Corrigés des exercices donnés pour le vendredi 29 mai 2020

Exercice 48 p. 223

- **1.** C'est vrai. La fonction sin est croissante sur $\left[0; \frac{\pi}{2}\right]$ donc, pour tout réel $x \in \left[0; \frac{\pi}{2}\right]$, $\sin(x) \geqslant \sin(0)$. Or, $\sin(0) = 0$ donc, pour tout réel $x \in \left[0; \frac{\pi}{2}\right]$, $\sin(x) \geqslant 0$.
- **2.** C'est faux. Par exemple, $\sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2} \geqslant 0$ mais $\frac{2\pi}{3} \notin \left[0; \frac{\pi}{2}\right]$.
- **3.** C'est faux. Par exemple, $\frac{2\pi}{3} \in [0; \pi]$ mais $\cos(\frac{2\pi}{3}) = -\frac{1}{2} < 0$.
- **4.** C'est vrai car la fonction cos est croissante sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ donc, pour tout $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, $\cos(x) \geqslant \cos(-\frac{\pi}{2})$. Or, $\cos(-\frac{\pi}{2}) = 0$ donc, pour tout $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, $\cos(x) \geqslant 0$

Exercice 62 p. 225

- **1.** On a $\frac{\pi}{2} \le \pi$ mais $\sin(\frac{\pi}{2}) = 1 > 0 = \sin(\pi)$.
- **2.** On a $\cos(\pi) = -1$ mais $\sqrt{1 \sin^2(\pi)} = \sqrt{1 0^2} = 1$.
- **3.** On a $\cos(0) = \cos(2\pi) = 1$ mais $0 \neq 2\pi$.
- **4.** On a $-\frac{3\pi}{2} \le 0$ mais $\sin(-\frac{3\pi}{2}) = 1 > 0$.
- **5.** On a $\frac{2\pi}{3} \geqslant 0$ mais $\cos(\frac{2\pi}{3}) = -\frac{1}{2} < 0$.

Exercice 83 p. 227. On sait que cos prend toutes les valeurs entre -1 et 1 donc $f: x \mapsto \cos(x) + 1$ prend toutes les valeurs entre 0 et 2 et $g: x \mapsto 2\cos(x)$ prend toutes les valeurs entre -2 et 2. On en déduit que \mathscr{C}_1 est la courbe de g, \mathscr{C}_2 est la courbe de f et donc \mathscr{C}_3 est la courbe de h.

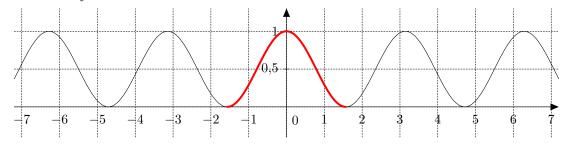
Exercice 86 p. 227

- **1.** Sur $\left[\frac{\pi}{4}; \frac{\pi}{2}\right]$, la fonction sin est croissante donc si $x \in \left[\frac{\pi}{4}; \frac{\pi}{2}\right]$ alors $\sin\left(\frac{\pi}{4}\right) \leqslant \sin(x) \leqslant \sin\left(\frac{\pi}{2}\right)$ c'est-à-dire $\frac{\sqrt{2}}{2} \leqslant \sin(x) \leqslant 1$.
- **2.** Sur $\left[\frac{2\pi}{3}; \frac{7\pi}{6}\right]$, la fonction sin est décroissante donc si $x \in \left[\frac{2\pi}{3}; \frac{7\pi}{6}\right]$ alors $\sin(\frac{2\pi}{3}) \geqslant \sin(x) \geqslant \sin(\frac{7\pi}{6})$ c'est-à-dire $\frac{\sqrt{3}}{2} \geqslant \sin(x) \geqslant -\frac{1}{2}$.
- **3.** Sur $\left[-\frac{\pi}{6}; \frac{\pi}{6}\right]$, la fonction sin est croissante donc si $-\frac{\pi}{6} \leqslant x \leqslant \frac{\pi}{6}$ alors $\sin(-\frac{\pi}{6}) \leqslant \sin(x) \leqslant \sin(\frac{\pi}{6})$ c'est-à-dire $-\frac{1}{2} \leqslant \sin(x) \leqslant \frac{1}{2}$.
- **4.** Sur $\left[\frac{\pi}{3}; \frac{2\pi}{3}\right]$, la fonction sin n'est pas monotone. Cependant,
 - sur $\left[\frac{\pi}{3}; \frac{\pi}{2}\right]$, sin est croissante donc si $\frac{\pi}{3} \leqslant x \leqslant \frac{\pi}{2}$ alors $\sin(\frac{\pi}{3}) \leqslant \sin(x) \leqslant \sin(\frac{\pi}{2})$ c'est-à-dire $\frac{\sqrt{3}}{2} \leqslant \sin(x) \leqslant 1$.
 - sur $\left[\frac{\pi}{2}; \frac{2\pi}{3}\right]$, sin est décroissante donc si $\frac{\pi}{2} \leqslant x \leqslant \frac{2\pi}{3}$ alors $\sin(\frac{\pi}{2}) \geqslant \sin(x) \geqslant \sin(\frac{2\pi}{3})$ c'est-à-dire $1 \geqslant \sin(x) \geqslant \frac{\sqrt{3}}{2}$.

Ainsi, dans tous les cas, si $\frac{\pi}{3} \leqslant x \leqslant \frac{2\pi}{3}$ alors $\frac{\sqrt{3}}{2} \leqslant \sin(x) \leqslant 1$.

Exercice 89 p. 227

1. La courbe de f est la suivante :



On peut conjecturer que f est paire et périodique de période π .

2. Soit $x \in \mathbb{R}$. Alors, $-x \in \mathbb{R}$ et, comme cos est paire, $f(-x) = \cos^2(-x) = \cos(x) = f(x)$ donc f est paire.

Ensuite, comme $\cos(x+\pi) = -\cos(x)$, $f(x+\pi) = \cos^2(x+\pi) = (-\cos(x))^2 = (\cos(x))^2 = \cos^2(x) = f(x)$ donc f est périodique de période π .