Devoir surveillé n°1

Durée : 1 heure L'utilisation d'une calculatrice est autorisée

Questions de cours. (2 points) Soit a, b, c, u et v des entiers.

- **1.** Rappeler la définition de « a divise b ».
- **2.** Démontrer que si c divise a et c divise b alors c divise ua + vb.

Exercice 1. (4 points)

- 1. Déterminer l'ensemble des entiers relatifs n tels que 3n + 2 divise 17.
- **2.** Déterminer l'ensemble des entiers relatifs n tels que 17 divise n+5.
- **3.** Déterminer l'ensemble des entiers relatifs n tels que n+5 divise 3n+2.

Exercice 2. (4 points) — Dans chaque cas, déterminer le reste r dans la division euclidienne de A par B.

- 1. A = 2019 et B = 15;
- **2.** A = -2019 et B = 29;
- **3.** $A = 2n^2 + 5n + 1$ et B = n + 2 où $n \in \mathbb{N}$.

Exercice 3. (2 points) — Soit $n \in \mathbb{N}$.

- **1.** Montrer que n(n+1) est un nombre pair.
- **2.** En déduire que $3n^2 + 3n$ est un multiple de 6.

Exercice 4. (8 points) — Soit a et b deux entiers.

- **1. a.** Vérifier que, pour tout $k \in \mathbb{N}^*$, $a^{k+1} b^{k+1} = a(a^k b^k) + b^k(a b)$.
 - **b.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}^*$, a-b divise a^n-b^n .
- **2.** En utilisant la question **1.b.**, montrer que si n est un entier naturel impair alors a+1 divise a^n+1 .
- **3.** Montrer que si $a \ge 3$ et si n est un entier naturel supérieur ou égal à 2 alors $a^n 1$ admet au moins 3 diviseurs positifs.
- **4.** Montrer que si a est un entier impair au moins égal à 3 et n un entier naturel non nul alors $a^n + 1$ admet au moins 3 diviseurs positifs.
- **5.** Soit n un entier naturel au moins égal à 3. On suppose que n admet un diviseur impair $p \ge 3$ et que $a \ge 2$. Montrer que $a^n + 1$ admet au moins 3 diviseurs positifs.