Corrigés des exercices donnés le vendredi 29 mai

Exercice 20 p. 131

- 1. Comme la fonction carré est strictement croissante sur $[0; +\infty[$ et $3 < 4, 3^2 < 4^2.$
- 2. Comme la fonction carré est strictement décroissante sur $]-\infty;0]$ et $-7<-5,\ (-7)^2>(-5)^2.$
- **3.** Comme la fonction carré est paire, $(-13,06)^3 = 13,06^2$.
- 4. Comme la fonction carré est strictement décroissante sur $]-\infty;0]$ et $-\pi>-4,\ (-\pi)^2<(-4)^2.$

Exercice 21 p. 131

- 1. Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$ et $25 < 49, \sqrt{25} < \sqrt{49}.$
- 2. Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$ et $3 > 2, \sqrt{3} > \sqrt{2}$.
- 3. Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$ et $24,781 < 24,79, \sqrt{24,781} < \sqrt{24,79}.$
- **4.** Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$ et $\frac{13}{7} > \frac{11}{7}, \sqrt{\frac{13}{7}} > \sqrt{\frac{11}{7}}.$
- 5. Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$ et $10^8 > 10^7, \sqrt{10^8} > \sqrt{10^7}$.
- **6.** Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$ et $40 < 49, \sqrt{40} < \sqrt{49}$ c'est-à-dire $\sqrt{4 \times 10} < \sqrt{49}$ et donc $2\sqrt{10} < 7$.

Exercice 25 p. 131

- 1. $x^2 = 81$ équivaut à $x = \sqrt{81}$ ou $x = -\sqrt{81}$ c'est-à-dire x = 9 ou x = -9. Ainsi, l'ensemble des solutions de $x^2 = 81$ est $\{-9; 9\}$.
- **2.** $x^2 \leqslant 7$ équivaut à $x \in \left[-\sqrt{7}; \sqrt{7}\right]$ donc l'ensemble des solutions de $x^2 \leqslant 7$ est $\left[-\sqrt{7}; \sqrt{7}\right]$.
- 3. $x^2 < 4$ équivaut à $x \in \left] -\sqrt{4}; \sqrt{4} \right[$ donc l'ensemble des solutions de $x^2 < 4$ est]-2; 2[.
- **4.** $x^2 = 0$ équivaut à x = 0 donc l'ensemble des solutions de $x^2 = 0$ est $\{0\}$.
- 5. Pour tout réel $x, x^2 \ge 0$ donc $x^2 > -1$. Ainsi, l'ensemble des solutions de $x^2 > -1$ est \mathbb{R} .

Exercice 37 p. 132

- 1. C'est faux. L'image de -5 par la fonction carré est $(-5)^2 = 25$.
- 2. C'est faux. L'image de 4 par la fonction carré est $4^2 = 16$.
- 3. C'est vrai.
- **4.** C'est faux. Le nombre -5 n'a pas d'antécédent par la fonction carré car pour tout réel x, $x^2 \ge 0$.
- 5. C'est vrai.
- **6.** C'est faux. Si $x^2 = 9$ alors x = 3 ou x = -3.

Exercice 44 p. 133.

1. Le tableau de variation de la fonction carré sur [-5;3] est le suivant :

x	-5	0	3
Variation de $x \mapsto x^2$	25		9

- 2. Les extremums de la fonction carré sur [-5;3] sont 0 et 25.
- 3. On en déduit que si $-5 \leqslant x \leqslant 3$ alors $0 \leqslant x^2 \leqslant 25$.

Exercice 50 p. 133. Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$, elle conserve l'ordre. Il suffit donc de ranger par ordre croissant les radicandes (c'est-à-dire les nombres sous les racines carrées). Or, $0.1287 < \frac{5}{3} < 3 < \pi < 3.8$ donc $\sqrt{0.1287} < \sqrt{\frac{5}{3}} < \sqrt{3} < \sqrt{\pi} < \sqrt{3.8}$.