Devoir surveillé n°1

Durée: 1 heure

L'utilisation d'une calculatrice est autorisée

Questions de cours. (3 points) — Soit x, y et z trois entiers.

- 1. Rappeler la définition de « x divise y ».
- **2.** Démontrer que si x divise y et x divise z alors, pour tout $(u;v) \in \mathbb{Z}^2$, x divise uy + vz.
- **3.** Démontrer que si x divise y et y divise z alors x divise z.

Exercice 1. (4 points) — Dans chaque cas, déterminer le reste r dans la division euclidienne de A par B.

- 1. A = 2017 et B = 28;
- **2.** A = -2018 et B = 9;
- **3.** $A = 3^n 1$ et $B = 3^{n-1}$ où $n \in \mathbb{N}^*$.

Exercice 2. (5 points) — Pour tout $n \in \mathbb{N}$, on pose

$$a_n = 3^{3n+3} - 26n - 27.$$

- 1. Calculer a_0 , a_1 et a_2 et montrer que ces trois entiers sont tous divisibles par 169.
- **2.** Montrer que, pour tout $n \in \mathbb{N}$, $a_{n+1} 27a_n = 676(n+1)$.
- **3.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, 169 divise a_n .

Exercice 3. (6 points) — On considère les suites (u_n) et (v_n) définies par :

$$u_0 = 1, \ v_0 = -1 \text{ et, pour tout } n \in \mathbb{N}, \ \begin{cases} u_{n+1} = 3u_n - 4v_n \\ v_{n+1} = -3u_n + 7v_n \end{cases}.$$

On admet que, pour tout $n \in \mathbb{N}$, u_n et v_n sont des entiers.

- 1. a. Calculer u_1 et v_1 .
 - **b.** Quels sont les entiers relatifs qui divisent à la fois u_1 et v_1 ?
- **2.** On pose, pour tout $n \in \mathbb{N}$, $t_n = 3u_n + 2v_n$.
 - **a.** Calculer t_0 .
 - **b.** Démontrer que la suite (t_n) est constante.
- 3. Soit $n \in \mathbb{N}$. Déterminer l'ensemble des entiers relatifs qui divisent à la fois u_n et v_n .

Exercice 4. (2 points) — Déterminer l'ensemble des entiers naturels n tels que n + 1 divise $n^2 + 1$.