T^{ale}S septembre 2015

Devoir à la maison n°1

A rendre le vendredi 18 septembre 2015

Exercice 1. — Soit la suite (u_n) définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = (n+1)^2 - u_n$.

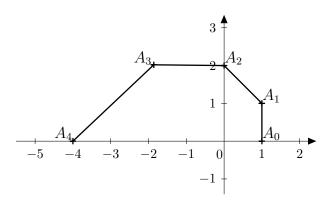
- 1. Calculer u_1 , u_2 et u_3 .
- **2.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $n^2 \leq 2u_n \leq (n+1)^2$.
- **3.** La suite (u_n) est-elle minorée? majorée? bornée? (On justifiera ses réponses avec soin).
- **4.** Étudier les variations de (u_n) .
- **5. a.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + n + 1$.
 - **b.** En déduire, pour tout $n \in \mathbb{N}$, l'expression de u_n en fonction de n.

Exercice 2. — Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$. On définit les suites (x_n) et (y_n) par $x_0 = 1$, $y_0 = 0$ et, pour tout $n \in \mathbb{N}$,

$$x_{n+1} = x_n - y_n$$
 et $y_{n+1} = x_n + y_n$.

On note, de plus, pour tout $n \in \mathbb{N}$, A_n le point du plan de coordonnées $(x_n; y_n)$.

On a représenté ci-dessous les points A_0 , A_1 , A_2 , A_3 et A_4 ainsi que la ligne brisée $A_0A_1A_2A_3A_4$.



Soit $n \in \mathbb{N}^*$. Déterminer, en fonction de n, la longueur de la ligne brisée $A_0A_1A_2\cdots A_n$.

Exercice 3 (facultatif). — Dans cet exercice, entier signifie entier relatif.

Soit x un réel tel que $x + \frac{1}{x}$ soit un nombre entier.

- 1. Le réel x est-il nécessairement un nombre entier?
- **2.** Si $n \in \mathbb{N}$, le réel $x^n + \frac{1}{x^n}$ est-il nécessairement un nombre entier?