Corrigé du devoir surveillé n°1

Exercice 1.

- 1. FAUX. Par exemple, 7 divise 7 mais 14 ne divise pas 7.
- **2.** VRAI. Soit n un entier tel que 5 divise n. Alors, il existe un entier k tel que n = 5k donc $n^2 = (5k)^2 = 25k^2$ donc, comme k^2 est un entier, 25 divise n^2 .
- **3.** FAUX. Par exemple, 3 divise 1 + 2 = 3 mais 3 ne divise pas 1 (ni 2).
- **4.** VRAI. Soit a et b deux entiers tels que 6 divise a et 6 divise a + b. Alors, 6 divise (a + b) a = b.

Exercice 2.

- **1.** Soit n un entier. Alors, 4n+1 divise 13 si et seulement si $4n+1 \in \{-13; -1; 1; 13\}$ i.e. $n \in \{-\frac{14}{4}; -\frac{1}{2}; 0; 3\}$. Comme n est entier, on en déduit que l'ensemble cherché est $\{0; 3\}$.
- **2.** Soit n un entier. Alors, 13 divise n+2 si et seulement s'il existe $k \in \mathbb{Z}$ tel que n+2=13k i.e. n=13k-2. Ainsi, l'ensemble cherché est $\{13k-2 \mid k \in \mathbb{Z}\}$.
- **3.** Soit un entier n tel que n+2 divise 4n+1. Alors, n+2 divise n+2 et 4n+1 donc n+2 divise 4(n+2)-(4n+1)=7 donc $n+2\in\{-7;-1;1;7\}$ i.e. $n\in\{-9;-3;-1;5\}$. Réciproquement, si n=-9 alors n+2=-7 divise 4n+1=-35, si n=-3 alors n+2=-1 divise 4n+1=-11, si n=-1 alors n+2=1 divise 4n+1=-3 et si n=5 alors n+2=7 divise 4n+1=21. Ainsi, l'ensemble cherché est $\{-9;-3;-1;5\}$.

Exercice 3.

- 1. $2020 = 106 \times 19 + 6$ et $0 \le 6 < 19$ donc r = 6.
- **2.** $-2020 = (-97) \times 21 + 17$ et $0 \le 17 < 21$ donc r = 17.
- **3.** $n^2 + 3n + 1 = (n-1)(n+4) + 5$ donc si $n \ge 2$, $0 \le 4 < n+4$ et ainsi r = 4. Si n = 0, A = 1 et B = 4 donc r = 1 (car $0 \le A < B$) et si n = 1, A = 5 et B = 5 donc r = 0 car B divise A.

Ainsi, r = 1 si n = 0, r = 0 si n = 1 et r = 5 si $n \ge 2$.

Exercice 4.

1. Considérons, pour tout $n \in \mathbb{N}$, la proposition $P_n : \langle u_n \text{ est un multiple de 7} \rangle$. Comme $u_0 = 7$, P_0 est vraie.

Soit $k \in \mathbb{N}$. Supposons que P_k est vraie. Alors, il existe un entier d tel que $u_k = 7d$ donc $u_{k+1} = 3u_k + 14 = 3(7d) + 2 \times 7 = 7(3d+2)$. Comme 3d+2 est un entier, on conclut que u_{k+1} est un multiple de 7 donc P_{k+1} est vraie.

Ainsi, on a montré par récurrence que, pour tout $n \in \mathbb{N}$, u_n est un multiple de 7.

2. Considérons, pour tout $n \in \mathbb{N}$, la proposition $Q_n : \langle u_n \text{ est impair } \rangle$.

Comme $u_0 = 7$, Q_0 est vraie.

Soit $k \in \mathbb{N}$. Supposons que Q_k est vraie. Alors, il existe un entier d tel que $u_k = 2d + 1$ donc $u_{k+1} = 3u_k + 14 = 3(2d + 1) + 2 \times 7 = 2(3d + 8) + 1$. Comme 3d + 8 est un entier, on conclut que u_{k+1} est impair donc P_{k+1} est vraie.

Ainsi, on a montré par récurrence que, pour tout $n \in \mathbb{N}$, u_n est impair.

3. a. Soit $n \in \mathbb{N}$. Alors,

$$v_{n+1} = u_{n+1} + 7 = 3u_n + 14 + 7 = 3u_n + 21 = 3(u_n + 7) = 3v_n$$

donc (v_n) est une suite géométrique de raison 3.

b. On en déduit que, pour tout $n \in \mathbb{N}$, $v_n = v_0 \times 3^n$. Or, $v_0 = u_0 + 7 = 14$ donc, pour tout $n \in \mathbb{N}$, $v_n = 14 \times 3^n$.

De plus, pour tout $n \in \mathbb{N}$, $u_n = v_n - 7$ donc $u_n = 14 \times 3^n - 7$.

- c. Soit $n \in \mathbb{N}$. Alors, $u_n = 14 \times 3^n 7 = 7(2 \times 3^n 1)$ donc, comme $2 \times 3^n 1$ est un entier, 7 divise u_n . De plus, $u_n = 2(7 \times u_n 4) + 1$ donc, comme $7 \times u_n 4$) est un entier, u_n est impair.
- **d.** Soit $n \in \mathbb{N}$. Si $\vec{n} \ge 2$ alors $3^n = 3^{n-2} \times 9$ est un multiple de 9 car $n-2 \ge 0$. On a alors $u_n = (14 \times 3^{n-2} 1) \times 9 + 2$ avec $0 \le 2 < 9$ donc le reste de u_n dans la division par 9 est 2.

De plus, $u_0 = 7$ et $0 \le 7 < 9$ donc si n = 0 alors le reste de u_n dans la division par 9 et 7 et $u_1 = 35 = 3 \times 9 + 8$ et $0 \le 8 < 9$ donc si n = 1 alors le reste de u_n dans la division par 9 est 8.

Ainsi, le reste de u_n dans la division par 9 est 7 si n = 0, 8 si n = 1 et 2 si $n \ge 2$.

Exercice 5.

<u>1ère méthode</u>. On considère n entiers consécutifs. Si on note a le plus petit de ces entiers alors la somme vaut

$$S = a + (a+1) + (a+2) + \dots + (a+n-1) = na + \sum_{k=1}^{n-1} k = na + \frac{n(n-1)}{2} = n\left(a + \frac{n-1}{2}\right).$$

Or, n est impair donc n-1 est pair et ainsi $a+\frac{n-1}{2}$ est entier donc n divise S.

<u>2e méthode</u>. On considère n entiers consécutifs. Comme n est impair, il existe un entier k tel que n = 2k + 1. Si on note a le (k + 1)e de ces entiers alors la somme vaut

$$S = (a - k) + (a - k + 1) + \dots + (a - 1) + a + (a + 1) + \dots + (a + k - 1) + (a + k) = na$$

car tous les termes autres que les a s'annulent deux à deux. On en déduit que n divise S.