Devoir à la maison n°3 – A rendre le mercredi 07 janvier 2015

Partie A. — Dans toute cette partie, A désigne une matrice carrée d'ordre 2. On dit qu'un réel k est une valeur propre de A s'il existe une matrice colonne <u>non nulle</u> X de taille 2×1 telle que AX = kX. On dit alors que la matrice X est associée à la valeur propre k.

1. Un exemple. — Dans cette question uniquement, on suppose que $A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix}$.

Calculer AX en prenant $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et en déduire une valeur propre de A.

On suppose à nouveau, dans la suite, que A est une matrice carrée d'ordre 2 quelconque.

- **2.** Démontrer que si k est une valeur propre non nulle de A et si X est une matrice associée à k alors, pour tout $n \in \mathbb{N}$, $A^nX = k^nX$.
- 3. Démontrer qu'un réel k est une valeur propre de A si et seulement si la matrice $A kI_2$ n'est pas inversible. (On pourra utiliser le théorème 55 du cours.)
- **4. a.** On note dans cette question $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ où a, b, c et d sont quatre réels quelconques. Déduire de la question précédente qu'un réel k est une valeur propre de A si et seulement si k est solution de l'équation $x^2 (a + d)x + ad bc = 0$.
 - **b.** Application. Déterminer les valeurs propres de la matrice $A = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$.
 - c. Existe-t-il des matrices carrées d'ordre 2 qui n'admettent pas de valeurs propres?

Partie B. — Le but de cette partie est de démontrer l'irrationalité de $\sqrt{2}$ i.e. de prouver qu'il n'existe pas d'entiers $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{2} = \frac{p}{q}$. Pour cela, on raisonne par l'absurde en supposant qu'il existe deux entiers $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{2} = \frac{p}{q}$ i.e. $p = q\sqrt{2}$.

Dans toute la suite, on considère les suites (u_n) et (v_n) définies par $u_0 = p$, $v_0 = q$ et, pour tout entier $n \in \mathbb{N}$,

$$\begin{cases} u_{n+1} = -u_n + 2v_n \\ v_{n+1} = u_n - v_n \end{cases}.$$

- 1. Démontrer que, pour tout $n \in \mathbb{N}$, $u_n \in \mathbb{Z}$ et $v_n \in \mathbb{Z}$.
- **2.** On note, pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$. On a alors, pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$ où A est la matrice définie en question **4.b.** de la **partie A**. Il s'ensuit que, pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$. (On ne demande pas de démontrer tout ceci).
 - a. Démontrer que X_0 est une matrice associée à une des valeurs propres de A que l'on précisera.
 - **b.** En utilisant la question **2.** de la **partie A**, en déduire, pour tout entier $n \in \mathbb{N}$, l'expression de u_n en fonction de n.
 - c. Justifier qu'il existe un certain rang N tel que $-1 < u_N < 1$ et en déduire que p = 0.
- **3.** Conclure.