Corrigé du devoir surveillé n°4

Exercice 1.

- 1. Le sommet de \mathcal{P} est S(1;2). Ainsi, tous les points de \mathcal{P} ont une ordonnée supérieure ou égale à 2 si le coefficient dominant a de f est positif et inférieure ou égale à 2 sinon. Or, le point A(0;4) appartient à \mathcal{P} et $x_A = 4 > 2$ donc a > 0. Ainsi, la parabole est tournée vers le haut donc, pour tout $x \in \mathbb{R}$, $f(x) \ge 2$. En particulier, pour tout réel x, f(x) > 0.
- **2.** Comme a > 0 et que S(1; 2), <u>la fonction f est strictement décroissante sur $]-\infty; 1]$ et strictement croissante sur $[1; +\infty[$.</u>
- 3. Comme S a pour coordonnées (1; 2), pour tout réel x, $f(x) = a(x-1)^2 + 2$. De plus, f(0) = 4 donc $a(0-1)^2 + 2 = 4$ i.e. a+2 = 4 donc a = 2. Ainsi, pour tout réel x, $f(x) = 2(x-1)^2 + 2$ et donc $f(x) = 2(x^2 2x + 1) + 2$. Ainsi, pour tout $x \in \mathbb{R}$, $f(x) = 2x^2 4x + 4$.

Exercice 2.

1. Soit $x \in [0; 5]$. La surface grisée est composée de deux triangles rectangles d'aires respectivement $\frac{x^2}{2}$ et $\frac{(x-10)(x-5)}{2}$. Ainsi, la surface grisée a une aire, en cm², égale à

$$f(x) = \frac{x^2}{2} + \frac{(x-10)(x-5)}{2} = \frac{x^2 + x^2 - 5x - 10x + 50}{2} = \frac{2x^2 - 15x + 50}{2}$$

i.e.
$$f(x) = x^2 - \frac{15}{2}x + 25$$

2. La fonction $f: x \mapsto x^2 - \frac{15}{2}x + 25$ est une fonction polybôme du second degré donc le coefficient dominant est a=1. Par propriété, on sait que f atteint son maximum (sur \mathbb{R}) en $\frac{-(-\frac{15}{2})}{2 \times 1} = \frac{15}{4}$. Comme $\frac{15}{4} \in [0\,;5]$, on conclut que l'aire grisée est maximale si $x=\frac{15}{4}$.

Exercice 3.

1.

```
A=float(input("Saisir un réel non nul :"))
B=float(input("Saisir un réel :"))
B=float(input("Saisir un réel :"))
D=B**2-4*A*C
if (D>0):
   print("oui")
else:
   print("non")
```

2. On peut remplacer la ligne

par

if
$$(D \le 0 \text{ and } a > 0)$$
:

Exercice 4.

- 1. Pour tout $x \in I$, f'(x) = -3.
- **2.** Pour tout $x \in I$, $f'(x) = 12x^3 12x^2 + 2x 2$.
- **3.** Pour tout $x \in I$,

$$f'(x) = 1 \times \sqrt{x} + (x+1) \times \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{x+1}{2\sqrt{x}} = \frac{2\sqrt{x^2} + x + 1}{2\sqrt{x}} = \frac{3x+1}{2\sqrt{x}}.$$

- **4.** Pour tout $x \in I$, $f'(x) = -\frac{-4}{(1-4x)^2} = \frac{4}{(1-4x)^2}$.
- **5.** Pour tout $x \in I$, $f'(x) = \frac{2}{2\sqrt{2x+4}} = \frac{1}{\sqrt{2x+4}}$.

Exercice 5.

1. La fonction f est dérivable sur \mathbb{R} comme quotient de deux fonctions dérivables (et la fonction $x \mapsto x^2 + 8$ ne s'annule pas sur \mathbb{R}). De plus, pour tout réel x,

$$f'(x) = \frac{1 \times (x^2 + 8) - (x + 1) \times (2x)}{(x^2 + 8)^2} = \frac{x^2 + 8 - 2x^2 - 2x}{(x^2 + 8)^2}$$

et donc
$$f'(x) = \frac{-x^2 - 2x + 8}{(x^2 + 8)^2}$$

2. Pour tout réel x, $(x^2 + 8)^2 > 0$ donc le signe de f'(x) est le signe de $-x^2 - 2x + 8$. Le discriminant de ce trinôme est $(-2)^2 - 4 \times (-1) \times 8 = 36 > 0$ donc ce dernier possède deux racines réelles : $x_1 = \frac{-(-2) - \sqrt{36}}{2 \times (-1)} = \frac{2-6}{-2} = 2$ et $x_1 = \frac{-(-2) + \sqrt{36}}{2 \times (-1)} = \frac{2+6}{-2} = -4$. Comme a = -1 < 0, on en déduit que $f'(x) \le 0$ si $x \in]-\infty; -4] \cup [2; +\infty[, f'(x) \ge 0$ si $x \in [-4; 2]$.

Ainsi, f est décroissante sur $]-\infty;-4]$, croissante sur [-4;2] et décroissante sur $[2;+\infty[]$

- 3. On déduit de la question précédente que f admet un minimum local en -4 qui vaut $f(-4) = -\frac{1}{8}$ et un maximum local en 2 qui vaut $f(2) = \frac{1}{4}$.
- 4. On a $f'(0) = \frac{8}{8^2} = \frac{1}{8}$ et $f(0) = \frac{1}{8}$ donc $T : y = f'(0)(x 0) + f(0) = \frac{1}{8}(x 0) + \frac{1}{8}$ donc $T : y = \frac{x+1}{8}$.
- 5. Posons, pour tout réel x, $d(x) = f(x) \frac{x+1}{8}$. Alors, pour tout réel x,

$$f(x) = \frac{x+1}{x^2+8} - \frac{x+1}{8} = \frac{8(x+1) - (x+1)(x^2+8)}{8(x^2+8)} = \frac{(x+1)[8 - (x^2+8)]}{8(x^2+8)} = -\frac{x^2(x+1)}{8(x^2+8)}.$$

Comme $x^2 \ge 0$ et $8(x^2 + 8) > 0$, le signe de d(x) est le signe de -(x + 1). Ainsi, $d(x) \ge 0$ si $x \le -1$ et $d(x) \le 0$ si $x \le -1$.

On en déduit que C_f est au-dessus (au sens large) de T sur $]-\infty$; -1] et en dessous (au sens large) de T sur $[-1; +\infty[$.