Exercice 53 p. 157

1. On peut évidemment programmer les quatre suites de l'énoncé sur la calculatrice et déterminer ainsi quel graphique correspond à quelle courbe.

Sinon, il est possible de répondre à la question sans calculatrice. Ainsi, le facteur $(-1)^n$ dans l'expression de (u_n) montre que le signe de u_n alterne avec la parité de n donc les points sont alternativement au-dessus et en dessous de l'axe de abscisses. Il s'agit donc de la représentation 2.

L'expression de (v_n) est celle d'une fonction du second degré en n. Ainsi, les points seront repartis sur une parabole. Il s'agit donc de la représentation 4.

La suite (w_n) est géométrique de premier terme 5 > 0 et de raison $0,8 \in]0;1[$ donc (w_n) est une suite décroissante. Le représentation de (w_n) est donc la 1.

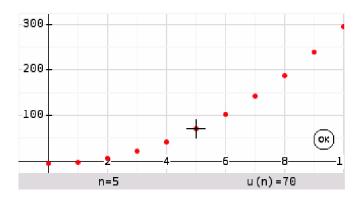
On conclut que (t_n) correspond à la représentation 3.

- 2. À l'aide de ces représentations, on peut conjecturer que
 - la suite (u_n) n'est pas monotone et que $\lim_{n\to+\infty} u_n = 0$.
 - la suite (v_n) est croissante à partir du rang 4 et que $\lim_{n\to+\infty} v_n = +\infty$.
 - la suite (w_n) est décroissante et que $\lim_{n\to+\infty} w_n = 0$.
 - la suite (t_n) n'est pas monotone et que $\lim_{n\to+\infty} t_n = 2,5$. (En fait, on peut montrer que cette limite n'est pas 2 mais $\frac{12}{5} = 2,4$)

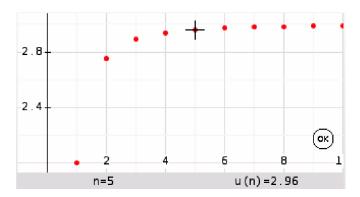
Exercice 54 p. 164

On utilise la calculatrice pour obtenir un nuage de points. On trouve alors les réponses suivantes

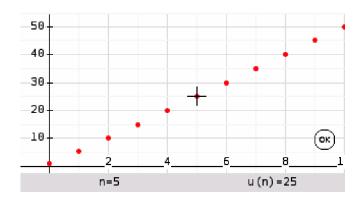
1. b.



2. c.



3. c.

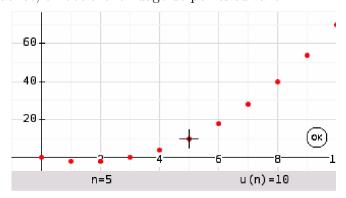


Exercice 99 p. 162

1. Soit $n \in \mathbb{N}$. Alors,

$$u_{n+1} - u_n = (n+1)^2 - 3(n+1) - (n^2 - 3n) = n^2 + 2n + 1 - 3n - 3 - n^2 + 3n = 2n - 2 = 2(n-1)$$
 donc, $u_{n+1} - u_n \ge 0$ si et seulement si $n \ge 1$ donc (u_n) est croissante à partir du rang 1 .

À l'aide de la calculatrice, on obtient le nuage de points suivant.



On peut conjecturer que (u_n) tend vers $+\infty$.

2. En langage naturel:

$$n \leftarrow 0$$

$$u \leftarrow n^2 - 3n$$
Tant que $(u < 10^4)$

$$n = n + 1$$

$$u = n^2 - 3n$$
Fin Tant que

En Python:

```
n=0
u=n**2-3*n
while (u<10**4):
    k+=1
    u=n**2-3*n</pre>
```

Exercice 124 p. 165

1. On obtient un tableau de valeurs à l'aide de la calculatrice :

3	0.8571429
4	1.076923
5	0.962963
6	1.018868
7	0.9906542
8	1.004695
9	0.9976581
10	1.001172

On peut conjecturer que (u_n) n'est pas monotone et que $\lim_{n\to+\infty}=1$.

2.
$$u_1 = \frac{2}{1+3} = \frac{1}{2}$$
 et $u_2 = \frac{2}{1+\frac{1}{2}} = \frac{4}{3}$.

Ainsi, $u_1 - u_0 = \frac{1}{2} - 3 = -\frac{5}{2}$ et $u_2 - u_1 = \frac{4}{3} - \frac{1}{2} = \frac{5}{6}$ donc $u_1 - u_0 \neq u_2 - u_1$ donc (u_n) n'est pas arithmétique.

De même, $\frac{u_1}{u_0} = \frac{\frac{1}{2}}{3} = \frac{1}{6}$ et $\frac{u_2}{u_1} = \frac{\frac{4}{3}}{\frac{1}{2}} = \frac{8}{3}$ donc $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$ donc (u_n) n'est pas géométrique.

3. a.
$$v_0 = 1 - \frac{3}{u_0 + 2} = 1 - \frac{3}{3 + 2} = 1 - \frac{3}{5} = \frac{2}{5}$$

$$v_1 = 1 - \frac{3}{u_1 + 2} = 1 - \frac{3}{\frac{1}{2} + 2} = 1 - \frac{3}{\frac{5}{2}} = 1 - 3 \times \frac{2}{5} = 1 - \frac{6}{5} = -\frac{1}{5}$$

$$v_2 = 1 - \frac{3}{u_2 + 2} = 1 - \frac{3}{\frac{4}{3} + 2} = 1 - \frac{3}{\frac{10}{3}} = 1 - 3 \times \frac{3}{10} = 1 - \frac{9}{5} = \frac{1}{10}$$

On voit sur ces trois premiers termes que $v_1 = -\frac{1}{2}v_0$ et $v_2 = -\frac{1}{2}v_1$. On peut conjecturer que (v_n) est géométrique de raison $-\frac{1}{2}$. Soit $n \in \mathbb{N}$. Alors,

$$\begin{aligned} v_{n+1} &= 1 - \frac{3}{u_{n+1} + 2} = 1 - \frac{3}{\frac{2}{1 + u_n} + 2} \\ &= 1 - \frac{3}{\frac{2 + 2(1 + u_n)}{1 + u_n}} = 1 - \frac{3}{\frac{4 + 2u_n}{1 + u_n}} = 1 - 3 \times \frac{1 + u_n}{4 + 2u_n} \\ &= \frac{4 + 2u_n}{4 + 2u_n} - \frac{3(1 + u_n)}{4 + 2u_n} = \frac{4 + 2u_n - 3 - 3u_n}{4 + 2u_n} \\ &= \frac{1 - u_n}{4 + 2u_n} \end{aligned}$$

Or,

$$-\frac{1}{2}v_n = -\frac{1}{2}\left(1 - \frac{3}{u_n + 2}\right) = -\frac{1}{2}\left(\frac{u_n + 2}{u_n + 2} - \frac{3}{u_n + 2}\right) = -\frac{1}{2} \times \frac{u_n - 1}{u_n + 2} = \frac{1 - u_n}{2u_n + 4}$$

donc $v_{n+1} = -\frac{1}{2}v_n$ et ainsi (v_n) est géométrique de raison $-\frac{1}{2}$.

b. Comme
$$v_0 = \frac{2}{5}$$
, on en déduit que, pour tout $n \in \mathbb{N}$, $v_n = \frac{2}{5}(-\frac{1}{2})^n$

c. Soit
$$n \in \mathbb{N}$$
. Alors, $v_n = 1 - \frac{3}{u_n + 2}$ donc $\frac{3}{u_n + 2} = 1 - v_n$. En prenant l'inverse, on a $\frac{u_n + 2}{3} = \frac{1}{1 - v_n}$ donc, en multipliant par 3, $u_n + 2 = \frac{3}{1 - v_n}$ et ainsi $u_n = \frac{3}{1 - v_n} - 2$.

On en déduit que, pour tout
$$n \in \mathbb{N}$$
, $u_n = \frac{3}{1 - \frac{2}{5}(-\frac{1}{2})^n} - 2$

La dernière question dépasse le programme de première. Nous n'avons pas encore les moyens de justifier que le limite est bien 1. L'idée est de montrer que $(-\frac{1}{2})^n$ tend vers 0 donc $1-\frac{2}{5}(-\frac{1}{2})^n$ tend vers 1 et ainsi (u_n) tend vers $\frac{3}{1}-2=1$. Mais rien de tout ça ne peut être justifier rigoureusement avec les outils de cette année donc vous pouvez laisser tomber cette question.