sqrt{x} - 4 = 0$$
 $(E_6): -\frac{1}{x^2} + \frac{6}{x} - 1 = 0$ $(E_7): \sqrt{x+4} = 7 - 2x$

$$(E_8): (x^2-5)^2+22(x^2-5)+121=0$$
 $(E_9): x^3-3x^2=x$ $(E_{10}): mx^2-\sqrt{m}x+1=0$ où $m\in\mathbb{R}_+$

Solution.

• Pour tout réel x, $x^2 + 1 \neq 0$ donc

$$(E_1) \iff 2x = x^2 + 1 \iff x^2 - 2x + 1 = 0 \iff (x - 1)^2 = 0 \iff x - 1 = 0 \iff x = 1.$$

Ainsi, l'ensemble des solutions de (E_1) est $\{1\}$

• Pour tout réel $x \neq 4$,

$$(E_2) \iff 3x^2 - 8x + 16 = 2x(x - 4) \iff 3x^2 - 8x + 16 - 2x(x - 4) = 0$$

 $\iff 3x^2 - 8x + 16 - 2x^2 + 8x = 0 \iff x^2 + 16 = 0$

Or, pour tout réel x, $x^2 + 16 > 0$ donc l'ensemble des solutions de (E_2) est \varnothing

• Pour tout réel $x \neq 0$,

$$(E_3) \iff \frac{x^2 + 1}{x} = 3 \iff x^2 + 1 = 3x \iff x^2 - 3x + 1 = 0$$

Le discriminant de x^2-3x+1 est $\Delta=(-3)^2-4\times 1\times 1=5>0$ donc l'équation (E_3) possède deux solutions réelles : $\frac{-(-3)-\sqrt{5}}{2\times 1}=\frac{3-\sqrt{5}}{2}$ et $\frac{-(-3)+\sqrt{5}}{2\times 1}=\frac{3+\sqrt{5}}{2}$.

Ainsi, l'ensemble des solutions des (E_3) est $\{\frac{3-\sqrt{5}}{2}; \frac{3+\sqrt{5}}{2}\}$

• En posant $X=x^2$, l'équation devient $4X^2-13X+3=0$. Le discriminant de $4X^2-13X+3$ est $\Delta=(-13)^2-4\times 4\times 3=121>0$ donc l'équation $4X^2-13X+3=0$ possède deux solutions réelles : $\frac{-(-13)-\sqrt{121}}{2\times 4}=\frac{1}{4}$ et $\frac{-(-13)+\sqrt{121}}{2\times 4}=3$. On en déduit que

$$(E_4) \iff x^2 = \frac{1}{4} \text{ ou } x^2 = 3 \iff x = -\frac{1}{2} \text{ ou } x = \frac{1}{2} \text{ ou } x = \sqrt{3} \text{ ou } x = -\sqrt{3}.$$

Ainsi, l'ensemble des solutions de (E_4) est $\{-\frac{1}{2}; \frac{1}{2}; -\sqrt{3}; \sqrt{3}\}$

• Pour tout réel x>0, on pose $X=\sqrt{x}$ de sorte que $X^2=x$ et qu'ainsi l'équation s'écrit $-2X^2+9X-4=0$. Le discriminant du trinôme $-2X^2+9X-4$ est $\Delta=9^2-4\times(-2)\times(-4)=49>0$ donc l'équation $-2X^2+9X-4=0$ possède deux solutions réelles : $\frac{-9-\sqrt{49}}{2\times(-2)}=4$ et $\frac{-9+\sqrt{49}}{2\times(-2)}=\frac{1}{2}$. Ainsi,

$$(E_5) \Longleftrightarrow \sqrt{x} = 4 \text{ ou } \sqrt{x} = \frac{1}{2} \Longleftrightarrow x = 16 \text{ ou } x = \frac{1}{4}.$$

L'ensemble des solutions de (E_5) est $\{16; \frac{1}{4}\}$.

• Pour tout $x \neq 0$,

$$(E_6) \iff \frac{-1+6x-x^2}{x^2} = 0 \iff -x^2+6x-1 = 0.$$

Le discriminant de $-x^2+6x-1$ est $\Delta=6^2-4\times(-1)\times(-1)=32>0$ donc l'équation $-x^2+6x-1=0$ possède deux solutions réelles : $\frac{-6-\sqrt{32}}{2\times(-1)}=\frac{-6-4\sqrt{2}}{-2}=3+2\sqrt{2}$ et $\frac{-6+\sqrt{32}}{2\times(-1)}=\frac{-6-4\sqrt{2}}{2}=\frac{2}$ $\frac{-6+4\sqrt{2}}{-2} = 3 - 2\sqrt{2}.$

Ainsi, l'ensemble des solutions de (E_6) est $\{3 + 2\sqrt{2}; 3 - 2\sqrt{2}\}$

• On commence par remarquer que $\sqrt{x+4}$ existe si et seulement si $x \ge -4$ et, pour tout $x \geqslant -4$

$$x + 4 = (7 - 2x)^2 \Longrightarrow x + 4 = 49 - 28x + 4x^2 \Longrightarrow 4x^2 - 29x + 45 = 0$$

Le discriminant de $4x^2-27x+45$ est $\Delta=(-29)^2-4\times 4\times 45=121>0$ donc l'équation $4x^2 - 29x + 45 = 0$ possède deux solutions réelles : $\frac{-(-29) - \sqrt{121}}{2 \times 4} = \frac{9}{4}$ et $\frac{-(-29) + \sqrt{121}}{2 \times 4} = 5$. Or, pour x = 5, 7 - 2x = -3 < 0 donc $7 - 2x \neq \sqrt{x + 4}$. En revanche, pour $x = \frac{9}{4}, 7 - 2x = \frac{5}{2}$

et $\sqrt{x+4} = \sqrt{\frac{25}{4}} = \frac{5}{2}$ donc il y a bien égalité.

Ainsi, l'ensemble des solutions de (E_7) est $\{\frac{5}{2}\}$

• On pose $X = x^2 - 5$ de sorte que l'équation se réécrit $X^2 + 22X + 121 = 0$. Le discriminant de $X^2+22X+121$ est $22^2-4\times 1\times 121=0$ donc l'équation $X^2+22X+121$ possède une unique solutions réelle : $\frac{-22}{2} = -11$. On en déduit que

$$(E_8) \iff x^2 - 5 = -11 \iff x^2 = -6$$

Comme -6 < 0, on conclut que l'ensemble des solutions de (E_8) est \varnothing

• Pour tout réel x,

$$(E_9) \iff x^3 - 3x^2 - x = 0 \iff x(x^2 - 3x - 1) = 0 \iff x = 0 \text{ ou } x^2 - 3x - 1 = 0.$$

Le discriminant de $x^2 - 3x - 1$ est $\Delta = (-3)^2 - 4 \times 1 \times (-1) = 13 > 0$ donc l'équation $x^2 - 3x + 1 = 0$ possède deux solutions réelles : $\frac{-(-3) - \sqrt{13}}{2} = \frac{3 - \sqrt{13}}{2}$ et $\frac{-(-3) + \sqrt{13}}{2} = \frac{3 + \sqrt{13}}{2}$.

Ainsi, l'ensemble des solutions de (E_9) est $\{0; \frac{3-\sqrt{13}}{2}; \frac{3+\sqrt{13}}{2}\}$

• Le discriminant de $mx^2 - \sqrt{m}x + 1$ est $(-\sqrt{m})^2 - 4 \times m \times 1 = m - 4m = -3m < 0$ car m > 0 donc l'ensemble des solutions de (E_{10}) est \varnothing

Exercice 23. Résoudre dans \mathbb{R} les inéquations suivantes.

$$(I_1): x^2 - 5x + 6 \ge 0$$
 $(I_2): 3x^2 - x + 1 < 0$ $(I_3): 3x^2 + x - 2 < 0$ $(I_4): x^2 + x + \frac{1}{4} \le 0$

$$(I_5): x^3 \geqslant x^2 + 12x$$
 $(I_6): x \leqslant x^2 - 1$ $(I_7): x - \sqrt{x} - 2 \leqslant 0$ $(I_8): x^4 > 3x^2 + 4$

• Le discriminant de $x^2 - 5x + 6$ est $\Delta = (-5)^2 - 4 \times 1 \times 6 = 1 > 0$ donc l'équation $x^2 - 5x + 6 = 0$ possède deux solutions réelles : $\frac{5-\sqrt{1}}{2} = 4$ et $\frac{5+\sqrt{1}}{2} = 3$. Comme a = 1 > 0, on en déduit que l'ensemble des solutions de (I_1) est $]-\infty;2] \cup [3;+\infty[]$.

- Le discriminant de $3x^2 x + 1$ est $\Delta = (-1)^2 4 \times 3 \times 1 = -11 < 0$ donc, comme a = 3 > 0, pour tout réel x, $3x^2 x + 1 > 0$. Ainsi, l'ensemble des solutions de (I_2) est \varnothing .
- Le discriminant de $3x^2 + x 2$ est $\Delta = 1^2 4 \times 3 \times (-2) = 25 > 0$ donc l'équation $3x^2 + x 2 = 0$ possède deux solutions réelles : $\frac{-1 \sqrt{25}}{2 \times 3} = -1$ et $\frac{-1 + \sqrt{25}}{2 \times 3} = \frac{2}{3}$. Comme a = 1 > 0, on en déduit que l'ensemble des solutions de (I_3) est $\left] -1; \frac{2}{3} \right[$.
- Le discriminant de $x^2 + x + \frac{1}{4}$ est $\Delta = 1^2 4 \times \times \frac{1}{4} = 0$ donc l'équation $x^2 + x + \frac{1}{4} = 0$ possède une unique solution réelle : $\frac{-1}{2}$. De plus, comme a = 1 > 0, pour tout réel $x \neq -\frac{1}{2}$, $x^2 + x + \frac{1}{4} > 0$. On en déduit que l'ensemble des solutions de (I_4) est $\{-\frac{1}{2}\}$.
 - Pour tout réel x,

$$(I_5) \iff x^3 - x^2 - 12x \ge 0 \iff x(x^2 - x - 12) \ge 0.$$

Le discriminant de x^2-x-12 est $\Delta=(-1)^2-4\times 1\times (-12)=49>0$ donc l'équation x^2-x-12 possède deux solutions réelles : $\frac{-(-1)-\sqrt{49}}{2}=-3$ et $\frac{-(-1)+\sqrt{49}}{2}=4$. Comme a=1>0, on en déduit le tableau de signe suivant :

x	$-\infty$		-3		0		4		$+\infty$
signe de x		_		_	0	+		+	
signe de $x^2 - x - 12$		+	0	_		_	0	+	
signe de $x(x^2 - x - 12)$		_	0	+	0	_	0	+	

On conclut que l'ensemble des solutions de (I_5) est $[-3;0] \cup [4;+\infty[$

• Pour tout réel x,

$$(I_6) \Longleftrightarrow 0 \leqslant x^2 - 1 - x \Longleftrightarrow x^2 - x - 1 \geqslant 0$$

Le discriminant de x^2-x-1 est $\Delta=(-1)^2-4\times 1\times (-1)=5$ donc l'équation $x^2-x-1=0$ possède deux solutions réelles : $\frac{-(-1)-\sqrt{5}}{2}=\frac{1-\sqrt{5}}{2}$ et $\frac{1+\sqrt{5}}{2}$. Comme a=1>0, on en déduit que l'ensemble des solutions de (I_6) est $\left]-\infty$; $\frac{1-\sqrt{5}}{2}\right]\cup\left[\frac{1+\sqrt{5}}{2};+\infty\right[$.

• Posons, pour tout réel $x>0, X=\sqrt{x}$. Alors, l'inéquation (I_7) se réécrit $X^2-X-2\leqslant 0$. Le discriminant de X^2-X-2 est $\Delta=(-1)^2-4\times 1\times (-2)=9>0$ donc l'équation $X^2-X-2=0$ possède deux racines réelles : $\frac{-(-1)-\sqrt{9}}{2}=-1$ et $\frac{-(-1)+\sqrt{9}}{2}=2$. Ainsi, $X^2-X-2\leqslant 0$ si et seulement si $-1\leqslant X\leqslant 2$. On en déduit que

$$(I_7) \Longleftrightarrow -1 \leqslant \sqrt{x} \leqslant 2 \Longleftrightarrow 0 \leqslant x \leqslant 4$$

Ainsi, l'ensemble des solutions de (I_7) est [0;4]

• Pour tout réel x, (I_8) équivaut à $x^4-3x^2-4>0$. On pose $X=x^2$ de sorte que cette inéquation se réécrit $X^2-3X-4>0$. Le discriminant de X^2-3X-4 est $\Delta=(-3)^2-4\times 1\times (-4)=25>0$ donc l'équation $X^2-3X-4=0$ possède deux solutions réelles : $\frac{-(-3)-\sqrt{25}}{2}=-1$ et $\frac{-(-3)+\sqrt{25}}{2}=4$. Ainsi, comme a=1>0, $X^2-3X-4>0$ si et seulement si $X\in]-\infty\,;-1[\,\cup\,]4\,;+\infty[$. On en déduit que

$$(I_8) \Longleftrightarrow x^2 < -1 \text{ ou } x^2 > 4 \Longleftrightarrow x^2 > 4 \Longleftrightarrow x < -2 \text{ ou } x > 2.$$

Ainsi, l'ensemble des solutions de (I_8) est $]-\infty; -2[\cup]2; +\infty[]$.