Devoir surveillé n°3

Durée: 1 heure

L'utilisation d'une calculatrice est autorisée

Exercice 1 (5 points). On considère les deux nombres complexes $z_1 = 2 + 3i$ et $z_2 = -1 + 2i$. Déterminer la forme algébrique des nombres suivants en détaillant les calculs nécessaires :

a)
$$z_3 = z_1 + z_2$$
;

$$b) z_4 = z_1 z_2;$$

c)
$$z_5 = \frac{1}{z_1}$$
;

$$d) z_6 = \frac{z_1}{z_2}$$

$$e) z_7 = \overline{z_1};$$

$$f) z_8 = \overline{z_1 - z_2};$$

$$g) z_9 = \frac{1}{\overline{z_2}}$$

a)
$$z_3 = z_1 + z_2;$$
 b) $z_4 = z_1 z_2;$ c) $z_5 = \frac{1}{z_1};$ d) $z_6 = \frac{z_1}{z_2}$
e) $z_7 = \overline{z_1};$ f) $z_8 = \overline{z_1 - z_2};$ g) $z_9 = \frac{1}{\overline{z_2}}:$ h) $z_{10} = \overline{\left(\frac{z_2}{z_1}\right)}.$

Exercice 2 (5 points). Résoudre dans \mathbb{C} les équations suivantes.

1.
$$(E): (1+2i)z = 1-2iz$$
.

2.
$$(F): (z+i)(iz+1) = 0.$$

3.
$$(G): 2z + \overline{z} = i + 2.$$

4.
$$(H): z^2 + 2\overline{z} + 1 = 0.$$

Exercice 3 (3 points). Déterminer l'ensemble des entiers naturels n tels que $(1+i)^n$ est un imaginaire pur.

Exercice 4 (5 points). Étant donné un nombre complexe w, on dit qu'un nombre complexe uest une racine carrée de w si $u^2 = w$.

- 1. Soit $w \in \mathbb{C}$. Supposons que u est une racine carrée de w.
 - a. Montrer que l'équation $z^2 = w$ est équivalente à l'équation (z u)(z + u) = 0.
 - **b.** En déduire que w possède au plus deux racines carrées.
- 2. On suppose que u est une racine carrée du nombre i et on écrit u sous forme algébrique u = a + ib avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

a. Justifier que
$$\begin{cases} a^2 = b^2 \\ 2ab = 1 \end{cases}$$

b. En déduire que
$$a \in \left\{-\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right\}$$
 et que $a = b$.

c. Déterminer l'ensemble des racines carrées de i.

Exercice 5 (2 points). Soit z un nombre complexe qui n'est pas réel et u un complexe différent de 1. On pose

$$Z = \frac{z - u\overline{z}}{1 - u}.$$

Démontrer que Z est réel si et seulement si $u\overline{u} = 1$. (Remarque : écrire z et/ou u sous forme algébrique n'est pas conseillé.)