Devoir à la maison n°1

À rendre le jeudi 13 septembre 2018

Exercice 1. — On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n = 2^{n+2} - 3$.

Exercice 2. — On considère les suites (a_n) et (b_n) définies par $a_0 = 0$, $b_0 = 1$ et, pour tout $n \in \mathbb{N}$,

$$\begin{cases} a_{n+1} = \frac{b_n - a_n}{2} \\ b_{n+1} = \frac{a_n + b_n}{2} \end{cases}.$$

- 1. Calculer a_1 , b_1 , a_2 et b_2 .
- 2. À l'aide d'un tableur, on a obtenu les valeurs suivantes :

n	3	4	5	6	7	8	9
a_n	0,25	0	0,125	0	0,0625	0	0,03125
b_n	0,25	0,25	0,125	0,125	0,0625	0,0625	0,03125

Que peut-on conjecturer concernant les suites (a_{2n}) et (a_{2n+1}) ?

- **3. a.** Démontrer que, pour tout $n \in \mathbb{N}$, $a_{n+2} = \frac{1}{2}a_n$.
 - b. En utilisant la question précédente, démontrer les conjectures de la question 2.
- **4.** Déterminer, pour tout $n \in \mathbb{N}$, l'expression de b_{2n} et de b_{2n+1} en fonction de n.

Exercice 3 (facultatif). — Déterminer les suites qui sont à la fois arithmétique et géométrique.

Exercice 4 (facultatif). — On considère une suite (u_n) telle que, pour tout $n \in \mathbb{N}$,

$$u_{n+2} = 2u_{n+1} - u_n.$$

Exprimer, pour tout $n \in \mathbb{N}$, u_n en fonction de u_0 , u_1 et n.