Chapitre 12. — Les fonctions sinus et cosinus

Dans tout ce paragraphe, le plan est muni d'un repère orthonormé direct $(O; \vec{i}, \vec{j})$.

I. — Rappels

On appelle cercle trigonométrique le cercle de centre O et de rayon 1 orienté dans le sens direct c'est-à-dire dans le sens inverse des aiguilles d'une montre.

À tout réel x, on associe un unique point M sur le cercle trigonométrique par enroulement de l'axe réel autour de ce cercle. On dit alors que M est le point du cercle associé à x ou que Mest l'image de x sur le cercle trigonométrique.

Soit x un nombre réel et M le point du cercle trigonométrique associé à x. On définit le nombre $\cos x$ comme étant l'abscisse de M et le nombre $\sin x$ comme étant l'ordonnée de M. Autrement dit, les coordonnées de M sont $(\cos x; \sin x)$.

On a les valeurs remarquables suivantes.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Pour tout nombre réel x et tout entier relatif k,

- 1. $-1 \leqslant \cos x \leqslant 1$ et $-1 \leqslant \sin x \leqslant 1$
- **2.** $\cos(x + 2k\pi) = \cos x \text{ et } \sin(x + 2k\pi) = \sin x$
- 3. $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$ 4. $\cos(x+\pi) = -\cos x$ et $\sin(x+\pi) = -\sin x$
- **5.** $\cos(\pi x) = -\cos x$ et $\sin(\pi x) = \sin x$ **6.** $\cos^2(x) + \sin^2(x) = 1$

II. — Étude des fonctions sinus et cosinus

f définie sur \mathbb{R} est T-périodique si, pour tout réel x, f(x+T)=f(x).

Définition 1

On appelle fonction sinus (resp. cosinus) la fonction qui à tout nombre réel x associe le nombre $\sin x$ (resp. $\cos x$). On note cette function \sin (resp. \cos).

Propriété 2

Les fonctions sin et cos sont périodiques de période 2π (on dit aussi 2π -périodiques) ce qui signifie que, pour tout $x \in \mathbb{R}$, $\sin(x+2\pi) = \sin x$ et $\cos(x+2\pi) = \cos x$.

Conséquence graphique. — Les courbes des fonctions sinus et cosinus sont constituées d'un motif de longueur 2π qui se répète indéfiniment par translation de vecteur $2\pi i$.

Ceci implique qu'on peut n'étudier ces deux fonctions que sur un intervalle de longueur 2π . Remarque 3. — De manière générale, si T est un réel strictement positif, on dit qu'une fonction

Propriété 4

- 1. La fonction cos est paire ce qui signifie que, pour tout $x \in \mathbb{R}$, $\cos(-x) = \cos x$.
- 2. La fonction sin est impaire ce qui signifie que, pour tout $x \in \mathbb{R}$, $\sin(-x) = -\sin x$.

Remarque 5. — De manière générale, on dit qu'une fonction f définie sur \mathbb{R} est paire si, pour tout réel x, f(-x) = f(x) et on dit que f est impaire si, pour tout réel x, f(-x) = -f(x). Conséquence graphique

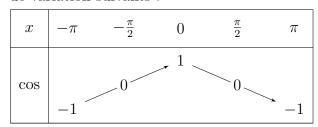
- 1. La courbe de la fonction cosinus est symétrique par rapport à l'axe des ordonnées.
- 2. La courbe de la fonction sinus est symétrique par rapport à l'origine O du repère.

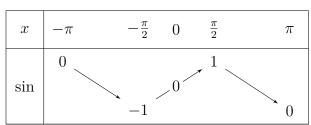
Ceci, associé à la 2π -périodicité, implique qu'on peut n'étudier ces deux fonctions que sur l'intervalle $[0;\pi]$.

Or, par définition, il est clair que

- 1. lorsque x augmente dans $[0; \pi]$, l'abscisse du point M diminue de 1 à -1 donc la fonction cosinus est décroissante sur $[0; \pi]$.
- **2.** lorsque x augmente dans $[0;\pi]$, l'ordonnée du point M augmente de 0 à 1 puis diminue de 1 à 0 le maximum 1 étant atteint pour $x=\frac{\pi}{2}$. Ainsi, la fonction sinus est croissante sur $\left[0;\frac{\pi}{2}\right]$ et décroissante sur $\left[\frac{\pi}{2};\pi\right]$.

On a donc, en complétant par parité pour cosinus et par imparité pour sinus, les tableaux de variation suivants :





Courbes représentatives

