Corrigé du devoir à la maison n°1

Exercice 1. On pose, pour tout $n \in \mathbb{N}$, $A_n = 3^{5n} - 5^{3n}$.

- 1. On vérifie que $A_0 = 3^0 5^0 = 0 = 0 \times 118$, $A_1 = 3^5 5^3 = 118 = 1 \times 118$, $A_2 = 3^{10} 5^6 = 43424 = 368 \times 118$ et $A_3 = 12395782 = 105049 \times 118$ donc ils sont tous divisibles par 118.
- **2.** Soit $n \in \mathbb{N}$. Alors

$$A_{n+1} = 3^{5(n+1)} - 5^{3(n+1)} = 3^{5n+5} - 5^{3n+3} = 3^{5n} \times 3^5 - 5^{3n} \times 5^3$$
$$= 3^5 (A_n + 5^{3n}) - 125 \times 5^{3n} = 3^5 \times A_n + (3^5 - 125) \times 5^{3n}$$
$$= 3^5 \times A_n + 118 \times 5^{3n}$$

$$\operatorname{donc}\left[A_{n+1} = 3^5 \times A_n + 118 \times 5^{3n}\right]$$

3. Considérons, pour tout $n \in \mathbb{N}$, la proposition P_n : « 118 divise A_n ».

On a vu que A_0 est divisible par 118.

Soit $k \in \mathbb{N}$. Supposons que P_k est vraie. Alors, il existe un entier d tel que $A_k = 118d$ donc, grâce à la question précédente,

$$A_{k+1} = 3^5 \times 118d + 118 \times 5^{3n} = 118(3^5d + 5^{3n})$$

donc, comme $3^5d + 5^{3n}$ est un entier, 118 divise A^{k+1} . Ainsi, 118 divise A_{k+1} . On a donc montré par récurrence que, pour tout $n \in \mathbb{N}$, A_n est un multiple de 118.

Exercice 2. Pour tout entier naturel $n \ge 2$, on considère la proposition suivante :

 $\mathcal{P}(n)$: « quels que soient les entiers consécutifs $a_1, a_2, ..., a_n, n$ divise $a_1 + a_2 + \cdots + a_n$ ».

- 1. La proposition $\mathcal{P}(2)$ est fausse. Par exemple, 2 ne divise pas 0+1=1.
- **2.** Considérons trois entiers consécutifs a, b et c. Alors, b = a + 1 et c = a + 2 donc a + b + c = 3a + 3 = 3(a + 1) donc 3 divise a + b + c. Ainsi, $\mathcal{P}(3)$ est vraie.
- **3.** La proposition $\mathcal{P}(4)$ est fausse. Par exemple, 0+1+2+3=6 n'est pas divisible par 4. Considérons 5 entiers consécutifs a, b, c, d et e. Alors, b=a+1, c=a+2, d=a+3 et e=a+4 donc a+b+c+d+e=5a+10=5(a+2) donc 5 divise a+b+c+d+e. Ainsi, $\mathcal{P}(5)$ est vraie.
- 4. On peut conjecturer que $\mathcal{P}(n)$ est vraie si et seulement si n est impair.
- **5.** Soit un entier $n \ge 2$.

Considérons n entiers consécutifs a_1 , a_2 , ..., a_n . Alors, $a_2 = a_1 + 1$, $a_3 = a_2 + 1$, ..., $a_n = a_1 + (n-1)$ donc

$$S_n = a_1 + a_2 + \dots + a_n = na_1 + (1 + 2 + \dots + (n-1)) = na_1 + \frac{(n-1)n}{2}.$$

Supposons que n est impair. Alors, n-1 est pair donc $\frac{n-1}{2}$ est un entier donc n divise $\frac{n-1}{2} \times n$. De plus, n divise na_1 donc n divise S_n . Ainsi, $\mathcal{P}(n)$ est vraie.

Supposons que n est pair. Alors, il existe un entier m tel que n=2m donc $S_n=na_1+\frac{(n-1)\times 2m}{2}=na_1+m(n-1)=n(a_1+m)-m$. Si n divise S_n alors n divise $n(a_1+m)-S_n$ i.e. n divise m. Comme n et m sont positifs, ceci implique que $n\leqslant m$ i.e. $2m\leqslant m$ donc, comme $m>0,\ 2\leqslant 1$ ce qui est absurde. Ainsi, S_n n'est pas divisible par n donc $\mathcal{P}(n)$ est fausse.

On a donc bien montré que $\mathcal{P}(n)$ est vraie si et seulement si n est impair.

6. D'après la question **5.**, si n est pair alors n divise S_n donc le reste dans la division euclidienne de S_n par n est 0.

Si n est pair alors il existe un entier m tel que n=2m et, comme on l'a vu précédent, $S_n = n(a_1+m) - m = n(a_1+m-1) + n - m = n(a_1+m-1) + m$ donc, comme $0 \le m < n$ (puisque n=2m), on conclut que le reste dans la division euclidienne de S_n par n est $m=\frac{m}{2}$.

Exercice 3. Raisonnons par l'absurde en supposant qu'il existe un entier $n \in \mathbb{N}$ tel qu'il existe des entiers non nuls x et y tels que $4^n = x^2 + y^2$. Considérons alors le plus petit entier naturel n pour lequel il existe des entiers naturels non nuls x et y tels que $4^n = x^2 + y^2$.

Comme x et y sont nuls, $|x| \ge 1$ et $|y| \ge 1$ donc $x^2 + y^2 \ge 2$ donc $n \ge 1$ puisque $4^0 = 1$.

Étudions la parité de x et y. Si a est un entier pair alors 2 divise a donc 2 divise a^2 i.e. a^2 est pair. Si a est impair alors il existe un entier k tel que a=2k+1 donc $a^2+(2k+1)^2=4k^2+4k+1=2(2k^2+2)+1$ donc a^2 est impair. Ainsi, a et a^2 ont la même parité. Si x et y sont de parité différentes, x^2 et y^2 aussi donc x^2+y^2 est impair, ce qui est impossible car $x^2+y^2=4^n$ avec $n\geqslant 1$. Si x et y sont impairs alors il existe des entiers d et m tels que x=2d+1 et y=2m+1 donc $x^2+y^2=(2d+1)^2+(2m+1)^2=4d^2+4d+1+4m^2+4m+1=4(m^2+m+d^2+d)+2$. Ainsi, il existe un entier K tel que $4^n=4K+2$ donc $2=4^n-4K=4(4^{n-1}-K)$. Comme $n\geqslant 1$, $4^{n-1}-K$ est un entier donc 4 divise 2, ce qui est absurde.

Ainsi, x et y sont pairs donc il existe des entiers d et m tels que x=2d et y=2m donc $4d^2+4m^2=4^n$ et ainsi $4^{n-1}=d^2+m^2$. Remarquons que d et m sont non nuls car x et y sont non nuls. Comme $n\geqslant 1,\ n-1$ est un entier naturel tel qu'il existe deux entiers non nuls tels que $4^{n-1}=d^2+m^2$. Comme n-1< n, ceci contredit la minimalité de n donc on aboutit à une absurdité.

On conclut donc que, quelle que soit la valeur de n, il n'existe pas d'entiers non nuls tels que $4^n = x^2 + y^2$.