♦ Chapitre 12. Matrices à coefficients réels ou complexes

Dans tout le chapitre, K désigne \mathbb{R} ou \mathbb{C} et m, n et p désignent des entiers naturels non nuls.

I. — Définition

Définition 1

Une **matrice** de taille $n \times m$ est un « tableau » d'éléments de K ayant n lignes et m colonnes. Ce tableau est délimité par des parenthèses (ou des crochets).

Exemple 2. $A = \begin{pmatrix} 2 & -3 \\ 0 & \frac{1}{3} \\ \pi & \sqrt{7} \end{pmatrix}$ est une matrice de taille 3×2 et $B = \begin{pmatrix} 0 & 0 & e^{i\frac{\pi}{3}} \\ 1 & 1+i & 0 \end{pmatrix}$ est une matrice de talle 2×3 .

Définition 3

Soit A une matrice de taille $n \times m$.

- 1. Si n = 1, on dit que la matrice est une matrice ligne.
- **2.** Si m=1, on dit que la matrice est une matrice colonne.
- 3. Si m = n, on dit que la matrice est une matrice carrée d'ordre n.

Exemple 4. $A = \begin{pmatrix} 3 & 0 & -\mathrm{i} & \frac{1}{3} + \mathrm{i} \end{pmatrix}$ est une matrice ligne, $B = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ est une matrice de colonne et $C = \begin{pmatrix} \cos \frac{\pi}{17} & -\sin \frac{\pi}{17} \\ \sin \frac{\pi}{17} & \cos \frac{\pi}{17} \end{pmatrix}$ est une matrice carrée d'ordre 2.

Définition 5

Les nombres composant une matrice sont appelés les **coefficients** (ou les termes ou les éléments) de la matrice. Le coefficient se trouvant à l'intersection de la i-ème ligne et la j-ème colonne est appelé le **coefficient d'indices** i et j. Si la matrice est notée A, on notera en général ce coefficient $a_{i,j}$ ou $[A]_{i,j}$.

Exemple 6. Si on reprend les matrices de l'exemple 2, $a_{1,1} = 2$, $b_{1,1} = 0$, $a_{1,2} = -3$, $b_{1,2} = 0$, $a_{3,1} = \pi$ et $a_{1,3}$ n'existe pas.

Définition 7

On dit que deux matrices sont égales si elles ont la même taille et les mêmes coefficients.

Notation 8. L'ensemble des matrices de taille $n \times m$ à coefficients dans K se note $\mathcal{M}_{n,m}(K)$ et, si n = m, on note simplement $\mathcal{M}_n(K)$. Ainsi, $\mathcal{M}_n(K)$ est l'ensemble des matrices carrées d'ordre n à coefficients dans K.

II. — Opérations sur les matrices

1) Addition et soustraction

Définition 9

On considère deux matrices A et B de même taille.

- 1. On définit la somme de A et B, notée A+B, comme la matrice obtenue en additionnant terme à terme les coefficients des matrices A et B (c'est-à-dire les coefficients ayant les mêmes indices).
- 2. On définit la différence de A et B, notée A-B, comme la matrice obtenue en soustrayant terme à terme les coefficients des matrices A et B (c'est-à-dire les coefficients ayant les mêmes indices).

Les matrices A + B et A - B ont la même taille que A et B.

Exemple 10. Si
$$A = \begin{pmatrix} 1 & -3 \\ 2 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$ alors $A + B = \begin{pmatrix} 1 + 2 & -3 + 4 \\ 2 + (-1) & 0 + 3 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ et $A - B = \begin{pmatrix} 1 - 2 & -3 - 4 \\ 2 - (-1) & 0 - 3 \end{pmatrix} = \begin{pmatrix} -1 & -7 \\ 3 & -3 \end{pmatrix}$.

Définition 11

On appelle **matrice nulle de taille** $n \times m$ la matrice de $\mathcal{M}_{n,m}(K)$ dont tous les coefficients sont nuls. On la note $0_{n,m}$ (et simplement 0_n si n=m).

Exemple 12.
$$0_{2,3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $0_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Propriété 13

Pour toute matrice $A \in \mathcal{M}_{n,m}(K)$,

- 1. $A + 0_{n,m} = 0_{n,m} + A = A$;
- **2.** $A 0_{n,m} = A$;
- 3. $A A = 0_{n,m}$.

2) Produit par un scalaire

Définition 14

Soit k un scalaire (c'est-à-dire une élément de K) et A une matrice. On définit la matrice kA comme la matrice obtenue en multipliant tous les coefficients de A par k. Elle est de même taille que A.

Exemple 15. Si
$$A = \begin{pmatrix} \frac{1}{3} & \frac{i}{2} & 1 \\ \frac{5}{6} & -1 & -\frac{2i}{3} \end{pmatrix}$$
 alors $6A = \begin{pmatrix} 2 & 3i & 6 \\ 5 & -6 & -4i \end{pmatrix} = B$. On a alors $A = \frac{1}{6}B$.

Définition 16

Soit A une matrice. On appelle opposée de A la matrice (-1)A. On la note -A. Elle est de même taille que A et formée des coefficients opposés de ceux de A.

Propriété 17

Soit A, B et C des matrices de même taille $n \times m$ et k et k' des scalaires. Alors,

- **1.** A + (-B) = A B et, en particulier, $A + (-A) = A A = 0_{n,m}$.
- **2.** $0_{n,m} A = -A$.
- **3.** A + B = B + A (l'addition des matrices est commutative).
- **4.** A + (B + C) = (A + B) + C (l'addition des matrices est associative).
- **5.** k(A+B) = kA + kB, (k+k')A = kA + k'A et k(k'A) = (kk')A (le produit par un scalaire est distributif et associatif).

Corollaire 18

Soit A, B et C trois matrices de même taille et k un scalaire non nul. Alors

1.
$$A = B + C$$
 si et seulement si $A - C = B$ **2.** $kA = B$ si et seulement si $A = \frac{1}{k}B$.

2.
$$kA = B$$
 si et seulement si $A = \frac{1}{k}B$.

Exemple 19. On considère les matrices
$$A = \begin{pmatrix} 4 & -1 \\ 2 & 0 \\ -2 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 2 \\ -3 & 1 \\ 0 & -1 \end{pmatrix}$.

- **1.** Calculer C = 3A 2B.
- **2.** Déterminer les matrices X de taille 3×2 alors que 2X + C = A.

3) Produit de deux matrices

- Définition $20\,$ -

Soit
$$L = (\ell_1 \ \ell_2 \ \cdots \ \ell_p)$$
 une matrice ligne ayant p colonnes et $C = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{pmatrix}$ une matrice colonne ayant p lignes. On définit le **produit de** L **par** C , noté $L \times C$ ou LC , comme la matrice carrée d'ordre 1 ayant comme seul coefficient le nombre $\ell_1 \times c_1 + \ell_2 \times c_2 + \cdots + \ell_p \times c_p = \sum_{i=1}^p \ell_i c_i$.

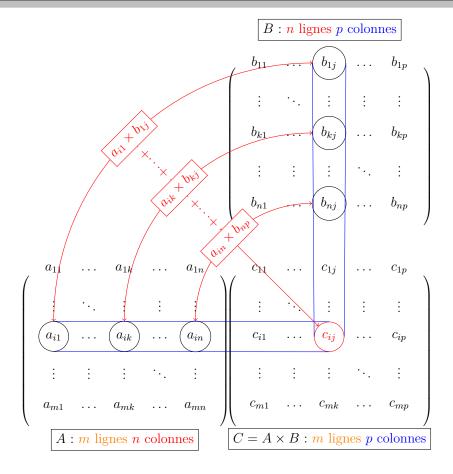
Exemple 21. Calculer
$$L \times C$$
 si $L = \begin{pmatrix} i & -2 & 0 & -3 \end{pmatrix}$ et $C = \begin{pmatrix} -i \\ 1 \\ 1 \\ 2 \end{pmatrix}$.

Remarque 22. Pour des raisons pratiques, on assimile cette matrice à son seul coefficient.

Définition 23

Soit $A \in \mathcal{M}_{n,p}(K)$ et $B \in \mathcal{M}_{p,m}(K)$. On définit le **produit des matrices** A et B, noté $A \times B$ ou AB, comme la matrice de taille $n \times m$ dont le coefficient d'indices i et j est le produit de la i-ème ligne de A avec la j-ème colonne de B (au sens de la définition précédente). Ainsi, pour tout $i \in [1, n]$ et tout $j \in [1, m]$, le coefficient d'indices i et j de la matrice AB est

$$[AB]_{i,j} = a_{i,1} \times b_{1,j} + a_{i,2} \times b_{2,j} + \dots + a_{i,p} \times b_{p,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}.$$



Remarque 24. Le produit AB n'existe que si le nombre de colonnes de A est égal au nombre de lignes de B.

Exemple 25. Soit
$$A = \begin{pmatrix} 2 & 2 & 0 \\ -1 & 4 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -3 & 2 \\ 1 & 0 \\ -1 & 4 \\ 0 & 3 \end{pmatrix}$ et $C = \begin{pmatrix} -2 & 4 & 1 \\ 3 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$. Calculer tous les

produits de deux matrices possibles avec A, B et C.

- 1) Ce n'est pas parce qu'on peut calculer AB qu'on peut automatiquement calculer BA.
- 2) Même si AB et BA existent, en général $AB \neq BA$. Le produit de matrice n'est pas commutatif.

Exemple 26. Calculer
$$AB$$
 et BA si $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

Définition 27

Si A et B sont deux matrices telles que AB = BA, on dit que A et B commutent.

Exemple 28. Quelles sont les matrices qui commutent avec la matrice A de l'exemple 26?

Propriété 29

Soit A, B et C trois matrices et k un scalaire. Sous l'hypothèse que les produits écrits ont un sens alors

- 1. A(BC) = (AB)C (associativité du produit);
- 2. A(B+C)=AB+AC et (A+B)C=AC+BC (distributivité du produit sur la somme):
- 3. k(AB) = (kA)B = A(kB) (associativité du produit matriciel et du produit par un scalaire).

Propriété 30

Soit $A \in \mathcal{M}_{n,m}(K)$. Alors, pour tout entier $p \in \mathbb{N}^*$, $A \times 0_{m,p} = 0_{n,p}$ et $0_{p,n} \times A = 0_{p,m}$. En particulier, si A est une matrice carrée d'ordre n alors $A \times 0_n = 0_n \times A = 0_n$.

• Un produit de deux matrices peut être nul sans qu'aucune des deux matrices ne soit nulle.

Exemple 31. Déterminer deux matrices A et B non nulles dont le produit est une matrice nulle.

4) Transposition

Définition 32

Soit $A \in \mathcal{M}_{n,m}(K)$. On appelle matrice transposée de A, et on note ${}^t\!A$ (A^{\top}) , la matrice de $\mathcal{M}_{m,n}(K)$ obtenue à partir de A en échangeant les lignes et les colonnes de A c'est-à-dire la matrice telle que, pour tout $(i;j) \in [1,n] \times [1,m], [tA]_{j,i} = A_{i,j}$.

Exemple 33. Déterminer les transposées des matrices A, B et C de l'exemple 25.

Propriété 34

- **1.** Pour tout $A \in \mathcal{M}_{n,m}(K)$, ${}^t({}^tA) = A$.
- **2.** Pour tout $(A, B) \in \mathcal{M}_{n,m}(K)^2$, ${}^t(A+B) = {}^tA + {}^tB$.
- **3.** Pour tout $A \in \mathcal{M}_{n,m}(K)$ et tout $k \in K$, ${}^{t}(kA) = k^{t}A$.
- **4.** Pour tout $A \in \mathcal{M}_{n,p}(K)$ et tout $B \in \mathcal{M}_{p,m}$, ${}^{t}(AB) = {}^{t}B {}^{t}A$.

III. — Matrices carrées

1) Matrices diagonales, matrices triangulaires

Définition 35

Soit $A \in \mathcal{M}_n(K)$.

- 1. On appelle diagonale de A l'ensemble des coefficients de A dont les deux indices sont égaux c'est-à-dire les coefficients de la forme $a_{i,i}$ pour $i \in [1, n]$. Ces coefficients sont appelés les coefficients diagonaux de A.
- **2.** On dit que A est une **matrice diagonale** si tous les coefficients de A qui ne sont pas diagonaux sont nuls.

Exemple 36. Les matrices (3),
$$\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 \\ 0 & 7 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ et 0_n sont diagonales.

Remarque 37. Les coefficients diagonaux d'une matrice diagonale peuvent tout à fait être nuls.

Définition 38 -

On appelle matrice identité (ou matrice unité) d'ordre n la matrice diagonale dont les coefficients diagonaux sont tous égaux à 1. On la note I_n .

Exemple 39.
$$I_1 = (1), I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Propriété 40

Pour tout $A \in \mathcal{M}_n(K)$, $A \times I_n = I_n \times A = A$.

Définition 41

Soit $A \in \mathscr{M}_n(K)$.

1. On dit que A est triangulaire supérieure si tous les coefficients de A situés strictement en dessous de la diagonale son nuls c'est-à-dire si, pour tout $(i, j) \in [1, n]^2$,

$$i > j \Longrightarrow [A]_{i,j} = 0.$$

2. On dit que A est triangulaire inférieure si tous les coefficients de A situés strictement au-dessus de la diagonale son nuls c'est-à-dire si, pour tout $(i, j) \in [1, n]^2$,

$$i < j \Longrightarrow [A]_{i,j} = 0.$$

Exemple 42. Les matrices (3), $\begin{pmatrix} 3 & 1+i \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1+i \\ 0 & 7 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 9 \\ 0 & 1 & e^{i\frac{\pi}{6}} \\ 0 & 0 & -2 \end{pmatrix}$, 0_n et I_n sont triangulaires supérieures et les matrices (3), $\begin{pmatrix} 2 & 0 \\ i\sqrt{3} & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ i & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & -2 \end{pmatrix}$, 0_n et I_n sont triangulaires

inférieures.

Remarque 43.

- 1. Une matrice $A \in \mathcal{M}_n(K)$ est triangulaire inférieure si et seulement si tA est triangulaire supérieure.
- 2. Une matrice $A \in \mathcal{M}_n(K)$ est diagonale si et seulement si elle est à la fois triangulaire supérieure et triangulaire inférieure.

2) Puissance d'une matrice carrée

Définition 44

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On définit le **carré** de A, noté A^2 , par $A^2 = A \times A$. De manière plus générale, pour tout $k \in \mathbb{N}^*$, on définit la **puissance** k-**ième** de A, notée A^k , comme le produit de A par elle-même k fois c'est-à-dire $A^k = \underbrace{A \times A \times \cdots \times A}_{k-k-1}$.

Remarque 45. Si $A \in \mathcal{M}_n(K)$, on convient que $A^0 = I_n$. On peut alors définir la puissance k par récurrence : $A^0 = I_n$ et, pour tout $k \in \mathbb{N}$, $A^{k+1} = A^k \times A$.

Exemple 46.

- 1. Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Que peut-on dire des puissances de A?
- **2.** Soit $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Calculer B^2 , B^3 et B^4 . Conjecturer l'expression de B^k en fonction de B et de k et le démontrer.
- 3. Même question avec la matrice $C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

Propriété 47

Soit $D \in \mathcal{M}_n(K)$ une matrice diagonale. Alors, pour tout $k \in \mathbb{N}$, D^k est la matrice diagonale dont les coefficients diagonaux sont les puissances k des coefficients diagonaux de D. Autrement dit, pour tout $k \in \mathbb{N}$,

$$\begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & a_{n-1} & 0 \\ 0 & \cdots & \cdots & 0 & a_n \end{pmatrix}^k = \begin{pmatrix} a_1^k & 0 & 0 & \cdots & 0 \\ 0 & a_2^k & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & a_{n-1}^k & 0 \\ 0 & \cdots & \cdots & 0 & a_n^k \end{pmatrix}$$

Remarque 48. En particulier, pour tout $k \in \mathbb{N}$, $I_n^k = I_n$ et, pour tout $k \in \mathbb{N}^*$, $0_n^k = 0_n$.

3) Matrice inverse d'une matrice carrée

a) Cas général

Définition 49

Soit $A \in \mathcal{M}_n(K)$. On dit que A est **inversible** s'il existe une matrice carrée B d'ordre n telle que $AB = I_n$ et $BA = I_n$. Si tel est le cas, alors la matrice B est unique et cette matrice est appelée l'**inverse** de la matrice A. On la note A^{-1} .

Remarque 50.

- 1. Par définition, une matrice et son inverse commutent.
- **2.** Si A est inversible alors A^{-1} est également inversible et $(A^{-1})^{-1} = A$.
- **3.** La matrice I_n est inversible et $I_n^{-1} = I_n$.
- **4.** La matrice 0_n n'est pas inversible car, pour toute matrice B carrée d'ordre n, $0_n B = B0_n = 0_n \neq I_n$.

Propriété 51

Soit $A \in \mathcal{M}_n(K)$. Si B est une matrice carrée d'ordre n telle que $AB = I_n$ (ou $BA = I_n$) alors A est inversible et $A^{-1} = B$.

Exemple 52. Démontrer que
$$B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 est l'inverse de $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Propriété 53

Soit $(A, B) \in \mathcal{M}_n(K)^2$.

- 1. Si A et B sont inversibles alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.
- **2.** Si A est inversible alors ${}^t\!A$ est inversible et $({}^t\!A)^{-1} = {}^t(A^{-1})$.

Propriété 54

Une matrice diagonale D est inversible si et seulement si aucun de ses coefficients diagonaux $a_1, a_2, ..., a_n$ n'est nul et alors D^{-1} est la matrice diagonale donc les coefficients diagonaux sont $\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}$. Autrement dit, si aucun des nombres $a_1, a_2, ..., a_n$ n'est nul alors

$$\begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & a_{n-1} & 0 \\ 0 & \cdots & \cdots & 0 & a_n \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{a_1} & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{a_2} & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \frac{1}{a_{n-1}} & 0 \\ 0 & \cdots & \cdots & 0 & \frac{1}{a_n} \end{pmatrix}.$$

b) Cas des matrices carrés d'ordre 2

Propriété 55

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2. Alors, A est inversible si et seulement si $ad - bc \neq 0$ et, dans ce cas,

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Définition 56

Avec les notations précédentes, le nombre ad-bc est appelé le **déterminant** de A. On le note $\det(A)$ ou encore $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

Exemple 57. Déterminer si les matrices suivantes sont inversibles et, si tel est le cas, déterminer leur inverse.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -2 \\ -6 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

IV. — Écriture matricielle d'un système et rang d'une matrice

Définition 58

On considère un système linéaire de n équations à m inconnues de la forme

(S)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_m \end{cases}$$

On peut alors associer à (S) les trois matrices

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

appelées respectivement matrice des coefficients, matrice des inconnues et matrice des seconds membres telles que le système (S) soit équivalent à l'égalité matricielle AX = B. Cette égalité est appelée écriture matricielle de (S).

Exemple 59. Déterminer l'écriture matricielle du système

(S)
$$\begin{cases} x - y + 2z = 5 \\ 2x + y - z = 1 \\ -x + 2y + z = 6 \end{cases}$$

Remarque 60. Si un système est échelonné alors sa matrice des coefficients est triangulaire supérieure (mais la réciproque est fausse).

Théorème 61

Soit $A \in \mathcal{M}_n(K)$. Les propositions suivantes sont équivalentes.

- 1. A est inversible.
- **2.** Pour tout $B \in \mathcal{M}_{n,1}(K)$, le système (S) dont l'écriture matricielle est AX = B possède une unique solution.

De plus, dans le cas où A est inversible, l'unique solution de (S) est donnée par la matrice $X=A^{-1}B$.

Exemple 62. Montrer que le système (S) de l'exemple 59 possède une unique solution et en déduire que la matrice $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix}$ est inversible.

On a vu dans le chapitre sur les systèmes linéaires qu'un système de n équations à n inconnues possède une unique solution si et seulement s'il est de rang n. La rang d'un système ne dépend pas du second membre mais seulement des coefficients des inconnues c'est-à-dire, avec l'écriture matricielle, seulement de la matrice A. Le théorème précédent assure que A est inversible si et seulement si le rang du système dont l'écriture matricielle est AX = B est égal à n pour tout $B \in \mathcal{M}_{n,1}(K)$ et, comme ce rang ne dépendant pas de B, ceci équivaut aussi au fait que le système donc l'écriture matricielle est $AX = 0_n$ est de rang n. Ceci justifie la définition suivante.

Définition 63

Soit $A \in \mathcal{M}_n(K)$ et (S) le système linéaire dont l'écriture matricielle est $AX = 0_n$. Le **rang** de A, noté $\operatorname{rg}(A)$, est le rang de (S).

Exemple 64. Déterminer le rang des matrices suivantes.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix}$$

Corollaire 65 –

Soit $A \in \mathcal{M}_n(K)$. Alors, les propositions suivantes sont équivalentes.

- 1. A est inversible.
- **2.** rg(A) = n.
- 3. L'unique matrice $X \in \mathcal{M}_{n,1}(K)$ telle que $AX = 0_n$ est 0_n .
- **4.** Pour tout $B \in \mathcal{M}_{n,1}(K)$, l'équation AX = B possède une unique solution dans $\mathcal{M}_{n,1}(K)$.

Exemple 66. Montrer que la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ n'est pas inversible de deux manières différentes.

Propriété 67

Un système linéaire de deux équations à deux inconnues $\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$ possède une unique solution si et seulement si $ad - bc \neq 0$.

Méthode 68

Ce qui précède, associé à l'algorithme de pivot de Gauss, donne un moyen non seulement de déterminer si une matrice $A \in \mathcal{M}_n(K)$ est inversible mais également de déterminer son inverse. Pour cela,

- on fixe des inconnues $x_1, x_2, ..., x_n$ et $y_1, y_2, ..., y_n$;
- on considère le système (S) dont l'écriture matricielle est $A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix};$
- on résout le système (S) par la méthode du pivot de Gauss;
- Si A est inversible, on obtient alors un nouveau système (S') qui exprime les inconnues $x_1, x_2, ..., x_n$ en fonction des inconnues $y_1, y_2, ..., y_n$ et, si l'écriture matricielle de

$$(S')$$
 est $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = B \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$ alors $B = A^{-1}$.

Exemple 69. Vérifier que la matrice $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$ et inversible et déterminer A^{-1}

V. — Exercices

Exercice 1. Dans chacun des cas suivantes, calculer A + B et AB lorsque ces opérations ont un sens.

1.
$$A = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 5 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & -1 & 7 \\ -1 & 3 & 5 \end{pmatrix}$ **2.** $A = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 5 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 \\ -3 & 2 \\ 5 & 0 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & -1 & 2 \\ 0 & 1 & 5 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 5 & -1 \\ 4 & -4 & 1 \\ 0 & 2 & 7 \end{pmatrix}$ 4. $A = \begin{pmatrix} 1 & \mathbf{i} & -1 \\ 1+\mathbf{i} & 0 & -\mathbf{i} \\ 0 & 1 & \mathbf{i} \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 0 & -1 \\ -\mathbf{i} & 1-\mathbf{i} & 1 \\ 0 & 1+\mathbf{i} & \mathbf{i} \end{pmatrix}$

Exercice 2. Résoudre les équations suivantes dans $\mathcal{M}_{2,1}(\mathbb{C})$.

$$(E_1) \ 2X + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \qquad (E_2) \ 5X - \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2X - \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Exercice 3. Résoudre les équations suivantes dans $\mathcal{M}_2(\mathbb{C})$.

$$(E_1) \ 2A = I_2 \qquad (E_2) \ A + {}^tA = I_2 \qquad (E_3) \ A - {}^tA = I_2.$$

Exercice 4. On considère la matrice $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$.

- 1. Calculer A^2 et A^3 .
- **2.** Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $A^n = \begin{pmatrix} 1 & 3^n 1 \\ 0 & 3^n \end{pmatrix}$.

Exercice 5. Pour chacune des propositions suivantes, déterminer, en justifiant, si elle est vraie ou fausse.

- 1. Soit A et B deux matrices non nulles telles que B a autant de lignes que A a de colonnes. Alors, la matrice AB n'est pas nulle.
- **2.** Soit A et B deux matrices non nulles telles que B a autant de lignes que A a de colonnes. Alors, la matrice $AB \neq BA$.
- **3.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. S'il existe un entier k tel que $A^k = 0_n$ alors $A = 0_n$.
- **4.** On considère la matrice $A = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix}$. Il existe une suite géométrique (u_n) telle que, pour tout $n \in \mathbb{N}$, $A^n = \begin{pmatrix} 1 & 0 \\ u_n 1 & u_n \end{pmatrix}$.

Exercice 6. On considère la matrice $A = \begin{pmatrix} 1 & -2 & -6 \\ -3 & 2 & 9 \\ 2 & 0 & -3 \end{pmatrix}$.

- 1. Calculer A^2 et A^3 .
- **2.** Soit $n \in \mathbb{N}$. Conjecturer une expression de A^{2n+1} en fonction de n.
- 3. Démontrer par récurrence cette conjecture.

Exercice 7. On considère la matrice $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et, pour tout réel x, on pose

$$M(x) = I_3 + xA + \frac{x^2}{2}A^2.$$

- 1. Calculer A^2 et A^3 et en déduire la valeur de A^n pour tout entier $n \ge 3$.
- 2. Soit x et y deux nombres réels. Montrer que

$$M(x)M(y) = M(x+y).$$

- **3.** Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Montrer que $M(x)^n = M(nx)$.
- **4.** Calculer M(0) et M(1).
- **5.** Calculer $M(1)^n$ pour tout $n \in \mathbb{N}$.

Exercice 8. On considère la matrice $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & -1 \\ -1 & 4 & 3 \end{pmatrix}$.

- 1. Déterminer la matrice J telle que $B = I_3 + J$.
- **2.** Démontrer que, pour tout entier $n \ge 3$, $J^n = 0_3$.
- **3.** Démontrer par récurrence que, pour tout entier $n \in \mathbb{N}$, $B^n = I + nJ + \frac{n(n-1)}{2}J^2$.
- **4.** En déduire, pour tout $n \in \mathbb{N}$, l'expression de B^n en fonction de n.

Exercice 9. On considère la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

1. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, il existe deux réels a_n et b_n tels que

$$A^n = \begin{pmatrix} 1 & a_n & b_n \\ 0 & 1 & a_n \\ 0 & 0 & 1 \end{pmatrix}$$

2. Déterminer, pour tout $n \in \mathbb{N}$, a_n et b_n et en déduire l'expression de A^n .

Exercice 10. On considère les matrices $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$ et $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

- 1. Calculer J^2 , J^3 et J^4 puis émettre une conjecture sur l'expression de J^n pour $n \in \mathbb{N}^*$. Démontrer cette conjecture par récurrence.
- **2.** Exprimer A, A^2 et A^3 en fonction de I_2 et de J.
- **3.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}^*$, $A^n = I_2 + \frac{5^n 1}{2}J$. Cette égalité est-elle encore vraie pour n = 0?
- **4.** On considère les suites (u_n) et (v_n) définies par $u_0 = 2$, $v_0 = 3$ et, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 3u_n + 2v_n$$
 et $v_{n+1} = 2u_n + 3v_n$.

En utilisant des matrices, déterminer, pour tout $n \in \mathbb{N}$, des expressions explicites de u_n et v_n en fonction de n.

Exercice 11. On considère les matrices $A = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 5 & 2 \\ 0 & 2 \end{pmatrix}$.

- 1. Montrer que A et B sont inversibles et déterminer A^{-1} et B^{-1} .
- ${\bf 2.}\,$ Sans la calculer, en déduire que AB est inversible et déterminer son inverse.

Exercice 12. Pour tout réel x, on pose

$$R(x) = \begin{pmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{pmatrix}.$$

- 1. Identifier la matrice R(0) et montrer que, pour tous réels x et y, R(x)R(y) = R(x+y).
- 2. Déduire de la question précédente que :
 - a. pour tous réels x et y, R(x) et R(y) commutent;
 - **b.** pour tout réel x, R(x) est inversible et il existe un réel y tel que $R(x)^{-1} = R(y)$.

Exercice 13. On considère la matrice

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}.$$

Montrer que $A^2 - 3A + 2I_3 = 0_3$ puis en déduire que A est inversible et exprimer son inverse en fonction de A.

Exercice 14. Déterminer si les matrices suivantes sont inversibles, et calculer leur inverse le cas échéant :

$$A = \begin{pmatrix} 2 & 1 \\ -5 & -2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 5 \\ -6 & -15 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

$$E = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix} \qquad F = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 3 & -1 \\ 3 & -1 & 7 \end{pmatrix} \qquad G = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ -2 & -1 & 0 \end{pmatrix} \qquad H = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

$$J = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad K = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \\ -1 & -2 & -3 \end{pmatrix} \qquad L = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Exercice 15. On considère les matrices $A = \begin{pmatrix} 5 & 3 \\ -6 & -4 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$.

- 1. Justifier que P est inversible et déterminer P^{-1} .
- **2.** Montrer qu'il existe une matrice diagonale D telle que $A = PDP^{-1}$.
- **3.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.
- **4.** En déduire, pour tout $n \in \mathbb{N}$, une expression de A^n en fonction de n.

Exercice 16. On considère deux suites (a_n) et (b_n) définies par :

$$\begin{cases} a_0 = 1 \\ b_0 = 2 \end{cases} \text{ et } \forall n \in \mathbb{N}, \begin{cases} a_{n+1} = 0.3a_n + 0.5b_n \\ b_{n+1} = -0.5a_n + 1.3b_n \end{cases}$$

- **1.** On pose, pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$.
 - **a.** Justifier que $X_1 = \begin{pmatrix} 1,3\\2,1 \end{pmatrix}$.
 - **b.** Déterminer la matrice carrée A d'ordre 2 telle que, pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.
- **2.** On considère les matrices $P = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ et $T = \begin{pmatrix} 0.8 & 0.5 \\ 0 & 0.8 \end{pmatrix}$.
 - a. Justifier que P est inversible et déterminer P^{-1}
 - **b.** Calculer PTP^{-1} .
 - c. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $A^n = PT^nP^{-1}$.
- **3.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $T^n = 0.8^{n-1} \begin{pmatrix} 0.8 & 0.5n \\ 0 & 0.8 \end{pmatrix}$.
- **4.** On admet que, pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.
 - **a.** En utilisant les résultats précédents, montrer que, pour tout $n \in \mathbb{N}$,

$$X_n = 0.8^{n-1} \begin{pmatrix} 0.8 + 0.5n \\ 1.6 + 0.5n \end{pmatrix}.$$

b. En déduire, pour tout $n \in \mathbb{N}$, l'expression de a_n en fonction de n.

Exercice 17. Résoudre les systèmes suivants en utilisant les matrices.

$$(S_1) \begin{cases} 4x + 2y = 1 \\ -2x + y = -2 \end{cases} \qquad (S_2) \begin{cases} -3x + 5y = -2 \\ -x + \frac{1}{2}y = -3 \end{cases}$$

Exercice 18. Soit $n \in \mathbb{N}^*$ et $U \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que ${}^tUU = 1$. On pose $S = I_n - 2U^tU$.

- 1. Montrer que ${}^tS = S$.
- 2. Calculer S^2 . En déduire que S est inversible et exprimer S^{-1} en fonction de S.

Exercice 19. Dans toute la suite, M désigne la matrice $M = \begin{pmatrix} 5 & 6 & -9 \\ 2 & 1 & -3 \\ 2 & 2 & -4 \end{pmatrix}$ et I_3 désigne la matrice identité d'ordre 3.

- 1. a. Calculer $M^2 3M$ et exprimer cette matrice à l'aide de I_3 .
 - **b.** En déduire que la matrice M est inversible et exprimer M^{-1} en fonction de M et de I_3 .
 - c. En utilisant les matrices, résoudre le système (S) $\begin{cases} 5x+6y=9z+4\\ 2x+y=3z\\ x+y=2z+1 \end{cases}.$
- **2. a.** Démontrer par récurrence qu'il existe deux suites réelles (a_n) et (b_n) telles que, pour tout $n \in \mathbb{N}$, $M^n = a_n M + b_n I_3$. On précisera a_0 et b_0 et on montrera que (a_n) et (b_n) vérifient :

$$\forall n \in \mathbb{N} \quad \begin{cases} a_{n+1} = 3a_n + b_n \\ b_{n+1} = 4a_n \end{cases}.$$

b. On note, pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$.

Déterminer la matrice A telle que, pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.

3. a. Soit P la matrice définie par $P = \begin{pmatrix} 1 & -1 \\ 1 & 4 \end{pmatrix}$.

Justifier que P est inversible et déterminer P^{-1} .

- **b.** Calculer $P^{-1}AP$. On note D cette matrice.
- c. Démontrer que, pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.
- **d.** En déduire, pour tout $n \in \mathbb{N}$, les expressions de a_n et b_n en fonction de n.
- 4. a. Déduire des questions précédentes, pour tout $n \in \mathbb{N}$, l'expression de M^n en fonction de n.
 - **b.** On considère trois suites (u_n) , (v_n) et (w_n) définies par $u_0 = 1$, $v_0 = 0$, $w_0 = 0$ et, pour tout $n \in \mathbb{N}$,

$$\begin{cases} u_{n+1} = 5u_n + 6v_n - 9w_n \\ v_{n+1} = 2u_n + v_n - 3w_n \\ w_{n+1} = 2u_n + 2v_n - 4w_n \end{cases}.$$

Déterminer, pour tout $n \in \mathbb{N}$, les formes explicites de u_n , v_n et w_n en fonction de n.

Exercice 20. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})$ tel que $I_n - AB$) est inversible.

Calculer $(I_n - BA)(I_n + B(I_n - AB)^{-1}A)$. Que peut-on en conclure?

Exercice 21. Soit $N \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente c'est-à-dire une matrice telle qu'il existe un entier p > 0 tel que $N^p = 0_n$.

- 1. La matrice N est-elle inversible?
- **2.** En considérant $(I_n N) \sum_{k=0}^{p-1} N^k$, montrer que $I_n N$ est inversible.

Exercice 22. Soit $n \in \mathbb{N}^*$ et D une matrice diagonale d'ordre n dont tous les coefficients diagonaux sont distincts.

Quelles sont les matrices qui commutent avec D?