♦ Corrigés des exercices du chapitre 2

Exercice 1. Dans chacun des cas suivants, dire si la proposition est vraie ou fausse en justifiant sa réponse.

- **1.** Pour tous entiers relatifs n et m, $n \times m \in \mathbb{N}$.
- **2.** Pour tout entiers naturels n et m, $n-m \in \mathbb{N}$.
- **3.** Pour tout entiers non nuls n et m, $\frac{n}{m} \in \mathbb{Z}$.
- **4.** Pour tout $n \in \mathbb{N}, -n \in \mathbb{N}$.
- **5.** Pour tout $n \in \mathbb{N}$, $\sqrt{n} \notin \mathbb{N}$.

Solution.

- 1. FAUX. Par exemple, 1 et -2 sont des entiers relatifs mais $1 \times (-2) = -2$ n'est pas un entier naturel.
- **2.** FAUX. Par exemple, 1 et 2 sont des entiers naturels mais 1-2=-1 n'est pas un entier naturel.
- **3.** FAUX. Par exemple, 1 et 2 sont des entiers relatifs non nuls mais $\frac{1}{2}$ n'est pas un entier relatif.
- **4.** FAUX. Par exemple, $1 \in \mathbb{N}$ et $-1 \notin \mathbb{N}$.
- **5.** FAUX. Par exemple, $4 \in \mathbb{N}$ et $\sqrt{4} = 2 \in \mathbb{N}$.

Exercice 2. Pour chacune des propositions suivantes, dire si elle est vraie ou fausse en justifiant sa réponse.

- 1. Il existe un nombre rationnel qui est un entier naturel.
- 2. Il existe un nombre rationnel compris entre 1,3 et 1,4.
- **3.** Pour tous nombres réels x et y, si x et y sont irrationnels alors $x \times y$ est irrationnel.

Solution.

- 1. VRAI. Par exemple, $5 = \frac{5}{1}$ est un rationel qui est un entier naturel.
- **2.** VRAI. Par exemple, $1.35 = \frac{135}{10}$ est un rationnel compris entre 1.3 et 1.4.
- **3.** FAUX. Par exemple, $x = \sqrt{2}$ et $y = \sqrt{2}$ sont irrationnels mais $x \times y = \sqrt{2} \times \sqrt{2} = 2$ est un nombre rationnel.

Exercice 3. Les propositions suivantes sont-elles vraies ou fausses? On justifiera sa réponse.

- 1. Pour tout réel x, si x^2 est rationnel alors x est rationnel.
- **2.** Pour tout réel x, si x est rationnel alors x^2 est rationnel.

Solution.

- 1. FAUX. Par exemple, $\sqrt{2}^2 = 2$ est un rationnel mais $\sqrt{2}$ est un irrationnel.
- **2.** VRAI. Soit x un rationnel. Alors, il existe des entiers a et b avec $b \neq 0$ tels que $x = \frac{a}{b}$ donc $x^2 = (\frac{a}{b})^2 = \frac{a^2}{b^2}$ est un rationnel car a^2 et b^2 sont des entiers.

Exercice 4. Soit x un réel non nul. Montrer que x est rationnel si et seulement si $\frac{1}{x}$ est rationnel.

Solution. On raisonne par double implication.

Supposons que x est rationnel. Alors, il existe deux entiers a et b avec $b \neq 0$ tel que $x = \frac{a}{b}$. De plus, comme $x \neq 0$, $a \neq 0$ et $\frac{1}{x} = \frac{1}{\frac{a}{k}} = \frac{b}{a}$ est un rationnel.

Réciproquement, supposons que $\frac{1}{x}$ est un rationnel. Alors, d'après ce qui précède, $\frac{1}{\frac{1}{x}}$ est un rationnel c'est-à-dire x est un rationnel.

On a donc bien montré l'équivalence : x est un rationnel si et seulement si $\frac{1}{x}$ est un rationnel

Exercice 5. Les propositions suivantes sont-elle vraies ou fausses?

- 1. $P_1 : \langle \forall x \in \mathbb{R}, (x+1)^2 = x^2 + 1 \rangle$.
- **2.** $P_2: \langle \exists x \in \mathbb{R}, (x+1)^2 = x^2 + 1 \rangle$.
- **3.** $P_3: \langle \forall x \in \mathbb{R}, (x+1)^2 \neq x^2 + 1 \rangle$.
- **4.** $P_4: \ll \exists x \in \mathbb{R}, (x+1)^2 \neq x^2 + 1 \gg$.

Solution.

- **1.** La proposition P_1 est fausse. Par exemple, pour x = 1, $(x + 1)^2 = (1 + 1)^2 = 2^2 = 4$ et $x^2 + 1 = 1^1 + 1 = 2$ donc $(x + 1)^2 \neq x^2 + 1$.
- **2.** La proposition P_2 est vraie. Pour x = 0, $(x+1)^2 = (0+1)^2 = 1^2 = 1$ et $x^2 + 1 = 0^2 + 1 = 1$ donc $(x+1)^2 = x^2 + 1$.
- **3.** La proposition P_3 est fausse comme le montre l'exemple précédent. (En fait, P_3 est la négation de P_2 donc, comme P_2 est vraie, P_3 est fausse).
- **4.** La proposition P_4 est vraie comme le montre le premier exemple. (De même, P_4 est la négation de P_1 donc, comme P_1 est fausse, P_4 est vraie).

Exercice 6. Pour chacune des implications suivantes, déterminer si elle est vraie ou fausse, écrire la réciproque et déterminer si cette réciproque est vraie ou fausse. On justifiera toutes ses réponses.

- **1.** Pour tout réel x, si (x-1)(x-2) = 0 alors x = 1.
- **2.** Pour tout réel x, si x > 3 alors x > 4.

Solution.

- 1. La proposition est fausse. En effet, pour x=2, x-2=0 donc (x-1)(x-2)=0 et pourtant $x \neq 1$. L'implication réciproque est : « pour tout réel x, si x=1 alors (x-1)(x-2)=0 ». Celle-ci est vraie car si x=1 alors x-1=0 donc (x-1)(x-2)=0.
- **2.** La proposition est fausse. Par exemple, 3.5 > 3 mais $3.5 \le 4$. La réciproque est « pour tout réel x, si x > 4 alors x > 3 ». Cette réciproque est vraie. En effet, soit x un réel tel que x > 4. Alors, comme 4 > 3, x > 4 > 3 donc x > 3.

Exercice 7. Démontrer l'équivalence suivante :

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \quad x^2 + y^2 = 0 \Longleftrightarrow x = y = 0.$$

Solution. On raisonne par double implication.

Soit x et y des réels tels que $x^2 + y^2 = 0$. Alors, $x^2 = -y^2$. Or, $x^2 \ge 0$ et $y^2 \ge 0$ donc $-y^2 \le 0$. Ainsi, x^2 est à la fois supérieur et inférieur à 0 donc $x^2 = 0$. On en déduit que x = 0. Par suite, $y^2 = 0$ donc y = 0. Ainsi, on a bien x = y = 0.

Réciproquement, supposons que x = y = 0. Alors, $x^2 + y^2 = 0^2 + 0^2 = 0$.

On a donc bien montré que :

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \quad x^2 + y^2 = 0 \Longleftrightarrow x = y = 0$$

Exercice 8. Démontrer l'équivalence suivante :

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ (x+y)^2 = x^2 + y^2 \iff (x=0 \text{ ou } y=0).$$

Solution. Ici, on peut raisonner par équivalence :

$$(x+y)^2 = x^2 + y^2 \iff x^2 + 2xy + y^2 = x^2 + y^2$$
$$\iff 2xy = 0$$
$$\iff xy = 0 \text{ car } 2 \neq 0$$
$$\iff x = 0 \text{ ou } y = 0$$

Ainsi, on a montré que

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ (x+y)^2 = x^2 + y^2 \iff (x=0 \text{ ou } y=0)$$

Exercice 9. Écrire les négations des propositions des exercices 1, 2 et 3.

Solution.

La négation de « pour tous entiers relatifs n et $m, n \times m \in \mathbb{N}$ » est « il existe des entiers relatifs n et m tels que $n \times m \notin \mathbb{N}$ ».

La négation de « pour tout entiers naturels n et m, $n-m \in \mathbb{N}$ » est « il existe des entiers naturels n et m tels que $n-m \notin \mathbb{N}$ ».

La négation de « pour tout entiers non nuls n et m, $\frac{n}{m} \in \mathbb{Z}$ » est « il existe des entiers non nuls n et m tels que $\frac{n}{m} \notin \mathbb{Z}$ ».

La négation de « pour tout $n \in \mathbb{N}$, $-n \in \mathbb{N}$ » est « il existe $n \in \mathbb{N}$ tel que $-n \notin \mathbb{N}$ ».

La négation de « pour tout $n \in \mathbb{N}$, $\sqrt{n} \notin \mathbb{N}$ » est « il existe $n \in \mathbb{N}$ tel que $\sqrt{n} \notin \mathbb{N}$ ».

La négation de « il existe un nombre rationnel qui est un entier naturel » est « pour tout nombre rationnel x, x n'est pas un entier naturel. »

La négation de « il existe un nombre rationnel compris entre 1,3 et 1,4 » est « pour tout nombre rationnel x, x < 1,3 ou x > 1,4 ».

La négation de « pour tous nombres réels x et y, si x et y sont irrationnels alors $x \times y$ est irrationnel » est « il existe des nombres réels x et y tels que x et y sont des irrationnels et $x \times y$ est un rationnel ».

La négation de « pour tout réel x, si x^2 est rationnel alors x est rationnel » est « il existe un réel x tel que x^2 est rationnel et x est irrationnel ».

La négation de « pour tout réel x, si x est rationnel alors x^2 est rationnel » est « il existe un réel x tel que x est rationnel et x^2 est irrationnel ».

Exercice 10. Montrer que, pour tout $n \in \mathbb{N}$, $2^{n+2} - 2^n = 3 \times 2^n$.

Solution. Soit $n \in \mathbb{N}$. Alors,

$$2^{n+2} - 2^n = 2^2 \times 2^n - 2^n = 4 \times 2^n - 2^n = 3 \times 2^n.$$

Ainsi, pour tout entier naturel n, $2^{n+2} - 2^n = 3 \times 2^n$

Exercice 11. Démontrer que, pour tout réel x, $\frac{3x^2+2}{x^2+1}=3-\frac{1}{x^2+1}$.

Solution. Soit $x \in \mathbb{R}$. Alors,

$$3 - \frac{1}{x^2 + 1} = \frac{3(x^2 + 1) - 1}{x^2 + 1} = \frac{3x^2 + 3 - 1}{x^2 + 1} = \frac{3x^2 + 2}{x^2 + 1}.$$

Ainsi, pour tout réel
$$x$$
, $3 - \frac{1}{x^2 + 1} = \frac{3x^2 + 2}{x^2 + 1}$.

Exercice 12. Démontrer que, pour tout réel x, $(x-3)(x^2+3x-10)=(x+5)(x^2-5x+6)$.

Solution. Soit $x \in \mathbb{R}$. Alors, d'une part,

$$(x-3)(x^2+3x-10) = x^3+3x^2-10x-3x^2-9x+30 = x^3-19x+30$$

et, d'autre part,

$$(x+5)(x^2-5x+6) = x^3-5x^2+6x+5x^2-25x+30 = x^3-19x+30.$$

On en déduit donc que, pour tout réel x, $(x-3)(x^2+3x-10)=(x+5)(x^2-5x+6)$

Exercice 13. Démontrer que, pour tout réel x, $\frac{x^4-1}{x^2+1}=(x+1)(x-1)$.

Solution. On propose deux méthodes.

Première méthode. Soit $x \in \mathbb{R}$. On remarque que $x^4 - 1 = (x^2)^2 - 1^2 = (x^2 - 1)(x^2 + 1)$ donc

$$\frac{x^4 - 1}{x^2 + 1} = \frac{(x^2 - 1)(x^2 + 1)}{x^2 + 1} = x^2 - 1 = x^2 - 1^2 = (x + 1)(x - 1).$$

Seconde méthode. Soit $x \in \mathbb{R}$. Alors, $\frac{x^4 - 1}{x^2 + 1} = (x + 1)(x - 1)$ si et seulement si $x^4 - 1 = (x + 1)(x - 1)(x^2 + 1)$. Or,

$$(x-1)(x+1)(x^2+1) = (x^2-1^2)(x^2+1) = (x^2-1)(x^2+1) = (x^2)^2 - 1^1 = x^4 - 1$$

On a donc montré que, pour tout réel x, $\frac{x^4 - 1}{x^2 + 1} = (x + 1)(x - 1)$.

Exercice 14. On rappelle que $\sqrt{2}$, $\sqrt{3}$ et π sont irrationnels. En raisonnant par l'absurde, démontrer que

- 1. $2 \sqrt{2}$ est irrationnel.
- 2. $\sqrt{\pi}$ est irrationnel.
- 3. $\sqrt{\sqrt{3}-1}$ est irrationnel.

Solution.

- 1. Supposons, par l'absurde, que $2-\sqrt{2}$ soit rationnel. Alors, il existe deux entiers a et b avec $b \neq 0$ tels que $2-\sqrt{2}=\frac{a}{b}$. Dès lors, $\sqrt{2}=2-\frac{a}{b}=\frac{2b}{b}-\frac{a}{b}=\frac{2b-a}{b}$ donc, comme 2b-a et b sont des entiers, $\sqrt{2}$ est un rationnel. C'est absurde donc $2-\sqrt{2}$ est irrationnel.
- **2.** Supposons, par l'absurde, que $\sqrt{\pi}$ soit rationnel. Alors, il existe deux entiers a et b avec $b \neq 0$ tels que $\sqrt{\pi} = \frac{a}{b}$. Dès lors, $\pi = \sqrt{\pi^2} = (\frac{a}{b})^2 = \frac{a^2}{b^2}$ donc, comme a^2 et b^2 sont des entiers, π est un rationnel. C'est absurde donc $\sqrt{\pi}$ est irrationnel.
- 3. Supposons, par l'absurde, que $\sqrt{\sqrt{3}-1}$ soit rationnel. Alors, il existe deux entiers a et b avec $b \neq 0$ tels que $\sqrt{\sqrt{3}-1} = \frac{a}{b}$. Dès lors, $\sqrt{3}-1 = (\frac{a}{b})^2 = \frac{a^2}{b^2}$ donc $\sqrt{3} = \frac{a^2}{b^2}+1 = \frac{a^2}{b^2} + \frac{b^2}{b^2} = \frac{a^2+b^2}{b^2}$ donc, comme a^2+b^2 et b^2 sont des entiers, $\sqrt{3}$ est un rationnel. C'est absurde donc $\sqrt[4]{\sqrt{3}-1}$ est irrationnel.

Exercice 15. Soit n un entier naturel non nul. Démontrer que si n est le carré d'un entier, alors 2n n'est pas le carré d'un entier.

Solution. Raisonnons par l'absurde en supposant que n est le carré d'un entier et que 2n est aussi le carré d'un entier. Alors, il existe des entiers naturels p et q tels que $n=p^2$ et $2n=q^2$. Dès lors, $2p^2=q^2$ donc $2=\frac{q^2}{p^2}$ et ainsi $\sqrt{2}=\frac{q}{p}$ ce qui contredit l'irrationalité de $\sqrt{2}$.

Ainsi, si n est le carré d'un entier alors 2n n'est pas le carré d'un entier

Exercice 16. Soit a, b, c et d des entiers. En raisonnant par l'absurde montrer que si $a + b\sqrt{2} = c + d\sqrt{2}$ alors a = c et b = d.

Solution. Supposons, par l'absurde, que $a+b\sqrt{2}=c+d\sqrt{2}$ et que $a\neq c$ ou $b\neq d$. Alors, comme $a+b\sqrt{2}=c+d\sqrt{2},\ b\sqrt{2}-d\sqrt{2}=c-a$ donc $(b-d)\sqrt{2}=c-a$.

Comme $a \neq c$ ou $b \neq d$, on peut distinguer deux cas.

 $\underline{1}^{\mathrm{er}}$ cas : Supposons que $a \neq c$. Alors, $c-a \neq 0$ donc $b-d \neq 0$ (car si b-d=0 alors $c-\overline{a}=(b-d)\sqrt{2}=0$). Dès lors, $\sqrt{2}=\frac{c-a}{b-d}$, ce qui contredit l'irrationnalité de $\sqrt{2}$.

 $\underline{2^{\mathrm{nd}}\ \mathrm{cas}}$: Supposons que $b \neq d$. Alors, $b-d \neq 0$ donc $\sqrt{2} = \frac{c-a}{b-d}$, ce qui contredit également l'irrationnalité de $\sqrt{2}$.

Dans les deux cas, on aboutit à une contradiction donc on a montré par l'absurde l'implication si $a + b\sqrt{2} = c + d\sqrt{2}$ alors a = c et b = d.

Exercice 17. Démontrer par récurrence que pour tout entier naturel $n \ge 10$, on a $2^n \ge 100n$.

Solution. On considère, pour tout entier $n \ge 10$ la proposition P(n) : « $2^n \ge 100n$ ».

- Initialisation. $2^{10} = 1024$ et $100 \times 10 = 1000$ donc $2^{10} \ge 100 \times 10$ et ainsi P(10) est vraie.
- \bullet Hérédité. Soit un entier $n\geqslant 10.$ On suppose que P(n) est vraie. Alors, $2^n\geqslant 100n$ donc

$$2^{n+1} = 2 \times 2^n \ge 2 \times 100n = 200n = 100n + 100n \ge 100n + 100 = 100(n+1)$$

donc P(n+1) est vraie.

Ainsi, pour tout entier $n \ge 10$, P(k) implique P(k+1).

• Par le principe de récurrence, on conclut que P(n) est vraie pour tout entier $n \ge 10$ c'est-à-dire, pour tout entier $n \ge 10$, $2^n \ge 100n$.

Exercice 18. On souhaite démontrer par récurrence que pour tout entier n et pour tout réel x > -1, on a $(1+x)^n \ge 1 + nx$ (cette inégalité s'appelle l'inégalité de Bernoulli).

- **1.** La récurrence porte-t-elle sur n? Sur x?
- **2.** Vérifier que, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$, $(1+nx)(1+x) = 1 + (n+1)x + nx^2$.
- **3.** Énoncer la proposition P(n) à démontrer.
- 4. Rédiger la démonstration.

Solution.

- 1. Une récurrence ne peut se faire que sur un entier donc elle porte nécessairement sur n.
- **2.** Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Alors,

$$(1+nx)(1+x) = 1 + x + nx + nx^2 = 1 + (n+1)x + nx^2.$$

- **3.** On fixe un réel x > -1 et on pose, pour tout $n \in \mathbb{N}$, $P(n) : (1+x)^n \ge 1 + nx$.
- **4.** Initialisation. $(1+x)^0 = 1$ et 1+0x = 1 donc P(0) est vraie.
 - Hérédité. Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie c'est-à-dire que $(1+x)^n \ge 1+nx$. Alors, comme 1+x>0,

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2.$$

Or, $n \in \mathbb{N}$ donc $n \ge 0$ et $n^2 \ge 0$ donc $nx^2 \ge 0$. Ainsi, $(1+x)^{n+1} \ge 1 + (n+1)x$ donc P(n+1) est vraie, ce qui montre que P(n) implique P(n+1).

• Par le principe de récurrence, on conclut que, pour tout $n \in \mathbb{N}$, $(1+x)^n \geqslant 1+nx$

Exercice 19.

- 1. Soit n un entier naturel. Justifier que $2^{n+1} + 2^{n+1} = 2^{n+2}$.
- **2.** En déduire par récurrence que, pour tout $n \in \mathbb{N}$,

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1.$$

Solution.

- 1. $2^{n+1} + 2^{n+1} = 2 \times 2^{n+1} = 2^{1+n+1} = 2^{n+2}$.
- **2.** On considère, pour tout $n \in \mathbb{N}$, la proposition $P(n) : \langle 2^0 + 2^1 + 2^2 + \dots + 2^n = 2^{n+1} 1 \rangle$.
 - Initialisation. $2^0 = 1$ et $2^{0+1} 1 = 2^1 1 = 2 1 = 1$ donc P(0) est vraie.
 - Hérédité. Soit $n \in \mathbb{N}$. On suppose que P(n) est vraie c'est-à-dire que $2^0 + 2^1 + 2^2 + \cdots + 2^n = 2^{n+1} 1$. Alors,

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} + 2^{n+1} = (2^{n+1} - 1) + 2^{n+1} = 2^{n+1} + 2^{n+1} - 1 = 2^{n+2} - 1$$

donc P(n+1) est vraie. Ainsi, pour tout entier $n \in \mathbb{N}$, P(n) implique P(n+1).

• Par le principe de récurrence, on conclut que

$$\forall n \in \mathbb{N}, \ 2^0 + 2^1 + 2^2 + \dots + 2^n = 2^{n+1} - 1$$

Exercice 20. Pour tout $n \in \mathbb{N}^*$, on note S_n la somme des n premiers entiers naturels impairs c'est-à-dire

$$S_n = 1 + 3 + 5 + \dots + (2n - 1).$$

- 1. Calculer S_1 , S_2 , S_3 et S_4 . Quelle conjecture peut-on faire?
- 2. Démontrer la conjecture précédente par récurrence.

Solution.

- 1. $S_1 = 1$, $S_2 = 1 + 3 = 4$, $S_3 = 1 + 3 + 5 = 9$ et $S_4 = 1 + 3 + 5 + 7 = 16$. On peut conjecturer que, pour tout $n \in \mathbb{N}^*$, $S_n = n^2$.
- **2.** Considérons, pour tout $n \in \mathbb{N}^*$, la proposition P(n) : « $S_n = n^2$ ».
 - Initialisation. $S_1 = 1$ et $1^2 = 1$ donc P(1) est vraie.
 - \bullet Hérédité. Soit $n\in\mathbb{N}^*.$ Supposons que P(n) est vraie. Ainsi, $S_n=n^2.$ Dès lors,

$$S_{n+1} = 1 + 3 + 5 + \dots + (2n-1) + (2(n+1)-1) = S_n + 2n + 2 - 1 = n^2 + 2n + 1 = (n+1)^2$$

donc P(n+1) est vraie. On a montré que, pour tout $n \in \mathbb{N}^*$, P(n) implique P(n+1).

• Par le principe de récurrence, on conclut que, pour tout $n \in \mathbb{N}^*$, $S_n = n^2$.

Exercice 21. Si n est un entier naturel non nul, on pose $S_n = 1^2 + 2^2 + \cdots + n^2$.

- 1. Calculer S_1 , S_2 , S_3 et S_4 .
- **2.** Exprimer, pour tout $n \in \mathbb{N}$, S_{n+1} en fonction de S_n .
- **3.** Démontrer par récurrence que, pour tout entier $n \ge 1$, $S_n = \frac{n(n+1)(2n+1)}{6}$.

Solution.

1.
$$S_1 = 1^2 = 1$$
, $S_2 = 1^2 + 2^2 = 5$, $S_3 = 1^2 + 2^2 + 3^2 = 14$ et $S_4 = 1^2 + 2^2 + 3^2 + 4^2 = 30$.

2. Soit $n \in \mathbb{N}$. Alors,

$$S_{n+1} = 1^2 + 2^2 + 3^2 + \dots + n^2 + (n+1)^2 = S_n + (n+1)^2$$

- **3.** Considérons, pour tout $n \in \mathbb{N}^*$, la proposition P(n) : « $S_n = \frac{n(n+1)(2n+1)}{6}$ ».
 - Initialisation. $S_1 = 1$ et $\frac{1 \times (1+1) \times (2 \times 1+1)}{6} = \frac{6}{6} = 1$ donc P(1) est vraie.
 - Hérédité. Soit $n \in \mathbb{N}^*$. Supposons que P(n) est vraie. Ainsi, $S_n = \frac{n(n+1)(2n+1)}{6}$. Dès lors, grâce à la question précédente

$$S_{n+1} = S_n + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)\left[n(2n+1) + 6(n+1)\right]}{6}$$

$$= \frac{(n+1)(2n^2 + n + 6n + 6)}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

Or, on cherche à montrer que P(n+1) est vraie c'est-à-dire que

$$S_{n+1} = \frac{(n+1)(n+1+1)(2(n+1)+1)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Ainsi, pour conclure, il suffit de montrer que $2n^2 + 7n + 6 = (n+2)(2n+3)$. Or,

$$(n+2)(2n+3) = 2n^2 + 3n + 4n + 6 = 2n^2 + 7n + 6$$

donc l'égalité est bien vérifiée et finalement $S_{n+1} = \frac{(n+1)(n+2)(2kn+3)}{6}$. Ainsi, pour tout $n \in \mathbb{N}^*$, P(n) implique P(n+1).

• Par le principe de récurrence, on conclut que, pour tout $n \in \mathbb{N}^*$, $S_n = \frac{n(n+1)(2n+1)}{6}$

Exercice 22. En raisonnant par récurrence, démontrer que, pour tout entier naturel non nul n,

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Solution. Considérons, pour tout $n \in \mathbb{N}^*$, la proposition

$$P(n): \ll 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
».

• Initialisation. $1^3 = 1$ et $\frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1$ donc P(1) est vraie.

 \bullet Hérédité. Soit $n\in\mathbb{N}^*.$ Supposons que P(n) est vraie. Alors, $1^3+2^3+3^3+\cdots+n^3=\frac{n^2(n+1)^2}{4}$ donc

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2} + 4(n+1)^{3}}{4}$$

$$= \frac{(n+1)^{2} [n^{2} + 4(n+1)]}{4}$$

$$= \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$

$$= \frac{(n+1)^{2}(n+2)^{2}}{4}$$

donc P(n+1) est vraie. Ainsi, pour tout $n \in \mathbb{N}^*$, P(n) implique P(n+1).

• Par le principe de récurrence, on conclut que,

$$\forall n \in \mathbb{N}^*, \quad 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Exercice 23.

- 1. Démontrer que, pour tout entier $n \ge 4$, $n^2 \ge 4n$ et en déduire que $n^2 \ge 2n + 1$
- **2.** Démontrer par récurrence que, pour tout entier $n \ge 4$, $2^n \ge n^2$.

Solution.

- **1.** Soit un entier $n \ge 4$. Alors, en multipliant par $n \ge 0$, il vient $n \times n \ge 4 \times n$ donc $n^2 \ge 4n$. Dès lors, $n^2 \ge 2n + 2n$ et, comme $n \ge 4$, $2n \ge 8$ donc $n^2 \ge 2n + 8 \ge 2n + 1$.
- **2.** Considérons, pour tout entier $n \ge 4$, la proposition $P(n) : \langle 2^n \ge n^2 \rangle$.
 - Initialisation. $2^4 = 16$ et $4^2 = 16$ donc P(4) est vraie.
 - Hérédité. Soit un entier $n \ge 4$. Supposons que P(n)) est vraie. Ainsi, $2^n \ge n^2$ donc, en multipliant par 2 > 0, on en déduit que $2 \times 2^n \ge 2n^2$ c'est-à-dire $2^{n+1} \ge 2n^2$. Or, d'après la question précédente, $n^2 \ge 2n + 1$ donc

$$2^{n+1} \geqslant 2n^2 = n^2 + n^2 \geqslant n^2 + 2n + 1 = (n+1)^2$$

donc P(n+1) est vraie. Ainsi, pour tout entier $n \ge 4$, P(n) implique P(n+1).

• Par le principe de récurrence, on conclut que, pour tout entier $n \ge 4, \, 2^n \ge n^2$