Devoir à la maison n°1

À rendre le mercredi 25 septembre 2024

Étant donné deux rationnels $r=\frac{a}{b}$ et $s=\frac{c}{d}$ écrits sous forme de <u>fractions irréductibles</u>, on définit la médiante de r et s, notée $r\oplus s$, par

$$r \oplus s = \frac{a+c}{b+d}.$$

1. Calculer $r \oplus s$ dans chacun des cas suivants. On donnera les résultats sous forme de fractions irréductibles.

a.
$$r = \frac{3}{5}$$
 et $s = \frac{2}{3}$ **b.** $r = \frac{3}{5}$ et $s = \frac{1}{3}$ **c.** $r = \frac{6}{15}$ et $s = \frac{16}{8}$.

- **2.** Montrer que, pour tout rationnel $x, x \oplus x = x$.
- 3. Soit $r = \frac{a}{b}$ et $s = \frac{c}{d}$ deux rationnels écrits sous forme de fractions irréductibles.

a. Montrer que
$$r \oplus s = \frac{b}{b+d} \times r + \left(1 - \frac{b}{b+d}\right) \times s$$
.

- **b.** Justifier que $0 < \frac{b}{b+d} < 1$.
- **c.** En déduire que si r < s alors $r < r \oplus s < s$.
- **4.** Soit $r = \frac{a}{b}$ et $s = \frac{c}{d}$ deux rationnels écrits sous forme de fractions irréductibles. On dit que la médiante $r \oplus s$ est simple si la fraction $\frac{a+c}{b+d}$ est irréductible.

La proposition suivante est-elle vraie ou fausse? (On justifiera sa réponse.)

 P_1 : « pour tous rationnels r et s, la médiante $r \oplus s$ est simple ».

- **5.** Soit n et m deux entiers. Montrer que $n \oplus m$ est simple si et seulement si n et m n'ont pas la même parité. (On pourra utiliser un raisonnement pas disjonction des cas).
- 6. Pour chacune des propositions suivantes, dire si elle est vraie ou fausse en justifiant sa réponse.
 - **a.** P_2 : « pour tous rationnels x, y et z, $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ ».
 - **b.** P_3 : « pour tous rationnels x, y et $z, x \times (y \oplus z) = (x \times y) \oplus (x \times z)$ ».
 - **c.** P_4 : « pour tous rationnels x et y, $x \oplus y = y \oplus x$ ».
 - **d.** P_5 : « pour tous rationnels x et y non nuls, $\frac{1}{x} \oplus \frac{1}{y} = \frac{1}{x \oplus y}$ ».
- 7. En raisonnant par l'absurde, montrer que la proposition suivante est fausse :

 P_6 : « il existe un rationnel x tel que, pour tout rationnel y, $x \oplus y = y$ ».

Solution.

1. a.
$$r \oplus s = \frac{3}{5} \oplus \frac{2}{3} = \frac{3+2}{5+3}$$
 donc $r \oplus s = \frac{5}{8}$

b.
$$r \oplus s = \frac{3}{5} \oplus \frac{1}{3} = \frac{3+1}{5+3} = \frac{4}{8} \text{ donc } r \oplus s = \frac{1}{2}$$

- **c.** Pour calculer $r \oplus s$, il faut écrire r et s sous forme de fractions irréductibles : $r = \frac{2}{5}$ et $s = \frac{2}{1}$. Ainsi, $r \oplus s = \frac{2}{5} \oplus \frac{2}{1} = \frac{2+2}{5+1} = \frac{4}{6}$ donc $r \oplus s = \frac{2}{3}$.
- **2.** Soit $x \in \mathbb{Q}$. On écrit x sous forme irréductible : $x = \frac{a}{b}$. Alors,

$$x \oplus x = \frac{a}{b} \oplus \frac{a}{b} = \frac{a+a}{b+b} = \frac{2a}{2b} = \frac{a}{b} = x.$$

Ainsi, pour tout $x \in \mathbb{Q}$, $x \oplus x = x$

3. a. On remarque que

$$\begin{split} \frac{b}{b+d} \times r + \left(1 - \frac{b}{b+d}\right) \times s &= \frac{b}{b+d} \times \frac{a}{b} + \left(\frac{b+d}{b+d} - \frac{b}{b+d}\right) \times \frac{c}{d} \\ &= \frac{a}{b+d} + \frac{d}{b+d} \times \frac{c}{d} \\ &= \frac{a}{b+d} + \frac{c}{b+d} \\ &= \frac{a+c}{b+d} \end{split}$$

donc, par définition,
$$r \oplus s = \frac{b}{b+d} \times r + \left(1 - \frac{b}{b+d}\right) \times s$$

- **b.** Par définition, b et d appartiennent à \mathbb{N}^* . On en déduit, d'une part, que b>0 et d>0 donc $\frac{b}{b+d}>0$ et, d'autre part, sachant que d>0, b+d>b. Dès lors, en divisant par b+d>0, $1>\frac{b}{b+d}$. Ainsi, $0<\frac{b}{b+d}<1$.
- **c.** Supposons que r < s. Alors, comme $\frac{b}{b+d} > 0$, $\frac{b}{b+d}r < \frac{b}{b+d}s$ et ainsi,

$$\frac{b}{b+d}r + \left(1 - \frac{b}{b+d}\right)s < \frac{b}{b+d}s + \left(1 - \frac{b}{b+d}\right)s = s$$

donc $r \oplus s < s$.

De même, comme $\frac{b}{b+d} < 1$, $1 - \frac{b}{b+d} > 0$ donc $\left(1 - \frac{b}{b+d}\right)r < \left(1 - \frac{b}{b+d}\right)s$ et ainsi $\frac{b}{b+d}r + \left(1 - \frac{b}{b+d}\right)s < \frac{b}{b+d}r + \left(1 - \frac{b}{b+d}\right)s$ c'est-à-dire $r < r \oplus s$.

Ainsi, on a bien montré que si r < s alors $r < r \oplus s < s$

4. On a vu à la question **1.b.** que $\frac{3}{5} \oplus \frac{1}{4} = \frac{4}{8}$ qui n'est pas irréductible donc $\frac{3}{5} \oplus \frac{1}{4}$ n'est pas simple.

Ainsi, P_1 est fausse

5. Distinguons 4 cas.

<u>1er cas.</u> Supposons que n et m sont pairs. Alors, il existe des entiers k et ℓ tels que n=2k et $m=2\ell$. Dès lors,

$$n \oplus m = \frac{2k}{1} \oplus \frac{2\ell}{1} = \frac{2k+2\ell}{2} = \frac{2(k+\ell)}{2}$$

et cette fraction n'est pas irréductible car on peut la simplifier par 2. Ainsi, $m \oplus n$ n'est pas simple.

<u>2e cas.</u> Supposons que n et m sont impairs. Alors, il existe des entiers k et ℓ tels que n = 2k + 1 et $m = 2\ell + 1$. Dès lors,

$$n \oplus m = \frac{2k+1}{1} \oplus \frac{2\ell+1}{1} = \frac{2k+2\ell+2}{2} = \frac{2(k+\ell+1)}{2}$$

et cette fraction n'est pas irréductible car on peut la simplifier par 2. Ainsi, $m \oplus n$ n'est pas simple.

<u>3e cas.</u> Supposons que n est pair et que m est impair. Alors, il existe des entiers k et ℓ tels que n=2k et $m=2\ell+1$. Dès lors,

$$n \oplus m = \frac{2k}{1} \oplus \frac{2\ell+1}{1} = \frac{2k+2\ell+1}{2} = \frac{2(k+\ell)+1}{2}$$

et cette fraction est pas irréductible le numérateur est impair donc il n'est pas divisible par 2. Ainsi, $m \oplus n$ est simple.

<u>4e cas.</u> Supposons que n est impair et que m est pair. Alors, il existe des entiers k et ℓ tels que n=2k+1 et $m=2\ell$. Dès lors,

$$n \oplus m = \frac{2k+1}{1} \oplus \frac{2\ell}{1} = \frac{2k+2\ell+1}{2} = \frac{2(k+\ell)+1}{2}$$

et on conclut, comme dans le cas précédent, que $m \oplus n$ est simple.

Conclusion. On conclut que $m \oplus n$ est simple si et seulement si m et n ont la même parité

6. a. P_2 est fausse car si x = 1, y = 1 et z = 2 alors,

$$(x \oplus y) \oplus z = (1 \oplus 1) \oplus 2 = 1 \oplus 2 = \frac{1}{1} \oplus \frac{2}{1} = \frac{3}{2}$$

et

$$x \oplus (y \oplus z) = 1 \oplus (1 \oplus 2) = \frac{1}{1} \oplus \left(\frac{1}{1} \oplus \frac{2}{1}\right) = \frac{1}{2} \oplus \frac{3}{2} = \frac{4}{4} = 1$$

donc $(x \oplus y) \oplus z \neq (x \oplus y) \oplus z$.

b. P_3 est fausse car si $x = \frac{2}{3}$, $y = \frac{1}{2}$ et $z = \frac{1}{3}$ alors,

$$x \times (y \oplus z) = \frac{2}{3} \times \left(\frac{1}{2} \oplus \frac{1}{3}\right) = \frac{2}{3} \times \frac{2}{5} = \frac{4}{15}$$

et

$$(x \times y) \oplus (x \times z) = \left(\frac{2}{3} \times \frac{1}{2}\right) \oplus \left(\frac{2}{3} \times \frac{1}{3}\right) = \frac{1}{3} \oplus \frac{2}{9} = \frac{3}{12} = \frac{1}{4}$$

donc $x \times (y \oplus z) \neq (x \oplus y) \times (x \oplus z)$.

- **c.** P_3 est vraie car si on écrit $x = \frac{a}{b}$ et $y = \frac{c}{d}$ sous forme de fractions irréductibles alors $x \oplus y = \frac{a+c}{b+d}$ et $y \oplus x = \frac{c+a}{d+b} = \frac{a+c}{b+d} = y \oplus x$.
- **d.** P_4 est vraie car si on écrit $x = \frac{a}{b}$ et $y = \frac{b}{d}$ sous forme de fractions irréductibles alors $\frac{1}{x} = \frac{b}{a}$ et $\frac{1}{y} = \frac{d}{b}$ sont écrites sous forme irréductibles donc

$$\frac{1}{x} \oplus \frac{1}{y} = \frac{b}{a} \oplus \frac{d}{c} = \frac{b+d}{a+c} = \frac{1}{\frac{a+c}{b+d}} = \frac{1}{x \oplus y}.$$

7. Supposons que P_6 est vraie. Alors, il existe un rationnel x tel que, pour tout rationnel y, $x \oplus y = y$. Écrivons $x = \frac{a}{b}$ sous forme de fraction irréductible. Alors, en prenant y = 0, on obtient $\frac{a}{b} \oplus \frac{0}{1} = \frac{0}{1}$ i.e. $\frac{a}{b+1} = 0$ donc a = 0. Ainsi, $x = \frac{0}{b} = 0$. Or, $0 \oplus 1 = \frac{0}{1} \oplus \frac{1}{1} = \frac{1}{2} \neq 1$ ce qui est absurde puisque $x \oplus 1 = 1$ par définition de x. Ainsi, P_6 est fausse.