Devoir surveillé n°1

Durée: 1 heure

L'utilisation d'une calculatrice est autorisée

Questions de cours. (3 points) — Soit a, b, c, m et n des entiers.

- 1. Rappeler la définition de « a divise b ».
- **2.** Démontrer que si a divise b alors ma divise mb.
- **3.** Démontrer que si c divise a et c divise b alors c divise ma + nb.

Exercice 1. (4 points) — Dans chaque cas, déterminer le reste r dans la division euclidienne de A par B.

- 1. A = 2018 et B = 29;
- **2.** A = -2018 et B = 17;
- **3.** $A = n^2 + 3n + 1$ et B = n + 2 où $n \in \mathbb{N}$.

Exercice 2. (5 points) — Pour tout $n \in \mathbb{N}$, on pose

$$u_n = 4^n + 15n - 1.$$

- 1. Calculer u_0 , u_1 et u_2 et montrer que ces trois entiers sont tous divisibles par 9.
- **2.** Montrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} = 4u_n 45n + 18$.
- 3. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, 9 divise u_n .

Exercice 3. (2 points) — Soit n un entier impair. Démontrer que 8 divise $n^2 - 1$.

Exercice 4. (8 points) — On pose, pour tout $n \in \mathbb{N}$, $F_n = 2^{(2^n)} + 1$. Ainsi, $F_0 = 2^{(2^0)} + 1 = 2^1 + 1 = 3$, $F_1 = 2^{(2^1)} + 1 = 2^2 + 1 = 5$, $F_2 = 2^{(2^2)} + 1 = 2^4 + 1 = 17$, etc.

- 1. Calculer F_5 et vérifier que 641 divise F_5 .
- **2.** Soit $n \in \mathbb{N}$. Justifier que les diviseurs de F_n sont tous impairs.
- **3.** Soit $n \in \mathbb{N}$.
 - **a.** Montrer que $F_{n+1} 2 = F_n(F_n 2)$.
 - **b.** En déduire, en utilisant aussi la question **2.**, que si un entier naturel d divise F_n et F_{n+1} alors d=1.
- **4. a.** Montrer par récurrence que, pour tout entier $n \ge 1$, $F_n = F_0 \times F_1 \times F_2 \times \cdots \times F_{n-1} + 2$.
 - **b.** Soit m et n deux entiers tels que $0 \le m < n$. Déduire de la question précédente que si un entier naturel d divise F_m et F_n alors d = 1.